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Immunotherapies using new modalities, including antibody-based drugs,

nanoparticle-delivered drugs, and adoptive cell therapy, have become major

treatment options for immune-related diseases such as cancer, autoimmune

diseases, and infections. Although data characterizing individual patients’

pharmacological responses, immune statuses, and clinical outcomes become

increasingly available, predicting individual patients’ immunotherapeutic

responses for developing and deploying optimal immunotherapies remains

challenging. Here, we propose “multi-physiology modeling” of the immune

system that integrates omics-based and dynamic systems modeling-based

systems immunology and pharmacometrics modeling on top of basic and

clinical immunology. The multi-physiology modeling approach aims to

integrate different physiological systems to realistically simulate the multi-scale

and complex interactions of the immune system under intervention by

immunotherapeutic agents for predictive immunotherapies tailored to

individual patients. This will accelerate not only our understanding of basic

immunology related to immune-related diseases but also the efficiency and

accuracy of clinical immunotherapeutics in the era of precision immunotherapy.
KEYWORDS

multi-physiology modeling, systems immunology, precision immunotherapy, multi-
omics data, multiscale modeling, quantitative systems pharmacology
1 Introduction

Throughout the last decade, new therapeutic modalities collectively called

immunotherapies have emerged as major medical practices for curing or preventing

immune-related diseases such as cancer, autoimmunity, and infection (1–3). Although

immunotherapies have shown great potential to cure such diseases, the lack of reliable

predictive ability for individual patients’ therapeutic responses still needs to be overcome (4).

Personalized and precision medicine aims to predictive therapies that proactively adjust

treatment plans by predicting individual patients’ responses or side effects to treatment before

or during the treatment. This will enable the delivery of an optimal drug or a combination of
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drugs to appropriate patients at precise dosages and timings (5–7).

Implementing this promising framework in immunotherapy requires

the accurate characterization of the pharmacologic behaviors of

immunotherapeutic agents, the baseline and therapy-induced

changes of immune statuses, and the resultant clinical outcomes in

detail for individual patients. Recent advances in new omics

technologies, data science, and computational science have made it

possible to work with biological and clinical data at a higher

resolution than ever before. All this information should be

transformed into prediction models of therapeutic responses

tailored to individual patients’ personalized course of treatment (8).

As personalized and precision medicine in immunotherapy becomes

a near reality, more patients would likely benefit from

immunotherapy (9).

To advance toward this promise, the prediction models should

simultaneously describe quantitative pharmacometrics behaviors of

immunotherapeutic agents and intricate immune behaviors while

addressing inter-individual heterogeneities in such behaviors in a

single framework. However, achieving such a framework has been

staggering mainly due to separate pursuits for these aspects by

experts from respective fields, needing more communication across

those communities. For instance, immune behaviors are

coordinated via sophisticated networks of interactions between

numerous cellular and molecular components. These immune

networks are intertwined with feedback and feedforward loops

across scales spanning from intracellular and cellular to the

organismal levels, resulting in nonlinear behavior that contributes

to the lack of predictability (10–14). Although so-called systems

biological approaches tackle such a complexity of the immune

system, a considerable dichotomy between omics-based and

dynamic systems modeling-based approaches hinders a realistic

description of the immune system as prediction models. Omics

data-driven analyses using statistical or machine learning

approaches effectively uncover patterns directly from existing

high-throughput datasets. However, purely data-driven

predictions remain inherently limited by the availability and

completeness of data, as they rely on interpolation within the

bounds of observed clinical scenarios from which data are

obtained. In contrast, dynamical systems modeling approaches

integrate mechanistic immunological knowledge that potentially

enables predictions even in clinically unexplored contexts through

their capacity for extrapolation beyond existing data. However,

mechanistic modeling is limited by its tendency to describe the

system rather simplistically. From a different route, population

pharmacometrics, including pharmacokinetics(PK) and

pharmacodynamics(PD) modeling, utilizes mathematical

modeling to provide quantitative information for dose-

concentration-efficacy/toxicity relationships and, therefore, is

instrumental in drug development, clinical trial design, and

treatment strategies (15–17). Quantitative systems pharmacology

(QSP) has been extending its boundary to integrate more biological

pictures related to drug response (18–20). However, due to its origin

in modeling the system as well-mixed compartments using ordinary

differential equations (ODE), what QSP promises remains limited
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in capturing realistic immune behaviors, such as the heterogeneity

of single cells along the spatial and phenotypic axes.

