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Chimeric antigen receptor (CAR)-T cell therapy, which utilizes genetic

engineering techniques to modify T-cells to achieve specific targeting of

cancer cells, has made significant breakthroughs in cancer treatment in recent

years. All marketed CAR-T products are second-generation CAR-T cells

containing co-stimulatory structural domains, and co-stimulatory molecules

are critical for CAR-T cell activation and function. Although CD28-based co-

stimulatory molecules have demonstrated potent cytotoxicity in the clinical

application of CAR-T cells, they still suffer from high post-treatment relapse

rates, poor efficacy durability, and accompanying severe adverse reactions. In

recent years, researchers have achieved specific results in enhancing the anti-

tumor function of CD28 by mutating its signaling motifs, combining the co-

stimulatory structural domains, and modifying other CAR components besides

co-stimulation. This paper reviewed the characteristics and roles of CD28 in

CAR-T cell-mediated anti-tumor signaling and activation. We explored potential

strategies to enhance CAR-T cell efficacy and reduce side effects by optimizing

CD28 motifs and CAR structures, aiming to provide a theoretical basis for further

clinical CAR-T cell therapy development.
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1 Introduction

CAR-T therapy has achieved remarkable results in treating hematological tumors and

has become a “star therapy” for treating a variety of hematological tumors (1). In addition

to the first signal provided by the T-cell receptor (TCR), the activation of T cells requires

the activation of co-stimulatory molecules to activate co-stimulatory signals (2, 3).

Activation of T cells by signaling through binding CD28 to its ligand is the major co-

stimulatory pathway (4–7). The co-stimulatory effect of CD28 depends on its key signaling

motifs (8, 9). The activated signaling pathways include the phosphoinositide 3-kinase

(PI3K)- protein kinase B (AKT) pathway and the growth factor receptor-bound protein 2

(GRB2)- rat sarcoma virus oncogene (Ras) pathway, which regulate the activation and
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function of T cells (10, 11). The use of CD28 in CAR structures to

provide co-stimulatory signals addressed the problem of the lack of

activation of first-generation CAR-T cells. It became one of the

most popular and widely used co-stimulatory molecules.

Although CD28-based CAR-T has significantly improved the

clinical efficacy of hematological tumors, there are still challenges,

such as poor in vivo durability and high recurrence rates in patients

with hematological tumors and limitations in treatment and safety

in solid tumors (12). Resolving these issues is critical to further

enhancing CD28-based CAR-T therapies’ efficacy. Currently,

optimization strategies for modulating CD28- based CAR-T

include altering CD28 intrinsic signaling by mutating CD28

amino acid motifs, exploring combinatorial modes with other co-

stimulatory molecules to achieve complementary co-stimulatory

signaling, and optimizing CAR structural elements other than the

co-stimulatory structural domains, in addition to modulation of the

metabolic pathway and the use of artificial intelligence, which have

also provided new ideas for optimization. This review summarizes

the limitations associated with the application of CD28-based CAR-

T cells, evaluates the efficacy of current optimization strategies for

CD28-based CAR design, and discusses future perspectives on its

clinical and therapeutic potential.
2 CD28 signaling function and
problems in CAR-T application

2.1 CD28 signaling motif and function

Earlier studies have shown that CD28 is expressed in

approximately 80% of CD4+ T cells and 50% of CD8+ T cells (13,

14). It consists of a transmembrane structural domain, an

intracellular signaling structural domain, and a variable structural

domain-l ike V-set structural domain connect ing the

transmembrane structural domain to the signaling structural

domain (15). The CD28 signaling structural domain is located in

the cytoplasmic structural domain and consists of 41 amino acids,

including membrane-proximal YMNM (tyrosine-rich) and proline-

rich PRRP and PYAP motifs. These signaling motifs activate

downstream signaling pathways by either undergoing

phosphorylation or binding to kinases, connexins GRB2 and

GADS, and regulate T cell activation, differentiation, cell

proliferation, and interleukin-2 (IL-2) secretion (16). For

example, upon TCR activation or interaction with the ligand B7

protein, the tyrosine in the YMNM motif undergoes

phosphorylation and binds to the p85 subunit of PI3K, which

activates PI3K. PI3K can activate the nuclear factor of activated

T-cells (NF-AT) transcription factor by activating AKT or

regulating protein kinase C (PKC) activity through 3-

phosphoinositide-dependent protein kinase-1(PDK-1) (17, 18).

