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Introduction: Syphilis is a complex disease with variable clinical presentation

where symptomatic and potentially infectious stages alternate with periods of

latency, representing a fascinating model to study immune evasion and host

immune responses.

Methods: Immunohistochemistry (IHC), bulk, and single-cell RNA sequencing

were performed on formalin-fixed paraffin-embedded skin biopsies collected

from subjects with secondary syphilis. Additionally, PBMCs from healthy

individuals and either primary or MyD88 knock-out keratinocytes were exposed

to live Treponema pallidum cells to define initial skin responses to the bacteria.

Results: Immunohistochemistry of secondary syphilis skin lesions showed a

polymorphous immune infiltrate with colocalization of T cells, B cells and

antigen–presenting cells. Single-cell analysis revealed distinct cellular

contributions to the immune response, with prominent immune-stromal

crosstalk accompanied by altered keratinocyte differentiation and decreased

intraepidermal communication. Notably, prominent inflammatory signals were

countered by concomitant regulatory responses, particularly in infiltrating

myeloid cells. Exposure of PBMCs to live T. pallidum inhibited immune

responses, while exposure to sonicated cells triggered CXCL1 and CXCL3

upregulation. Keratinocytes responded to both intact and sonicated T.

pallidum with upregulation of type-I interferon responses that, however, were

abolished in MYD88–deficient but not in STING–deficient keratinocytes.
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Discussion: Our data provide novel insights into the contribution of epidermal

TLR sensing through MYD88 to the host response to syphilis infection,

highlighting mechanisms by which T. pallidum evades immune responses in

skin that may facilitate transmission of this pathogen through the skin.
KEYWORDS

syphilis, immune evasion, keratinocytes, transcriptome (RNA-seq), host-
pathogen adaptation
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Introduction

Syphilis remains a significant public health issue (1), particularly in

low- and middle-income countries with substandard access to

healthcare. Syphilis is a complex disease with protean clinical

presentation, proceeding through stages that contribute to the

difficulties and delays in diagnosis and treatment. The alternation of

symptomatic stages and periods of latency typical of syphilis infection
02
makes it a fascinating disease model to study immune evasion, temporal

modulation, and development of immunity to the pathogen. A better

understanding of the pathogenicity of the syphilis agent, Treponema

pallidum subsp. pallidum (T. pallidum hereafter) and the associated host

response are fundamental to devising novel control strategies and

contribute to the development of an effective preventative vaccine (2).

The motility of the spirochete T. pallidum relies on flagella

concealed under a low-immunogenic outer membrane layer, known
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to be devoid of protein antigens (3, 4). T. pallidum infects a new host

through the skin or mucosa, causing a painless primary lesion (the

chancre), followed by a maculopapular rash and a range of associated

systemic symptoms during the secondary stage. Following early

symptoms resolution, the infection becomes latent. If left untreated,

secondary manifestations can reoccur, while tertiary syphilis may

develop following a period of latency lasting up to several decades (1).

In secondary syphilis, the cutaneous immune response to

T. pallidum exhibits a polymorphous infiltrate, including T cells,

plasma cells, dendritic cells (DC), macrophages, and NK cells (5–7).

The nature of the immune organization has been proposed as lymphoid-

like with a transcriptomic cytotoxic Th1 signature, contrasting with the

extracellular localization of T. pallidum (7–10). However, a thorough

characterization of the cellular functions has been lacking, including the

involvement and nature of the local epithelial and stromal cells in the

pathogenetic processes. This may provide insights into the mechanisms

by which T. pallidum achieves immune evasion and disease latency.
Patients and methods

Patients samples

Formalin-Fixed Paraffin–Embedded (FFPE) samples from

diagnostic 4mm-biopsies were obtained through clinical care.

Biopsies were taken as part of the diagnostic process, and none of

the patients had received treatment at the time of biopsy collection.