Here, to overcome existing limitations for establishing

personalized and precision immunotherapy based on prediction

models, we propose an overarching umbrella, “multi-physiology

modeling” of the immune system as a common goal, toward which

collective efforts are needed to concretize this conceptual

framework. This framework should encompass population

pharmacometrics and its extension to QSP, omics-driven and

dynamical systems modeling-driven systems biology, and basic

and clinical immunology on equal footing. We hope to overcome

prejudices residing in each field via close communication across

fields to identify impending problems to be solved to achieve the

multi-physiology modeling of the immune system. In the following

sections, we review each of the relevant fields and discuss their

limitations. Then, we introduce a conceptual sketch of the multi-

physiology modeling of the immune system, followed by a

discussion on its promises.
2 Currently available
immunotherapeutic modalities

Immunotherapeutic modalities directly targeting immune

system components include antibody-based drugs, nanoparticle-

delivered drugs such as mRNA vaccines, and adoptive cell therapies

(1, 3, 21, 22). Antibody-based drugs utilize monoclonal antibodies

designed to bind to target proteins on immune cells, allowing for

precise control of the immune response. These antibodies can

enhance antitumor activity against cancer or reduce excessive

immune responses in autoimmune diseases. One significant

application of monoclonal antibodies is as checkpoint inhibitors

targeting immune checkpoints such as PD-1/PD-L1 and CTLA-4 to

reinvigorate T cell cytotoxicity against cancer cells (23–25).

Additionally, monoclonal antibodies treat chronic inflammatory

diseases by targeting cytokines (26). Nanoparticle-based delivery

systems can directly modulate immune system behavior by

intracellular targeting (27). This approach has revolutionized

vaccination, as demonstrated by the rapid development and high

efficacy of COVID-19 vaccines (28, 29). These vaccines use lipid

nanoparticles to deliver mRNA into cells, translating it into viral

proteins that stimulate an immune response without causing

disease. Nanoparticles protect mRNA from degradation and

facilitate its delivery to target cells, ensuring efficient uptake and

protein production (27–29). This technology holds promise for

treating various diseases, including cancer and genetic disorders, by

enabling precise delivery of therapeutic mRNA to specific tissues

(30, 31). Adoptive cell therapy manipulates patients’ immune cells

to improve the treatment of diseases. This therapy involves the

isolation of immune cells, such as T-cells or natural killer (NK) cells,

from a patient, engineering or multiplying them to boost their

disease-fighting abilities, and reintroducing them into the patient

(32–34). For example, in CAR-T cell therapy, T-cells are altered to
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1548768
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hong and Park 10.3389/fimmu.2025.1548768
express chimeric antigen receptors to target cancer cells (34–36).

Adoptive cell therapy is not limited to cancer treatment. It is also

being investigated for autoimmune diseases and infectious diseases.

For instance, regulatory T-cells (Tregs) can be expanded to suppress

excessive immune responses in autoimmune conditions (37, 38).

These immunotherapies can treat previously intractable diseases

such as cancer and autoimmune diseases and respond promptly to

emerging pandemics. However, although various options for

immunotherapies are available, they vary in efficacy between

individuals, and it is difficult to prescribe the optimal dosage (39–

41). In this regard, the related and optimized pharmacometrics

modeling is essential.
3 PK/PD modeling in new emerging
therapeutic modalities and its
limitations

The PK/PD models have provided a robust quantitative basis

for assessing the drug’s pharmacometric properties (15, 16). The PK

model describes the drug’s absorption, distribution, metabolism,

and excretion (ADME) and changes in drug concentration over

time. The PD model explains the physiological or pharmacological

responses induced by the drug concentration in the body.

Furthermore, to capture inter-individual variabilities and their

correlates, such as age, gender, or genetics, nonlinear mixed-effect

modeling (NLME) is used. NLME includes fixed and random-effect

parameters. Fixed-effects parameters represent the tendencies

across the entire population. Random-effect parameters account

for individual variations of fixed-effect parameters and are further

modeled to be linked to covariates (17). The PK/PD models are

constructed as simplistic representations, treating bodies or organs

as homogeneous compartments analogous to well-mixed

containers. These models could describe the quantitative

pharmacologic behavior of antibody-based drugs (42–46),

nanoparticle-delivery-based therapies (including mRNA vaccines)

(47–50), and adoptive cell therapies (7, 51–55). However, such a

simplistic way of describing the system is unsuitable for

incorporating complex immunological processes, thereby

rendering immunological complexity linked to modern

immunotherapies not fully captured by existing PK/PD models.