PRRP and PYAP bind lymphocyte-specific protein tyrosine kinas

(LCK), further activating PKCq, which shares a downstream

signaling pathway with YMNM (19). In addition, PRRP binds to

the interleukin-2-inducible T-cell kinase (ITK), which then

activates the phospholipase C gamma, (PLCg), Ca2+, and
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extracellular signal-regulated kinase (ERK)-mediated signaling

pathways. For GRB2, GRB2-related adaptor protein downstream

of Shc (GADS), YMNM can bind to the SH2 structural domain of

GRB2 and activate Ras by bringing son of sevenless (SOS) to the

plasma membrane, further activating the downstream mitogen-

activated protein kinase (MAPK) pathway (20–25). GADS interacts

with SH2 domain-containing leukocyte protein of 76 kDa (SLP-76),

an articulatory protein for TCR signaling, through SH3, regulating

PLCg, ERK activation, and Ca2+ pathways, synergistically

enhancing NF-AT activity (26–28). However, PRRP and PYAP

bind SH3 of GRB2 and GADS and activate downstream signaling

pathways. In addition, PYAP recruits and binds Actin protein

(Filamin A), which recruits Filamin A to the T-cell membrane,

and Filamin A synergistically integrates the signaling pathway with

Vav guanine nucleotide exchange factor 1 (VAV1), leading to actin

polymerization, mobilization of lipid rafts, and facilitation of CD28

aggregation at the immune synapse (Figure 1) (29–32).
2.2 Problems with CD28-based CAR-T

Despite the encouraging results of CD28-based CAR-T in

treating hematologic tumors, severe toxic side effects are an

essential challenge (Figure 2) (33–35). A clinical study in non-

Hodgkin’s lymphoma showed that CD28-based CAR-T and 4-

1BB-based CAR-T cells exhibited similar anti-tumor effects at 3

months post-treatment, but CD28-based CAR-T cells induced

more severe cytokine release syndrome (CRS) and immune

effector cell-associated neurotoxicity syndrome (ICANS)

(NCT03528421) (36). In addition, in patients with B-cell acute

lymphoblastic leukemia (B-ALL) with a high rate of tumor load,

CD28-based CAR-T induced a higher incidence of CRS and

neurotoxicity, shorter long-term survival, and ineffective

resistance to disease recurrence (NCT01044069) (37). Results

from clinical trials for relapsed/refractory B-ALL also showed

that CD19-CAR-T cells using CD28 as a co-stimulatory molecule

triggered a high level of pro-inflammatory cytokine production

early after infusion to the patients (NCT01593696, NCT02186860,

NCT01044069) (5, 38, 39), which is also consistent with

preclinical data on CD28-based CAR-T (40, 41).

The CD28 signaling pathway and its metabolic profile are

important factors contributing to the poor persistence of CD28-

based CAR-T cells in vivo, which often leads to cancer recurrence

(37). It has been shown that activation of the PI3K-AKT pathway by

CD28 induces an increase in the expression of glucose transporter 1

(Glut1) to promote glucose uptake on the one hand and, on the

other hand, enhances the activity of PDK1, which inhibits the

decarboxylation of pyruvate and the entry of glucose into the

tricarboxylic acid cycle (TCA) cycle, and in turn increase the

activity of adenosine triphosphate (ATP)-producing enzymes

involved in glycolysis, resulting in cells showing glycolysis-biased

metabolic reprogramming (42, 43). The glycolytic pathway

promotes the transformation of CAR-T to CD45RO+ CCR7+

effector memory cells, tending to be short-term effector cells,

which, in addition to increasing CAR-T expansion and
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interferon-gamma (IFN-g) and IL-2 secretion, often leads to poor

CAR-T persistence, which is consistent with the clinical trials

showing that in vivo survival time after CD28-based CAR-T

treatment in patients with hematological tumors tends to be less

than three months (44–46). In vitro inhibition of PI3K in CD8+ T

cells delays terminal differentiation, maintains the memory

phenotype in CD8+ T cells, and may improve the in vivo anti-

solid tumor therapeutic activity of adoptive CD8+ T cells (47). In the

CAR-T in vitro culture phase, modulating metabolic

reprogramming and increasing the percentage of memory cells by

pharmacological or gene editing means has yielded promising

results in the preclinical study phase, which may provide lessons

for solid tumor therapy (48, 49).
3 CD28-based CAR structure
optimization strategy