Syphilis diagnosis was based on the evaluation of clinical, serological,

and histological findings, including spirochete stain, along with a

positive rapid plasma regain (RPR) test. All patients tested negative

for HIV. Control 6mm-skin biopsies were obtained from healthy

volunteers. The University of Michigan Institutional Review Board

(IRB) approved the study (HUM00087890 and HUM00174864-JEG),

which was conducted in accordance with the Declaration of Helsinki

Principles. Diagnosis of syphilis was confirmed by Fontana’s method,

patient information is presented in Supplementary Table 1.
Immunohistochemistry

FFPE skin tissue sections from biopsies of secondary syphilis patients

and healthy controls were heated at 60°C for 30 minutes, de-paraffinized,

and rehydrated (11). Slides were heated in pH6 or pH9 antigen retrieval

buffer at 125°C for 30 minutes in a pressure cooker water bath. After

treatment with 3%H2O2 (5min) and blocking using 10% goat serum (30

min), sections were incubated overnight at 4°Cwith the primary antibody

(Supplementary Table 2). Slides were thenwashed prior to addition of the

appropriate peroxidase-labelled secondary antibody, washed again, and

then developed using a diaminobenzidine substrate for 30 min.
Exposure of keratinocytes and PBMCs to
T. pallidum

To account for strain-to-strain variability, three T. pallidum strains

(Chicago, SS14, Nichols) were used in this study T. pallidum strains
Frontiers in Immunology 03
were grown in vitro and harvested as previously described (12).

Treponemal suspensions were provided at a concentration of 8.8x10

(7) cells/ml (Nichols), 1.2x108 cells/ml (SS14), and 2.0x108 cells/ml

(Chicago) in serum-based TpCM2 growth media supplemented with

20% sterile glycerol to preserve viability. Prior to freezing, treponemal

motility and integrity was assessed via dark-field microscopy, and only

cell suspensions with >99% of motile treponemes were used to make

frozen stocks. NTERT-2G keratinocytes knocked-out for STING (1

cell-line) or MyD88 (1 cell-line) were used as previously described (13).

Each well of a 24-well plate was seeded with 10,000 cells, in KC-SFM

medium (ThermoFisher #17005-042) supplemented with 30 µg/ml

bovine pituitary extract, 0.2 ng/ml epidermal growth factor, and 0.3

mM calcium chloride. After reaching confluence, the cells were

exposed to T. pallidum. For methods development, low (10,000 cells/

mL), medium (100,000 cells/mL), or high (1,000,000 cells/mL)

concentrations of T. pallidum were tested at two different time points

(6 and 24 hours). Only the highest concentration and the Chicago

strain was used for the main figures (see Supplementary Figure 1).

Whole blood was obtained from three donors, and PBMCs were

purified on Ficoll-Hypaque (Pharmacia Fine Chemicals, Uppsala,

Sweden), and subsequently exposed to T. pallidum as described

above in a 24 well-plate containing 400,000 cells per well.
RNA purification and bulk sequencing

Five 20-µm sections were obtained from FFPE skin biopsies. For

bulk sequencing: nine skin samples from syphilitic patients and

three control samples were used. For single cell sequencing (SCC),

five patient skin samples and four healthy control samples were

used, were used.

RNA isolation was performed using the Qiagen RNeasy FFPE

Kit (cat. no. 73504). Libraries were prepped using the QuantSeq 3’

mRNA-Seq Library Prep Kit. Libraries were then sequenced using

standard procedures on the Illumina NovaSeq 6000 SP Flow Cells.

Data were analyzed with the Scientific Data Analysis Platform

(SciDAP; Datirium) (17): QuantSeq 3’ mRNA-Seq single-read

was used to trim adapters, map reads to GRCh38.p14 (hg38), and

quantify gene expression. DESeq2 (18) was used to perform

differential expression analysis. Genes with a log2FC |≥1| and

FDR <0.1 were considered significantly differentially expressed

genes (unless otherwise stated in the manuscript). RNA from

PBMCs and keratinocytes was processed using Qiagen RNeasy kit

and analyzed as abovementioned.
Single-cell RNA-sequencing

Single cell RNA sequencing was performed using 10X Genomics

Flex-seq kit. Tissue was dissociated per the manufacturer’s

instructions using the gentleMACS Octo Dissociator. In brief:

50um scrolls were placed into a GentleMACS C-tube (Miltenyi

BioTech). The scrolls were then deparaffinized, washed and

dissociated into a single cell suspension enzymatically using

Liberase TH. Reads were aligned to the GRCh38 genome.