A newly emerging field, quantitative systems pharmacology

(QSP), has addressed some challenges by incorporating more

mechanistic mathematical immune system models into

pharmacometric models. Significant efforts have been made in

compiling existing mathematical models of immune behaviors in

various disease contexts, suggesting a new direction of

incorporating newly uncovered immune features from new data

types, and applying those models in accelerating drug development

and target identification that grows with the vast combinatorial

search space of combination therapies (56–58). For example,

Arulraj et al. (59)demonstrated that a QSP model of triple-

negative breast cancer augmented with bulk tumor data could be

utilized to perform in silico (virtual) clinical trials and identify

unrecognized biomarkers linked to therapeutic outcomes of anti-
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PD-1 therapy. There are also similar endeavors in adaptive cell

therapy and mRNA vaccination in the QSP framework (49, 54, 60).

Although QSP foresees a future of model-informed drug

development and personalized and precision immunotherapy,

those employing the QSP framework still need more detailed

descriptions of the immune system. For instance, the recent

literature on immune diseases reveals highly heterogeneous single

cells dispersed throughout the space with complex interactions

among those (61). Moreover, immune behavior tends to be

driven not by immune cells with major phenotypes but by the

minorities of those heterogeneously dispersed in cellular phenotypic

space (62, 63). Therefore, the inherent language of QSP, employing

the picture of the immune system with merely “more”

compartmentalization using ODE, may not be suitable. Hence,

the continuing effort of the current practice of QSP may not

achieve what it promises. To this end, we previously

demonstrated that hybrid modeling capturing the multiscale

nature with a continuum of phenotypic space among even the

same cell type can give rise to non-intuitive immune behavior for

establishing or breaking immune homeostasis (10, 62, 64).

Taken together, the difficulty of predictively modeling

immunotherapeutic responses is a multifaceted problem rooted in

the complex nature of the immune system and the insufficiency of

reliable biomarkers due to the sparse characterization of the system

(65–68). To address this, we need more comprehensive immune

profiling together with methodologies to transform such profiling

into prediction models that capture complex immune behaviors.
4 Dichotomic systems immunological
approaches and their reconciliation
needed

Systems immunology has emerged as a field that simultaneously

considers many molecular and cellular constituents of the immune

system quantitatively to provide holistic and predictive views of

how the immune system operates (62, 69–71). Systems immunology

possesses a dichotomy of being based on either high-throughput

omics data or dynamical systems modeling.

Single-cell and spatial omics technologies have become a

routine driven by technological advancements and the increasing

need to comprehensively understand cellular heterogeneities and

functions and their relations to immune regulation (72–74). Single-

cell RNA sequencing (scRNA-seq) profiles transcriptomes at the

single-cell level, which provides granular insights into cell types,

states, and their roles in various immunological processes (75–78).

In addition, to capture additional layers of cellular functions and

regulatory mechanisms, researchers have developed methods to

profile proteomes, epigenomes, and spatial information in single

cells (73, 79–82). Multi-omics approaches provide a more holistic

view of cellular phenotypes, combining the strengths of each

modality to reveal more profound insights into cell biology. For

example, CITE-seq (Cellular Indexing of Transcriptomes and

Epitopes by sequencing) allows simultaneous measurement of

mRNA and surface protein expression in the same cells, bridging
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the gap between gene expression and functional protein data (83,

84). Moreover, integrating scRNA-seq with ATAC-seq (Assay for

Transposase-Accessible Chromatin using sequencing) has opened

new avenues for understanding the upstream regulatory landscapes,

such as enhancers and promoters that control gene expressions (85,

86). Spatial omics is another critical development in this field,

preserving the spatial context of cells within tissues. This technology

enables researchers to study how cells are organized and interact

within their native microenvironments (87–89).