3.1 CD28 signaling motif optimization

Based on the role of CD28 signaling motifs in mediating CD28

signaling and initiating T-cell function, studies targeting the

antitumor effects of CAR-T generated by mutations in the

YMNM, PRRP, and PYAP motifs have been conducted (50). In a

pancreatic tumor xenograft model, mutation of CD28 YMNM to

YMFM in CD28-based CAR-T cells reduces the binding of GRB2 to
Frontiers in Immunology 03
CD28, decreasing VAV1 signaling, decreasing calcium in-flow, and

decreasing NFAT over-activation, thereby decreasing T-cell

exhaustion and dysfunction, and increasing the persistence and

antitumor efficacy of CAR-T cells in a pancreatic tumor xenograft

model (51). Mutating CD28-based CAR-T with PRRP based on

mutated YMNM enhances the secretion of IFN-g and tumor

necrosis factor-alpha (TNF-a), reduces the expression of the

exhaustion-related transcription factor Nur77, and significantly

enhances the cytotoxicity of CAR-T within 48 hours of treatment,

demonstrating a superior survival advantage in tumor-bearing mice

(52). However, whether CAR-T with mutated YMNM has clinical

efficacy needs further exploration.

Moreover, mutating the PYAP signaling motif can potentially

enhance CAR-T cell functionality in both hematologic malignancies

and solid tumors (53). For example, David M Kofler et al.

demonstrated that mutating the PYAPP of CD28 to AYAAA

eliminated the ability of PYAP to bind to LCK to eliminate IL-2-

induced signaling, reduced the promotion of IL-2 to intratumor

regulatory T cell (Treg), and achieved enhanced function of CD28-

based CAR-T cells by decreasing the solid Treg cell infiltration in

the tumor to achieve the functional enhancement of CD28-based

CAR-T, which significantly improved the anti-tumor activity of

solid tumors with a large number of Treg infiltration (54). In

addition, this PYAP-mutated CD28 construct described above

still significantly enhanced T cell proliferation, metabolism,

activation, and target cell killing in FAP-targeted CAR-T cells and
FIGURE 1

CD28 signaling motifs mediate co-stimulatory signaling to regulate T cell function. After CD28 binds to ligands CD80 or CD86, different signaling motifs
activate downstream signaling pathways by binding to specific protein kinases or bridging proteins, which can functionally complement TCR signaling.
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showed promising efficacy and durability with few side effects

in conjunction with a programmed cell death protein 1 (PD-1)

blocker in humanized mice suffering from tumors and the first

malignant pleural mesothelioma (MPM) patients (55). These

studies suggest that CD28-based CAR-T cells with PYAP

mutations lacking LCK binding may optimize CAR-T

functionality by reducing IL-2-mediated support for Treg cells

within the tumor microenvironment, thereby enhancing

therapeutic efficacy against solid tumors.
3.2 Separating CD28 and CD3z signaling

Few tumor-specific antigens (TSAs) and tumor-associated

antigens (TAAs) are available for solid tumors, and targeting a

single TAA may lead to off-target toxicity of CAR-T to target lowly

expressed antigens in healthy tissues (56). Based on this, researchers

proposed dual-targeting CAR-T that separates the CD3z and the

co-stimulatory molecules, which means the CD3z-CAR provides

suboptimal activation signals upon binding one antigen, and the

chimeric co-stimulatory structural domain containing the co-

stimulatory receptor provides T-cell co-stimulatory signals upon

recognition of the second antigen (57). This design enhances the

responsiveness of CAR-T cells to double-positive tumor cells and

reduces the risk of off-targeting and tumor antigen escape. For
Frontiers in Immunology 04
example, Evripidis Lanitis developed the mesothelin (Meso) single

chain variable fragment (scFv)-CD3z and folate receptor alpha

(FRa) scFv-CD28-based CAR, which had no potent activity

against normal tissues expressing only mesothelin; meanwhile,

they showed potent anti-solid tumor activity and persistence in

vivo (58). Another study of the glypican 3 (GPC3)-CD3z and

asialoglycoprotein receptor 1 (ASGR1)-CD28-41BB- against

hepatocellular carcinoma (HCC) CAR-T cells study also

demonstrated that CAR-T cells separating CD28 and CD3z
signals had potent antitumor activity and safety against tumor

cells carrying both antigens. However, the design depends on

recognizing the two antigens, and its complex engineering may

increase the production cost. Its effectiveness in solid tumor

microenvironment (TME) still needs to be further explored, and

the discovery of novel tumor antigens may promote the application

of this strategy in solid tumors.
3.3 Combination of CD28 and other co-
stimulatory molecules