CellRanger 7.0.1 was used to generate the gene x cell matrix.
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Matrices were loaded into Seurat v4.3.0. Ambient RNA was removed

using SoupX v1.6.2 using default settings. ScDblFinder v1.12.0 was

used to remove doublets using default settings. Cells containing fewer

than 200 UMI and more than 25% mitochondrial reads were

removed. Seurat v4.3.0 was used to normalize, scale, and reduce

dimensionality of the data using Uniform Manifold Approximation

and Projection (UMAP). Batch correction was performed using

harmony v 1.0, using donor as batch. Clusters were annotated

manually using a list of literature-based marker genes.
Ligand–receptor interaction analysis

CellphoneDB (v2.0.0) (14) was applied for ligand-receptor

analysis. The potential ligand-receptor pairs were identified using

Seurat normalized counts and sub-cluster annotation as input. Pairs

with p-value >0.05 were filtered out. The sub-clusters were divided

into Control-specific sub-cluster and a Syphilis-specific sub-cluster.

CellphoneDB was then run on the syphilis cells and on the control

cells. The pairs from the sub-clusters for the same cell type were

merged to find ligand-receptor pairs between the major cell types.

The pairs with higher interaction scores were plotted. For the

ligand-receptor analysis restricted to immunoglobulins and

complement, a custom list of interactions was added to the

default CellphoneDB reference panel using GRCh38 annotations.
Results

Transcriptomic characterization of the
overall immune signals in secondary
syphilis secondary skin lesions

Bulk RNA sequencing was performed on skin biopsies with

positive staining for treponemes (not shown) from five patients

with secondary syphilis. A total of 1,452 upregulated and 1,396

down-regulated genes were identified (Log2 fold-change (FC) >1, or

<-1, FDR<=0.05, Figure 1A) when compared to healthy skin

samples. IL21, CXCL13 were among the top upregulated genes,

both of which are involved in B-cell homing and activation (40).

Increased expression of IFNG, CXCL9, CXCL10 indicated Th1 cell

activation. Evidence for matrix remodeling was reflected in the

upregulation of the metalloproteinases MMP1 and MMP12. Lastly,

upregulation of SPPR2 family members and S100A7 suggested an

impact on epidermal differentiation. Pathway analysis (Reactome)

demonstrated upregulation of IL-21, IL-10, and IFN signaling

(Figure 1B). Cellular signals included enrichment for CD4 and

CD8 T cells, which were more prominent than the transcriptomic

signature for B cells (Figure 1B). Enriched disease-perturbation

analysis showed overlap with a broad range of transcriptomic

signatures of skin diseases, including discoid lupus, psoriasis, and

eczema (Figure 1B). We validated some of these findings by

immunohistochemistry, where samples exhibited a highly variable

immune infiltrate (Figure 1C), and showed major T-cell, B-cell, and

DC infiltrates in syphilis skin (Figure 1D), consistent with previous

reports (7, 15). Prominent co-localization was observed with the T
Frontiers in Immunology 04
cells (CD3), B cells (CD20), and antigen-presenting cells (CD11c,

TREM2, CLEC9A) being in close proximity in syphilis skin

lesions (Figure 1D).
Distinct cell contributions to the
inflammatory environment of secondary
syphilis secondary skin lesions

Skin biopsies were processed for single-cell RNA sequencing to

differentiate the respective cellular contributions to the inflammatory

environment. Following quality control, our dataset encompassed

26,962 high-quality cells across 15 major cell types (Figure 2A). The

mean gene count per cell was 1,697 and the mean read count per cell

was 3,203. The expected increase in T, myeloid, and plasma cell

proportions was confirmed (Figure 2B). A closer observation of gene

expression enriched in T cells in secondary syphilis skin compared to

T cells from control skin showed enrichment for complement

activation and was also seen in plasma and myeloid cells. Notably,

T and myeloid cells expressed high levels of the B/plasma cell-

chemokine CXCL13, with plasma cells expressing high levels of

genes involved in immunoglobulin expression (Figure 2C).