Dynamic systems modeling-based systems immunology utilizes

many types of mathematical modeling to provide unique and

nonintuitive insights into immune dynamics (70, 90–93). One

primary type is the ordinary differential equation (ODE) model,

which describes the interactions between immune cells, pathogens,

and signaling molecules over time at cellular or molecular

population levels. Such models can capture the time-dependent

rates of changes in the quantities (the numbers or densities of cells

or molecules) associated with each component (94–96). For

example, ODE models can describe temporal changes in

population sizes of immune cells and pathogens based on their

growth, death rates, and interactions among them (97–99). Partial

differential equations (PDE) are another essential modeling tool for

the immune system, well suited to modeling spatial changes in the

immune system over time. For example, a PDE model can describe

the interaction of immune cells and pathogens as infection spreads

within a tissue. The model can represent the spread of pathogens

and the subsequent response of immune cells as the temporal

evolution of spatial distributions of cells, pathogens, and/or

signaling molecules’ concentrations (100, 101). Beyond these

deterministic methods, there are also methods to capture the

inherent uncertainty and variability of living phenomena.

Stochastic models incorporate random elements for temporal

fluctuations in immune cell counts, cytokine levels, or

intracellular molecular copy numbers (102, 103). This approach

helps to understand the dynamics of immunological/biological

processes occurring with small cellular or molecular populations

and helps predict the probabilistic outcome of immunological

processes. Agent-based models (ABMs) are organized differently

from the above approaches. Such models simulate the behavior and

interactions of individual agents, such as cells. They can capture

collective behavior shaped by interactions between individual

agents by imposing migration patterns and interaction rules of

immune cells (104, 105). For example, inflammatory responses at

the site of infection can be modeled using agent-based modeling

with the interactions of individual cells as simple discrete rules or

ODEs (106, 107). More detailed reviews and analytical tools of

various modeling approaches can be found in references (108–120).

Although both omics data-driven and dynamical systems

modeling-driven approaches are legitimate in a quantitative and

holistic understanding of the immune system, seamless integration

of these is needed to accelerate capturing the genuinely complex and

dynamic picture of the immune system. We identify two general

challenges in this regard. First, although more comprehensive

technologies to profile the immune systems are rapidly emerging,

mainstream practice in the omics field is still in the descriptive
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cataloging of numerous cellular and molecular components.

Transforming such comprehensive information about the

immune system into predictive models of dynamic immune

behavior is still in its infancy (69). Second, although various

mathematical tools have been developed to model the immune

system, each has its scope confined within particular biological

layers simplistically. We need an overarching mathematical/

computational framework for integrating each tool to describe

immune behavior occurring across multiple biological layers.

Given that we have successfully integrated the dichotomic

systems immunological approaches, this should eventually be

translated into therapy, seamlessly integrating the population PK/

PD modeling framework and flexibly adapting to various

immunotherapeutic modalities.

5 Toward multi-physiology models of
the immune system: synergy of PK/PD
modeling frameworks and systems
immunological modeling beyond QSP

Thus far, we have dealt with the challenge in predictive

immunotherapies arising due to the insufficiency of existing PK/

PD modeling and the infancy of “genuine” systems immunological

modeling. To achieve better predictions of the immunotherapeutic

responses, therapeutic target identification, and designing

therapeutic regimens to provide each individual patient with a

better cure, we need to demonstrate the complex immune behavior

realistically as in silico models. Here, “realistic” models should

encompass cellular and molecular players that interact together

across multiple layers of biological organizations. This multiscale

nature of the immune system gives rise to non-intuitive and

nonlinear behavior across space and time, in contrast with the

models with oversimplification as the most existing mechanistic

immune models.

Here, we propose an overarching umbrella, “multi-physiology

modeling” of the immune system (Figure 1). The expression “multi-

physiology” is analogous to “multi-physics” in engineering and

earth science fields, where different aspects of systems are modeled

simultaneously (121). We regard this as a central ground, treating

all relevant fields equally rather than emphasizing one and

extending to others. In this approach, we aim to realistically

describe the immune system in silico exactly how it operates

across multiple spatiotemporal scales with many constituent

components interacting. In addition, we seamlessly integrate these

immune models with pharmacometric frameworks that interface

with immunotherapeutic agents and patient responses with inter-

individual variability. This framework should be flexible enough to

be continuously updated by newly accumulating knowledge in the

relevant immune systems and diseases accelerated by quantitative

omics data and be easily deployed in immunotherapy by accounting

for unique pharmacological behaviors of novel and emerging

immunotherapeutic agents.