Second-generation CARs, with the addition of co-stimulatory

molecules, have significantly enhanced in mediating T cell

proliferation, cytokine release, and in vivo antitumor function

compared with first-generation CARs, illustrating the importance
FIGURE 2

Limitations of CD28-based CAR-T cells in cancer therapy. CD28-based CAR-T cells tend to induce higher levels of cytokine release, triggering CRS
and neurotoxicity in patients. In addition, the signaling pathway activated by CD28 leads to reprogramming CAR-T to the glycolysis pathway, which
promotes the differentiation of CAR-T to effector T cells and reduces the proportion of memory T cells. This results in poor anti-tumor activity,
insufficient persistence in vivo, and ineffective resistance to tumor recurrence.
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of co-stimulatory molecules. However, different co-stimulatory

molecules have advantages and disadvantages in cell activation,

cell differentiation, proliferation, metabolism, and in vivo safety

(59). Based on this, researchers have proposed combining different

costimulatory molecules to achieve complementary benefits

(Figure 3 and Table 1).

3.3.1 Tandem mode
The tandem mode of co-stimulatory molecules is characterized

by constructing two or more co-stimulatory molecules in a single

CAR by tandem mode. The most studied mode is the tandem

combination of CD28 and 4-1BB (60). A CAR containing CD28

triggers rapid and high-intensity lysis of target cells, while a CAR

containing 4-1BB triggers a low-intensity and long-lasting response

(61, 62). However, preclinical studies of CAR-T cells tandeming

CD28 and 4-1BB have shown that the effect of tandem combination

is not a simple signaling superposition. The effect of tandeming is

related to both tumor type and programmed death-ligand 1 (PD-

L1) expression level (63–65). For example, tandem mode in

combination with blockade of PD-L1/PD-1 or secretion of anti-

PD-L1 scFv enhances the killing activity of tumor cells targeting

high levels of PD-L1. It reduces the exhaustion of CAR-T cells (66).
Frontiers in Immunology 05
In addition, other co-stimulatory molecules tandemly associated

with CD28 are OX40 and inducible T-cell costimulator (ICOS) (67).

CAR-T cells containing tandem CD28-OX40 showed significantly

higher T-cell expansion and IL-2 secretion levels than CD28-based

CAR-T cells. The mechanism is that OX40 signaling inhibits the

secretion of IL-10 by CAR-T cells and reduces the inhibition of

other T-cell functions in the TME (68). However, comparing the

antitumor activity of the tandem mode of CD28-4-1BB versus

CD28-OX40 has shown inconsistent results in different studies

(69, 70). ICOS is a co-stimulatory molecule belonging to the

CD28 family, and the CAR-T antitumor activity of ICOS in

tandem with other co-stimulatory molecules may be related to

other structures in the CAR. For example, studies have shown that

CD28 in tandem with ICOS significantly enhances the persistence

of CD8+ CAR-T cells, and ICOS and 4-1BB tandem have an

antitumor advantage in solid tumors (71, 72). ICOS-OX40

tandem maintains high target cytolysis toxicity despite multiple

rounds of tumor stimulation in vitro (73). Overall, the combination

of co-stimulatory molecules targeting CD28 is influenced by tumor

type, tumor microenvironment, and CAR structure, and the

optimal mode of co-stimulatory molecule tandem will need to be

determined in the future based on specific tumors.
FIGURE 3

Current modes of combining co-stimulatory molecules of CARs containing CD28. (a) A common tandem mode of co-stimulatory molecule involves
linearly fusing CD28 with other costimulatory molecules, such as 4-1BB or OX40, within a CAR that targets a single antigen; (b) Another tandem
mode entails T cells carrying two CARs: one CAR contains two linearly fused co-stimulatory molecules but lacks the CD3z domain, while the other
is a first-generation CAR targeting a different antigen utilizing the CD3z domain for intracellular signaling but without costimulatory molecules; (c)
One of the co-stimulatory molecules in parallel mode involves T cells carrying two second-generation CAR that recognizes the two antigens; (d)
Another parallel mode consists of T cells expressing a second-generation CAR with CD28 while simultaneously expressing another CAR that lacks
the CD3z domain but recognizes a different antigen; (e) T cells express a second- or third-generation CAR containing CD28 and simultaneously
express a ligand for other co-stimulatory molecules.
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3.3.2 Parallel mode
Parallel mode refers to the mode of CAR carrying two different