Prominently enriched pathways shared between multiple immune

cell types in secondary syphilis included type I and type II interferon

signaling, IL-4/IL-13 signaling, and Toll-like receptor (TLR)

activation (Figure 2D). Plasma cells were more inclined towards

enrichment for type I interferon and IL-4/IL-13, while myeloid cells

exhibited IL-10 signals and regulation of IFN-y. The predicted

transcription factors identified included the NF-kB regulators,

RELA/RELB, and the interferon-related transcription regulator

IRF1, as most prominently enriched (Figure 2E).
CD4+ and CD8+ T cells show distinct
profiles but share common interaction
signals with B cells

To differentiate T cell subsets, subclustering was performed,

demonstrating distinct populations of CD4+, CD8+ T cells,

regulatory T cells, and gamma delta T cells (Figure 3A), defined

by their marker gene expression (Figure 3B). CD8+ T cells were the

most enriched subset, whereas there was a decreased frequency of

CD4+ T cells, with other T cell subsets showing lesser change

(Figure 3C). To assess for changes in the biological functions of T

cells in syphilis skin, we compared their differentially-expressed

genes DEGs (FDR<0.05) to healthy control T cells on a per-cell type

basis. Examples of DEGs in CD8 and CD4 T cells can be seen in

Figure 3D. A total of 184 DEGs were identified, with 42 shared

between CD4+ and CD8+ T cells (Figure 3E), with the core response

of CD4 and CD8 T cells involving B cell interactions, upregulation

of the B cell chemokine CXCL13, and Th1/Th17 disease signatures

(Figure 3E). CD4+ T cells showed, in addition, a Th2 skewing with

enrichment for IL-4 responses and asthma disease signature, along

with upregulation of regulatory markers, including CTLA4 and

LAG3. CD8+ T cells, however, displayed enriched IL-6 and IFN-

g signaling.
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Myeloid cells in syphilis secondary skin
lesions express immunomodulatory
cytokines, including IL10 and TGFB

Myeloid cells in samples from syphilis patients showed prominent

immunomodulatory/immunosuppressive cytokine expression, including

IL10, TGFB1, IDO1, and the B/plasma cell chemokine CXCL13

(Figure 4A). Subclustering of myeloid cells (2,667 myeloid cells from

syphilis lesions, and 740 from healthy skin) showed several subsets that

were restricted to syphilis samples and absent in healthy skin (Figure 4B-

D), including TREM2 macrophages, plasmacytoid dendritic cells

(pDCs), and conventional dendritic cell type 1 and types 2A and 2B

(Figure 4C). Notably, there was a prominent decrease of Langerhans cells

in syphilis skin (Figure 4C). B and Plasma cells clustered with the
Frontiers in Immunology 05
myeloid cells and increased in syphilis skin (Figure 4C). To assess which

of the myeloid cell populations contribute to IL10, IDO1, TGFB1, and

PD-L1 expression, we used feature plots to determine their expression,

with monocytes, M1-like macrophages, TREM2 macrophages, cDC2B

being the main contributors (Figure 4E).
Immune crosstalk in syphilis lesions is
characterized by diminished intercellular
communications in the epidermis and
altered differentiation

To picture the intercellular interactions in secondary syphilis,

ligand-receptor analysis was assessed using CellPhonedB (14).
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FIGURE 1
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Compared to healthy skin, where most interactions were confined

between keratinocyte subsets, syphilis lesions showed fewer inter-

keratinocyte interactions, with no apparent immune-epithelial

crosstalk (Figure 5A, B). Pathway analysis of the different subtypes of

keratinocytes showed that differentiation was altered in all subtypes of

keratinocytes concerning desmosome function and other adhesion-

related mechanisms (Figure 5C). Distribution of differentiation

markers showed a more robust expression of KRT10 and KRT1 in

keratinized, cycling, and differentiated keratinocytes in syphilis lesions

compared to healthy skin (Figure 5D), with the expression of the major

antimicrobial peptides shifted (Figure 5E). The expression of KRT14,

was redistributed: higher expression in basal keratinocytes in syphilis

compared to healthy skin but lower in differentiated and keratinized

keratinocytes. Surprisingly, expression of KRT6C, a stress-related

keratin, was markedly diminished in syphilis samples compared to

healthy skin (Figure 5D), confirming the significant impact of the

infection on all keratinocyte subtypes.
Frontiers in Immunology 06
Fibroblasts exhibit a pro-inflammatory
state and shift towards immunoglobulin/
complement activation in syphilis
secondary skin lesions