To realize this, we should assess missing elements for

methodological breakthroughs to establish multi-physiology
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Inter-individual heterogeneity of 
immunotherapeutic response

High dimensional parameter space
(Captured by NLME)

1
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PK/PD modelImmunotherapy

Multiscale mathematical modelClinical and multi-omics data,
Immunological knowledge

Multiscale nature of 
immune system

FIGURE 1

Schematic of the multi-physiology modeling framework. The inter-individual heterogeneity of patients’ immune statuses and immunotherapeutic
responses is represented as points within a high-dimensional parameter space captured by NLME. Parameters and variables derived from integrated
multi-omics and clinical data and immunological knowledge are utilized to construct an integrated in silico model that combines PK/PD modeling
and multiscale mathematical modeling. The model’s outputs can guide immunotherapy strategies at the individual patient level. Throughout
treatment, continuous immune profiling of individual patients can update immunotherapy strategies in a model-informed manner, enabling
personalized precision immunotherapy. NLME, Nonlinear mixed-effect modeling; ODE, ordinary differential equation; PDE, partial differential
equation; SDE, stochastic differential equation; ABM, agent-based model; Created with BioRender.com.
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models (122). An urgent need in mathematical modeling is to

develop mathematical/computational frameworks to describe the

multiscale spatio-temporal nature of the immune system. These

frameworks need to seamlessly and flexibly integrate various

modeling methods, such as ODE, PDE, SDE, or agent-based

modeling, that tend to be independently used for their respective

target layers of biological organizations. In addition, such

frameworks should be able to faithfully encompass realistic

immunologic pictures based on prior knowledge, experimental

literature, and, nowadays, quantitative single-cell and spatial

multi-omics data (Figure 2). We envision that this can be

achieved, first, by extracting relevant multiscale and dynamic

immunological features quantitatively from such dispersed

sources. Quantitative features include cellular features such as

cell-type annotations and spatial locations (if available through

imaging-based data), and subcellular statuses such as molecular

abundances and functional signatures. Then, we assemble those as

networks of features interacting across scales, encompassing

intercellular and intracellular connections. We can utilize tools

such as CellPhoneDB (123), CellChat (124), and LIANA (125) to

infer cell–cell communications through ligand-receptor pairs.

OmniPath (126) can be used to reconstruct signaling networks.

SCENIC+ (127) and CollecTRI (128) support the inference of gene

regulatory networks, and NicheNet (129) provides multi-layered

communication inferences. These tools operate based on curated

knowledge-based databases, which are continuously expanded

under various cell-type-specific perturbation conditions (72, 130,

131). Finally, we translate the network scaffolds into mathematical/

computational (or dynamical) models by constructing reaction

networks with propensity functions that define rates for each

reaction. A major hurdle to be overcome is the general trade-off

between data throughput and temporal resolution in available data.

High-throughput data often sacrifices temporal details, making it

difficult to extract dynamic patterns while maintaining high-

dimensional biological complexity. For example, single-cell RNA

sequencing or spatial transcriptomics data allow detailed snapshots
Frontiers in Immunology 06
of cellular states across thousands of cells but are typically limited to

a single or a few time points due to cost and technical constraints. In

contrast, blood-based biomarkers can be collected repeatedly,

allowing immune responses to be tracked over time with lower

throughput. Given that we have established all these, we should be

able to intuitively interpret the multi-physiology models as we

would analyze a much simpler model with a few variables and

parameters by overcoming the difficulty in handling the inevitable

high-dimensional parameters and variables in the models (132).

Ultimately, the multi-physiology modeling should embrace

inter-individual heterogeneities of immunological processes and

immunotherapeutic responses through individualized model

parametrizations and initializations (Figures 1 and 2). NLME has

been crucial for parametrizing population PK/PD models

accounting for inter-individual variabilities. Since NLME mainly

deals with ODE-based compartmental models, further

methodological developments are needed to apply it in multi-

physiology modeling. One likely barrier to establishing NLME in

the multi-physiology modeling of the immune system is the

obsession with measuring and identifying (or fitting) high-

dimensional model parameters all at once. Many of the model

parameters cannot be reliably estimated from sparse data directly

from patients, leading to identifiability issues (133). To overcome

this, we may “pre-train” the models by gathering relevant parameter

values and their reasonable ranges of variability from various

experimental data and/or physical, biochemical, and biological

reasoning. Pre-training can detour the difficulties in collecting all

data modalities from every patient by utilizing partially matched

multimodal datasets. We may obtain the correlation structures in

the high-dimensional parameter space between parameters from

model components describing different biological layers by aligning

the corresponding partially paired data modalities. Recently

emerging data linking genetic variations and cell-type- and/or

condition-specific quantitative phenotypic variations can further

help individualized model parameterizations (134–136). In most

cases, the values can be constrained within a few orders of
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data
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FIGURE 2