co-stimulatory molecules in a single T cell (74, 75). Studies have

shown that”two co-stimulatory molecules sharing one CD3z” has
better antitumor efficacy than the parallel mode of “two co-

stimulatory molecules sharing two CD3zs”. Separate activation of

CD3z by dual-targeted CAR resulted in the overactivation of CAR-

T cells and induced cellular exhaustion, possibly a reason for its

poor effectiveness (76, 77). In addition, for the parallel mode of

CD28 and 4-1BB, it was demonstrated that dual-targeted CAR-T

carrying CD28 and 4-1BB sharing one CD3z had higher tumor-
Frontiers in Immunology 06
killing activity, dividing and proliferating ability and durability than

the parallel mode of dual co-stimulatory molecules sharing two

CD3z (76). The problem with this model is that if two individual

CARs are transduced into T cells, it cannot be guaranteed that both

CARs are expressed at the same level in all the transduced cells, and

if it is a single double cis-trans vector containing two individual

CARs, the transduction efficiency of the double CAR may be

affected due to the large size of the vector. Moreover, the current

co-stimulatory molecules in parallel combination are only CD28

and 4-1BB, and the antitumor potential of other co-stimulatory

molecules in parallel combination remains to be explored.
TABLE 1 Optimization strategies for combinatorial modes targeting CD28 with other co-stimulatory molecules.

Combined model Co-stimulatory
molecules/ligand

Target Tumor Reference

Tandem CD28、4-1BB CD19 leukemia (53)

CD19、PSMA prostate cancer (57)

Glypican-3 liver cancer (63)

PSMA prostate cancer (64)

Glypican-3、ASGR1 liver cancer (111)

PSMA prostate cancer (112)

CD19、CD20 lymphoma (113)

CEA Colorectal Cancer (68)

GD2 Neuroblastoma (114)

BCMA、TACI Multiple Myeloma (115)

CD28、4-1BB、CD27 BCMA Multiple Myeloma (66)

CD28、OX40/4-1BB CD30 Lymphoma (69)

LMP1 Nasopharyngeal Cancer (70)

ICOS、4-1BB MSLN Solid tumor (71)

CD28、CD40 CD19 B-cell lymphoblastic leukemia, B-cell
non-Hodgkin's lymphoma

(116)

Parallel CD28、4-1BB CD19 Leukemia (74)

BCMA、CD19、CD38 Multiple myeloma, acute
lymphoblastic leukemia

(75)

GD2、B7H3、MSLN、CSPG4 Neuroblastoma (76)

BCMA、GPRC5D Multiple Myeloma (77)

M-CSFR、IL34 Lymphoma, Breast (117)

CD19、CD20 Lymphoma (118)

BAFF-R、APRIL Multiple Myeloma (119)

Ligand-based CD28、4-1BB/ICOSL GPC3 Liver Cancer (78)

CD28/4-1BBL CD19 Acute Lymphoblastic Leukemia (79)

CD19 Relapsed Refractory Lymphoma (80)

B7H3 Solid tumor (81)

CD28/CD40L CD19 Chronic lymphocytic leukemia (82)

CD19 Leukemia、Lymphoma (83)
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3.3.3 Combined patterns of co-stimulatory
molecules and ligands

In addition, simultaneously expressing a co-stimulatory

molecule with a ligand for another co-stimulatory molecule in T

cells can generate synergistic co-stimulatory signaling (78). For

example, the combination of CD28-4-1BBL can continuously

complement 4-1BB signaling after CD28 signaling activation.

The concurrently activated interferon regulatory factor 7 (IRF7)/

IFNb signaling pathway initiates DCs in the TME and inhibits

Treg activation. CD28-4-1BBL-based CAR-T has shown safe and

effective results in targeting CD19 hematologic tumors in both

preclinical and clinical trials (NCT03085173) (79, 80), and even

effective anti-tumor effects in solid tumors targeting B7-H3 (81).