Fibroblasts exhibited altered gene expression profile in syphilis

skin, including increased expression of various chemokines,

including the neutrophil chemokine CXCL8, Th1 chemokine

CXCL10, and CXCL13 (Figure 6A), reflecting in enriched

inflammatory pathways such as neutrophil chemotaxis, response

to type II IFNs, and defense response to a bacterium (Figure 6B).

Further analysis of the outgoing communication pattern showed

that myeloid and endothelial cells were part of a broad interaction

web, including cycling keratinocytes and other immune cell subsets

(Figure 6C). The incoming communication patterns showed that

myeloid and T cells shared similar interactions with fibroblasts and

cycling keratinocytes that is absent in healthy skin. Next, given the
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Distinct cell contributions to the inflammatory environment of secondary syphilis. (A) UMAP plot of the cells retrieved from secondary syphilis skin
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hallmark B and plasma cell infiltration in syphilis lesions, we

focused on complement and immunoglobulin–related interactions

to determine if those could be a driver of the immune-stromal

crosstalk in the host response to T. pallidum. Thus, a marked

increase was observed in stromal-immune interactions in syphilis

skin, with fibroblasts, endothelial cells, and pericytes being a

significant source of complement components as well as

expressing receptors for plasma cell-derived immunoglobulins

(Figure 6D, E). This suggests that a major feature of immune-

stromal crosstalk in syphilis secondary skin lesions is centered

around immunoglobulin/complement activation.
Intact T. pallidum inhibits innate immune
responses in PBMCs while sonicated
bacteria trigger an inflammatory response

Secondary syphilis is a systemic phase of the disease in which

treponemes disseminate from the primary chancre to virtually all

bodily organs. How T. pallidum escapes the innate and adaptive

immune responses is only partially understood. Therefore, we

exposed human PBMCs to live or sonicated T. pallidum and

collected exposed cells after 6 hours for bulk RNA analysis

(Figure 7A). Transcripts that were dysregulated (FDR<0.05) were

used for enrichment analyses. Transcripts upregulated ((Log2
Frontiers in Immunology 07
FC>=1) after 6 hours of exposure to sonicated T. pallidum vs.

baseline (n=83) belonged to chemokine and neutrophils–related

pathways, with IL-10 and negative regulation of IL-12 among the

top-upregulated signatures (Figure 7B). Notably, only 24 transcripts

were selectively upregulated in PBMCs exposed to live intact T.

pallidum, with Neutrophil Degranulation (p=0.0009) and Innate

Immune System (p=0.02975) significantly enriched. Although

intact T. pallidum did not trigger strong immune responses in

PBMCs downregulated transcripts (Log2 FC<-1) encompassed

neutrophil–related pathways and chemotaxis, indicating that

intact T. pallidum bacteria selectively inhibit immune responses

within 6 hours of contact. Comparing the 6 hours–exposed samples

with one another, the sonicated bacteria elicited a strong

upregulation of CXCL8, CXCL1, CXCL3, and CCL4 (Figure 7C, D).
Human keratinocytes respond to
T. pallidum with activation of interferon
responses dependent on MyD88

Skin microabrasions can be an entry site for syphilis and is one of

the sites of manifestation of secondary syphilis, where T. pallidum can

frequently be found in the space between keratinocytes. To provide a

cleaner view of the skin-specific reaction to the earliest events upon

skin penetration, we exposed keratinocytes to T. pallidum, either live
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or sonicated. The number of downregulated transcripts (Log2 FC<-1,