Construction of a multi-physiology model. Features are extracted from multi-omics data from patients, such as cellular features (such as
abundances or locations) or intracellular features (such as molecular levels or signaling activation statuses), and assembled as multiscale networks
using various computational tools. These networks form the basis for multiscale dynamical models with individualized parametrizations across a
high-dimensional parameter space, using NLME and “pre-training”. A dynamic landscape is explored using a multi-physiology model across the high
dimensional parameter space under immunotherapies, followed by patient-wise predictions.
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magnitude, within which the values can change either physically or

pathologically. Then, we explore the plausible dynamical landscape

of the multi-physiology models across the high-dimensional

parameter space (Figure 2). Finally, we may calibrate the model

to the patients undergoing immunotherapy of interest as an

ensemble of parameter sets that recover observed or desired

dynamical trajectories of immune behavior via approximate

Bayesian computation (137). As a part of multi-physiology

modeling, we should curate parameters for various biological and

immunological processes and establish experimental platforms that

facilitate accumulating parameter information (138).

To demonstrate how the multi-physiology modeling approach

operates, we present a hypothetical scenario in which we treat a cold

tumor to transform it into a hot tumor to make it more susceptible

to T cell-targeting immunotherapies. First, single-cell and spatial

transcriptomic data, along with clinical information, across tumors

with varying immune phenotypes are collected. Multi-omics

analysis enables the construction of a multiscale network

representing intercellular and intracellular interactions in the

tumor immune microenvironment. This network is then

translated into mathematical equations via a reaction network

scheme. We then form a multi-physiology model by

implementing the equations into a multi-scale simulation

framework combined with pharmacometric models for relevant

immunotherapeutic agents. A tumor immune dynamical landscape

is then constructed that maps high-dimensional model parameter

space to tumor immune dynamics and clinical therapeutic

outcomes by weaving existing data and massive simulations

across the parameter space together. The landscape is then used

to explore possible therapeutic outcomes under various therapeutic

interventions to obtain insights into the transition between cold and

hot tumors. Finally, by narrowing model parameters to reflect

individual patient profiles, personalized strategies for precision

immunotherapy are identified through individualized predictions.
6 Discussion

The advances in immunotherapeutics, such as antibody-based

drugs, nanoparticle delivery vehicles, and adoptive cell therapies,

are being accelerated in providing patients with new modes of

treating immune-related diseases. At the same time, the exponential

growth of multi-omics biological data, further accelerated by

patient-derived experimental models, offers unprecedented

insights into the immune system’s complexity (139). A number of

studies have been conducted to relate the characteristics of patient-

specific attributes to therapeutic outcomes in a data-driven manner

(140, 141). However, we still lack a unified framework enabling

predictive immunotherapies tailored to individual patients. In this

article, we propose an overarching umbrella, “multi-physiology

modeling” of the immune system. It quantitatively describes the

immune system with its multiscale nonlinear dynamics of many

interacting constituents and cellular phenotypic heterogeneities,

together with PK/PD modeling that interfaces with individual

patients. A major hurdle in achieving this is likely the lack of
Frontiers in Immunology 07
cross-disciplinary communications that resulted in discipline-

oriented approaches, each limited.

With multi-physiology models of the immune system, what do

we want to achieve eventually? First, we want to advance from mere

statistical predictions of immunotherapeutic responses of

predefined patient groups to quantitative and dynamic

predictions of immunotherapeutic outcomes tailored to individual

patients or at least more granular immune phenotypic groups. This

will also allow more efficient drug target identification and virtual

c l in ica l t r i a l p la t forms that per form combinator ia l

immunotherapeutic regimens. Clinicians who employ these

platforms may collect a diseased tissue sample with relevant

routine clinical data from the patient, which can then be

transformed into more detailed immune profiling data. By

conducting repeated simulations of the model under various

immunotherapeutic scenarios, the clinician will be able to predict

the outcomes of various treatment options and conclude the most

suitable treatment method for the patient. Second, well-developed

multi-physiology models will serve as integrative hubs to distill and

accumulate vast amounts of immunological knowledge and data.

This will accelerate not only our understanding of basic

immunology related to immune-related diseases but also the

efficiency and accuracy of clinical immunotherapeutics.
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