These results illustrate that the combination of CD28 and 4-1BBL

can spatiotemporally and spatially differentially activate both

CD28 and 4-1BB co-stimulatory signaling and that this

synergistic co-stimulatory signaling may surpass CAR target

antigens and activate the host immune system, which provides a

new strategy for modulating TME to enhance CAR-T function.

Based on the role of the CD40 pathway in improving anti-tumor

response, some researchers combined CD28 with CD40L in CD19

CAR-T, which up-regulate the proliferation of T cells, the

expression of CD80 and CD40 of dendritic cells after co-culture

with CD40-positive tumor cells, increase the recruitment of

endogenous effector T cells by DC, and enhance the

immunogenicity of CD40-expressing tumor cells. However,
Frontiers in Immunology 07
clinical safety needs to be investigated as the CD40L/CD40

pathway may induce a systemic inflammatory response (82, 83).
3.4 Optimization of CD28 upstream and
downstream structural domains

Single-chain variable fragments are the antigen-binding domains

of CAR structures, and it has been shown that lowering the affinity of

scFV for antigen binding can reduce reactivity to antigens expressed

at physiological levels while maintaining potent antitumor activity,

thereby attenuating off-target toxicity (84). Common CAR hinge

domains/spacer regions consist of the IgG1 or IgG4 hinge regions and

the CH2-CH3 structural domains of immunoglobulin G fragment

crystallizable (IgG Fc). The length and composition of the hinge

domain is an important factor in designing CARs with optimal

antitumor activity or low toxicity (85–87). Although no reports

show the relationship between CD28 and the function of the scFV

and hinge region, CAR is a combinatorial entity, and exploring CD28

optimization strategies for specific scFV and hinge region patterns is

expected to improve the application of CAR-T. The transmembrane

structural domain anchors CAR to the T cell membrane and

transduces ligand recognition signals to the cytoplasmic signals of

the TCR, which plays a critical role in CAR expression or structural

stability (72). Studies have shown that both extracellular and

transmembrane structural domains of CD28 can partially induce T
FIGURE 4

Structural Evolution of CD28-Based CARs. The first-generation CARs contain only the CD3z chain as the signaling domain. The second-generation
CARs, built upon the first-generation design, incorporate CD28 as a co-stimulatory domain. Further optimization of CD28-based CARs includes
combinations of CD28 with other co-stimulatory molecules such as 4-1BB, as well as mutated/truncated CD28 and "AND" or "OR" logic-gated CARs.
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cell activation (88), providing more choices of CAR transmembrane

domains. CD3z instead of FcRg has been widely used as a CAR

signaling structural domain (89). The cytoplasmic tail of CD3z
contains three immunoreceptor tyrosine-based activation motifs

(ITAMs), and CD28-based CAR studies have shown that the

number and position of ITAMs are related to CAR-T cell function

(90, 91). For example, retaining only the second position of ITAMs in

CD3z reduces apoptosis of CD28-based CAR-T cells that target

ErbB2 (92). For CD19-CAR, placing ITAM1 or ITAM3 of CD3z in

CD28-based CAR close to the proximal membrane position of CARs

targeting CD19 or inserting an IL-2Rb structural domain between

CD28 and CD3z, and inserting a YXXQ motif in the distal region of

the CD3z structural domain can improve the persistence and

therapeutic efficacy of CAR-T cells (2, 93). In summary, the scFV,

hinge region, transmembrane region, and signal transduction region

can be comprehensively optimized in combination with tumor

specificity and individual patient differences to develop a CD28-

based CAR with the best overall performance.
Frontiers in Immunology 08
4 Conclusion and prospective