FDR<0.05) after 6 hours of exposure surpassed the upregulated ones

(Log2 FC>1, FDR<0.05) (Figure 7E) with 421 upregulated transcripts

and 764 downregulated. In the cells exposed to the sonicated bacteria,

298 upregulated transcripts were identified and 701 were

downregulated. No strong proinflammatory signals were generated,

and pathway analysis of upregulated transcripts identified type I

interferon as the main common pattern of response between intact

and sonicated bacteria (Figure 7F). When reproducing the

experiment using keratinocytes knocked out for MyD88, a

downstream effector of IL-1/TLR signaling, the inflammatory

responses were absent, indicating a TLR–dependent mechanism of

detection of treponemal cells in keratinocytes (Figure 7G), as

previously published (16–18).
Discussion

Our data provide some insights into the mechanisms involved

and the sequence of events that drive the unique histological

features of secondary syphilis, including the rich B- and plasma

cell infiltrates. It sheds light on the ability of T. pallidum to invade

and multiply in the skin and mucosa that is crucial to its

contagiousness and also generates hypothesis regarding how the

bacteria evades immune response and establishes latency.
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A striking finding of this work was the response of epidermal

keratinocytes to T. pallidum. Overall, the keratinocyte response to

both live and sonicated T. pallidum were more modest than those of

PBMCs. Our data confirm the dependence of keratinocyte immune

responses to T. pallidum onMyD88. MyD88 is downstream of both

IL-1/IL-36 and TLR responses (19, 20). Our findings align with

others on the role of MyD88 in response to T. pallidum, particularly

flagellin, in both keratinocytes (21) and PMBCs (22), and further

supports the role of TLR signaling in response to syphilis infection

(23, 24), which likely involves TLR2 and TLR5 responses, as shown

by others (22, 24, 25). Notably, one of the most marked features

observed in the single-cell sequencing data was the effect of syphilis

infection on desmosome organization and epithelial cell-to-cell

adhesion. Desmosomes play a crucial role in providing

intercellular junctions that provide adhesions between cells to

provide mechanical strength to the epidermis and skin barrier

functionality (26, 27). T. pallidum can be identified in both the

epidermis and dermis of secondary syphilis lesions (28), and these

lesions are believed to be contagious by direct contact. Our data

suggest that the spread of T. pallidum may be facilitated by these

changes in adhesion structures in the epidermis, and this may be

one of the mechanisms by which the bacterium promotes

dissemination, although the exact mechanisms by which T.

pallidum induces these changes in differentiated epidermis require

further study.
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Another important finding from our study is the characterization

of the broad and mixed inflammatory responses we observe in

secondary skin lesions. Secondary syphilis has been termed the

“great masquerader” because its skin lesions show such diverse

clinical and histological morphologies mimicking a broad range of

inflammatory skin diseases (28). Our data confirm the broad immune

activation in skin with both enriched anti-inflammatorymechanisms,

involving IL-10, and pro-inflammatory stimuli mediated by TNF and

TLR responses, type I and type II IFN responses, enriched Th2 and

Th17 responses, along with neutrophil activation, B-cell chemotaxis,

plasma cell activation, and enriched IgG/complement responses.

Notably, even in light of T-cell phenotype, we see broad ranges

overlapping with as diverse transcriptomic disease patterns as

systemic lupus erythematosus (SLE), asthma, and pulmonary

tuberculosis in CD4+ T cells, and acne, SLE, and sarcoidosis in

CD8+ T cells from syphilis skin. Thus, it can be speculated that

different balances between the effector immune cells in syphilis skin

can lead to dramatically different clinical manifestations despite the

same underlying disease mechanisms.

As described before, the inflammatory infiltrate in syphilis is

very localized, involving complex lymphoid-like collections that

often surround the superficial blood vessels in the skin. The
Frontiers in Immunology 09
presence of tertiary lymphoid structures (TLS) in secondary

syphilis has been suggested (8), and may contribute to the

progression of immune responses in skin. The increased CXCL13

mRNA expression we detected aligned with increased infiltration of

CXCR5+ cells, but CXCR5 can be seen on B cells, Tfh cells (29, 30),

and follicular dendritic cells (31, 32). Our data is also consistent

with an inflammatory network characterized by the production of

immunoglobulins and complement components. While plasma

cells are the source of both IgG and IgA antibodies, other cell

types, particularly stromal cell types, contributed both as potential

targets of the IgA antibodies through Fc receptor expression or

expression of various complement components or receptors.

Circulating immune complexes that contain treponemal antigen

together with antibody and complement have been shown to be

active in secondary syphilis (33–36).