CD28 has been widely used in preclinical and clinical studies

(Figure 4). CAR-T cells with CD28 as a co-stimulatory structure

suffer from rapid exhaustion and poor durability in therapy,

accompanied by more significant adverse effects and higher

relapse rates. Studies have shown that optimizing the CD28-

based CAR structure—through approaches such as mutating the

CD28 signaling motif, combining it with other co-stimulatory

molecules, and modifying its upstream and downstream

structures—is expected to improve the durability and anti-

tumor efficacy of CAR-T cells by enhancing their ability to

regulate T cell proliferation and survival, with a relatively

optimistic safety profile (Figure 5, Table 2). Currently, the

existing CD28 modifications have been successful, but CD28-

based CAR-T cells face much greater complexity in real human

tumor environments compared to in vitro or mouse tumor

models. Moving forward, there is a need to develop more
FIGURE 5

Optimization schemes for CD28-based CAR structures. Strategies to optimize the CD28-based CAR structure include mutating the signaling motif of
CD28, combining it with other costimulatory molecules, separating the CD3z and CD28 signaling motifs or optimizing other modules in the CAR
structure to regulate the activation, differentiation, survival, proliferation, and antitumor activity of CAR-T cells to enhance the durability and antitumor
efficacy of CAR-T cell therapy, which offers potential to expand the application of CAR -T therapy in hematological or solid tumor applications.
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accurate CAR-T evaluation models to assess the anti-tumor

efficacy of CD28-modified CAR-T cells, including metrics such

as tumor-killing ability, differentiation, persistence, and

exhaustion. In the future, leveraging the latest advancements in

synthetic biology and gene editing technologies will help optimize

logic-gate CARs and develop more rational combinations of CD28

mutations or co-stimulatory molecules.

CAR optimization strategies based on mutated CD28 signaling

motifs indicate that CD28 participates in multiple signaling

pathways. Selective manipulation of these pathways can achieve

long-term persistence and anti-tumor activity of CAR-T cells,

which is attributed to the application of gene editing technology

in CAR structure design, which is expected to provide further space

for mutation or modification of CD28 structural domains. Various

combination modes of CD28 with other co-stimulatory molecules

have been developed, demonstrating promising effects by

synergizing multiple co-stimulatory signals. Multiple co-

stimulatory signals have mobilized the host’s immune response by

complementing each other’s strengths and even modulating

dendritic cells (DCs), Treg cells, and immunosuppressive PD-L1/

PD-1 in TMEs, increasing the potential of CAR-T therapies to be

applied in solid tumors.

An important reason for the poor treatment of CAR-T solid

tumors is the presence of multiple metabolic inhibitors (lactate,
Frontiers in Immunology 09
reactive oxygen species, prostaglandin E2) in the TME (94–97),

which severely impairs CAR-T cells’ antitumor activity. Strategies

to overcome this obstacle are mainly to express relevant molecules

or enzymes resistant to metabolic inhibitors in TME (catalase) on

CAR-T cells through gene editing (98, 99) or to express genes that

enhance mitochondrial biogenesis and function (PGC1a) (100).
Current modification strategies engineering CD28-based CAR-T

resistance to TME are primarily limited to incorporating TME-

resistant response elements, attenuation of PD-L1/PD-1

inhibitory signaling, and combination of metabolic regulatory

drugs to orchestrate CD28 signaling to enhance CAR-T cell

activity, and no modification of CD28 signaling or sequence has

been reported. In the future, exploring the antitumor efficacy of

resistance to TME triggered by CD28 mutation strategies in the

construction of ex vivo TME models that mimic the hypoxic,

high-lactate, glucose-competitive, and immunosuppressive

features of TME (101, 102) could further develop TME-induced

enhanced CD28, or design response elements targeting the

inhibitory signaling on the basis thereof, offering the possibility

of CAR-T therapy for broader application to cancer and

improved efficacy.

Combining metabolic regulation with strategies to increase

resistance to the tumor microenvironment can effectively enhance

CAR-T cells’ survival and anti-tumor ability in the tumor
TABLE 2 The CRS and toxicity levels of CD28-based CARs following structure optimization in clinical trials.

Study (year of publication)
Patient population
(n)

Target
Costimulatory
domain

CR
CRS rate;
grade≥3
CRS rate

Neurotoxicity rate; grade≥3
neurotoxicity rate

Lujia Dong et al. (2015) (120) B-ALL (50) CD19
CD28/4-
1BB/CD27

86% 94%; 16% not mentioned

LungJi Chang et al. (2016) (121) B-ALL (102) CD19
CD28/4-
1BB/CD27

86.3% 71.6%; 10.8% not mentioned

Andras Heczey et al. (2017) (122) R/R NB (11) GD2 CD28/OX40 18.2% 9.1%; 0% 90.9%; 0%

Gunilla Enblad et al. (2018) (123) BCL (11), ALL (4) CD19 CD28/4-1BB 40% 20%; 6.7% 6.7%; 13.3%

Carlos A et al. (2018) (124) R/R NHL (16) CD19 CD28/4-1BB 18.8% 40%; 0% 6.3%; 6.3%

Jae H. Park et al. (2018) (80)
R/R CLL (9), DLBCL
(6), tFL (3), FL and
WM (4), RT (3)

CD19 CD28/4-1BBL 57% 67%; 0% 33%; 8%

Xuan Zhou et al. (2020) (125) R/R NHL (21) CD19 CD28/CD27 43% 14%; 0% 4.8%; 0%

Cheng Jiao et al. (2021) (126) R/R BCL (4)
CD19、CD22、
CD30、
GD2、PSMA

CD28/CD27 25% 50%; 0% 0%; 0%

Hui Liu et al. (2021) (127) R/R NHL (17) CD19 PD-1/CD28 41% 88.3%; 0% 0%; 0%

Lihua Yu et al. (2021) (128) R/R NB (10) GD2 CD28/4-1BB 0% 90%; 0% 0%; 0%

Zhuohao Liu et al. (2023) (129) GBM (8) GD2 CD28/4-1BB 0% 0%; 0% 0%; 0%

Patrick Derigs et al. (2024) (130)
R/R ALL, CLL,
BCL (9)

CD19 CD28/4-1BB 66.7% 77.8%; 11% 0%; 0%

Tessa Gargett et al. (2024) (131)
mutant metastatic
melanoma, solid
tumors (12)

GD2 CD28/OX40 0% 8.3%; 0% 0%; 0%
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microenvironment. A deeper understanding of the mechanisms of

metabolic regulation can help to tailor tumor immunotherapy

regimens to individual patients. For instance, considering the

differences in the tumor microenvironment and T-cell status of

different patients and selecting the most suitable CD28-based CAR

design and metabolic regulation strategies to improve therapeutic

efficacy and reduce adverse effects, may offer hope for CAR-T

precision therapy. However, we must also be concerned about the

possible toxicity risks of adding multiple co-stimulatory molecules.

For example, a clinical trial treating 11 patients with non-Hodgkin’s

lymphoma showed that tandem of a Toll-like receptor 2 (TLR2)

TIR structural domain in a CD28-based CAR structure targeting

CD19 resulted in severe CRS in 2 patients (18%) and severe ICANS

in 1 patient (9%) (NCT04049513) (103). With the help of new

technological tools, dynamic regulation of CD28 and other

signaling intensities might provide safety for the combination of

co-stimulatory molecules.

Currently, the application of artificial intelligence (AI) in

CAR-T is at the frontier of exploration. The application of AI in

CAR-T cancer therapy mainly focuses on AI-assisted prognosis

of clinical efficacy of patients (104), establishment of toxicity

prediction models, and assessment of side effects after CAR-T

treatment (105, 106). Studies directly applying AI technology to

optimize the structure of CARs have only focused on designing

antibodies against cancer targets by using the protein design tool

RFdiffusion to create antibodies against cancer targets (107) or

using AI to design protein conjugates with high affinity for

cancer antigens to replace scFV (108). AI has accelerated the

development of CAR-T products by designing candidate

proteins for binding to the target antigens of CAR-T. However,

whether the antibodies or protein conjugates can be safely

applied to humans without inducing immune responses

requires further validation through experiments. In addition,

for optimizing CAR signaling, including prediction and

optimization of CAR-T tonic signaling using CAR-Toner’s AI

tools (109), prediction of unnatural combinations of specific

signaling motifs combinations and configurations affecting T-

cell phenotypes (110). However, AI-based prediction of

optimized CD28 signaling has not yet been reported. In the

future, perhaps it may be possible to use the AI algorithms to

construct virtual models for predicting CAR-T functional effects

due to mutated CD28 signaling sites, accelerating the

understanding of CD28 signaling mechanisms, based on

which, combined with existing databases, may be able to

provide personalized CD28-based CAR optimization solutions

for cancer patients. Through AI’s learning of large amounts of

data and the development of additional AI algorithms, it may be

possible to predict the effects of different molecular

combinations or modifications on CD28 co-stimulatory

activity and further expand to predict the efficacy of changes

including modification of scFV, hinge region, transmembrane

region, and CD3z, which is expected to provide a basis for

optimizing CAR-T cell therapy.
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