Moreover, our data may provide some indications by which T.

pallidum may evade clearance. Previous work has suggested that T.

pallidum displays several strategies for immune evasion. This

includes their slow growth (36-44 hour generation time), antigenic

variation, and the paucity of surface-exposed antigens on the

pathogen outer membrane, which shields highly immunogenic/

immunodominant sub-surface antigens such as lipoproteins and
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flagellar components, which delays the initial host response (5). The

presence of this outer membrane explains our findings of stronger

immune responses triggered by the sonicated bacteria than intact

ones. However, “active inhibition” of the immune system could be

witnessed after exposing PBMCs to live T. pallidum, which could not

be explain by a lack of detection of surface antigens. Indeed, other

mechanisms are suggested in the literature and include interference

with immunosuppressive or immunomodulatory mechanisms such

as IL-10 or TGF-B. T. pallidum–specific antigens have been shown to

promote IL-10 production and TGF-B in monocytes (37), which is

consistent with our data showing that expression of genes involved in

IL-10 signaling is significantly altered in secondary skin lesions. Other
Frontiers in Immunology 10
mechanisms that could contribute to this and suggested in our

data include the altered keratinocyte differentiation and relative

paucity of antimicrobial responses, which may limit the local

bacterial clearance (38). Also, the differences between sonicated and

intact bacteria could depend on the inactivation of heat-sensitive

proteins, as described in Treponema denticola (39). Lastly, myeloid

cells may also contribute through mechanisms involving IDO,

TGFB1, or PD-L1, which were all dramatically upregulated in

syphilis, with each one providing a potential mechanism

contributing to immune evasion.

Several limitations should be acknowledged. First, the number

of samples that were analyzed with single-cell RNA sequencing is
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FIGURE 6

Fibroblasts and Immune-stromal interactions in secondary syphilis. (A) Volcano plot of the upregulated (red) and downregulated transcripts in
fibroblasts, with fold change >2 or <-2, comparing fibroblasts in samples from syphilis patients and healthy controls. Significantly different transcripts
with p<0.05. (B) Gene-enrichment analysis using the GO biological process (BP), focused on upregulated transcripts in fibroblasts. (C) Comparison
of each cell subset’s incoming and outcoming communication patterns in samples from secondary syphilis and healthy skin. (D, E) Circos plot of
ligand–receptor pairs restricted to complement and immunoglobulins, in healthy (left) and secondary syphilis (right).
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low, and the cellular composition of the paraffin–embedded tissue

might not reflect all cell types actually present in the skin at the time

of the biopsy collection. However, quality control reached satisfying

levels and many different cell types were identified. Also, the body

sites of the skin biopsies for the single-cell sequencing were more

heterogenous in patients compared to the healthy controls that were

taken from the hip. Additionally, patients were all male whereas the

majority of controls were female. While this could have contributed

to some of the differences identified in the data, we think it is

unlikely to have a major impact on our findings. Finally, monolayer

cultures of keratinocytes are not as physiological as actual

human skin tissue, but allowed for a first characterization of

the keratinocytes responses to T. pallidum in both WT and

KO keratinocytes.

In conclusion, our data highlight the broad and mixed

inflammatory patterns in syphilis secondary skin lesions and

emphasize how this disease is an excellent model for studying
Frontiers in Immunology 11
host-pathogen interactions. Our data provide insights into some

of the mechanisms by which syphilis may evade immune

responses as well as those that may facilitate transmission

through the skin.
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time-course of cytokine upregulation and effect of strains and concentration

of T. pallidum on human PBMCs and keratinocytes. The upper panel shows

the strain effect of T. pallidum upon exposure of WT Keratinocytes to the
bacteria. The lower panel show the upregulation of IL1B at 6 hours versus 24

hours, and with three different concentrations (low, medium, high).
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Gallais Sérézal et al. 10.3389/fimmu.2025.1549206
11. Billi AC, Gharaee-Kermani M, Fullmer J, Tsoi LC, Hill BD, Gruszka D, et al. The
female-biased factor VGLL3 drives cutaneous and systemic autoimmunity. JCI Insight.
(2019) 4:1–14. doi: 10.1172/jci.insight.127291
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