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Introduction: Syphilis is a complex disease with variable clinical presentation
where symptomatic and potentially infectious stages alternate with periods of
latency, representing a fascinating model to study immune evasion and host
immune responses.

Methods: Immunohistochemistry (IHC), bulk, and single-cell RNA sequencing
were performed on formalin-fixed paraffin-embedded skin biopsies collected
from subjects with secondary syphilis. Additionally, PBMCs from healthy
individuals and either primary or MyD88 knock-out keratinocytes were exposed
to live Treponema pallidum cells to define initial skin responses to the bacteria.

Results: Immunohistochemistry of secondary syphilis skin lesions showed a
polymorphous immune infiltrate with colocalization of T cells, B cells and
antigen—presenting cells. Single-cell analysis revealed distinct cellular
contributions to the immune response, with prominent immune-stromal
crosstalk accompanied by altered keratinocyte differentiation and decreased
intraepidermal communication. Notably, prominent inflammatory signals were
countered by concomitant regulatory responses, particularly in infiltrating
myeloid cells. Exposure of PBMCs to live T. pallidum inhibited immune
responses, while exposure to sonicated cells triggered CXCLI1 and CXCL3
upregulation. Keratinocytes responded to both intact and sonicated T.
pallidum with upregulation of type-I| interferon responses that, however, were
abolished in MYD88-deficient but not in STING-deficient keratinocytes.
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Discussion: Our data provide novel insights into the contribution of epidermal
TLR sensing through MYD88 to the host response to syphilis infection,
highlighting mechanisms by which T. pallidum evades immune responses in
skin that may facilitate transmission of this pathogen through the skin.

KEYWORDS

syphilis, immune evasion, keratinocytes, transcriptome (RNA-seq), host-
pathogen adaptation
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Introduction

Syphilis remains a significant public health issue (1), particularly in
low- and middle-income countries with substandard access to
healthcare. Syphilis is a complex disease with protean clinical
presentation, proceeding through stages that contribute to the
difficulties and delays in diagnosis and treatment. The alternation of
symptomatic stages and periods of latency typical of syphilis infection
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makes it a fascinating disease model to study immune evasion, temporal
modulation, and development of immunity to the pathogen. A better
understanding of the pathogenicity of the syphilis agent, Treponema
pallidum subsp. pallidum (T. pallidum hereafter) and the associated host
response are fundamental to devising novel control strategies and
contribute to the development of an effective preventative vaccine (2).

The motility of the spirochete T. pallidum relies on flagella
concealed under a low-immunogenic outer membrane layer, known
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to be devoid of protein antigens (3, 4). T. pallidum infects a new host
through the skin or mucosa, causing a painless primary lesion (the
chancre), followed by a maculopapular rash and a range of associated
systemic symptoms during the secondary stage. Following early
symptoms resolution, the infection becomes latent. If left untreated,
secondary manifestations can reoccur, while tertiary syphilis may
develop following a period of latency lasting up to several decades (1).
In secondary syphilis, the cutaneous immune response to
T. pallidum exhibits a polymorphous infiltrate, including T cells,
plasma cells, dendritic cells (DC), macrophages, and NK cells (5-7).
The nature of the immune organization has been proposed as lymphoid-
like with a transcriptomic cytotoxic Thl signature, contrasting with the
extracellular localization of T. pallidum (7-10). However, a thorough
characterization of the cellular functions has been lacking, including the
involvement and nature of the local epithelial and stromal cells in the
pathogenetic processes. This may provide insights into the mechanisms
by which T. pallidum achieves immune evasion and disease latency.

Patients and methods
Patients samples

Formalin-Fixed Paraffin-Embedded (FFPE) samples from
diagnostic 4mm-biopsies were obtained through clinical care.
Biopsies were taken as part of the diagnostic process, and none of
the patients had received treatment at the time of biopsy collection.
Syphilis diagnosis was based on the evaluation of clinical, serological,
and histological findings, including spirochete stain, along with a
positive rapid plasma regain (RPR) test. All patients tested negative
for HIV. Control 6mm-skin biopsies were obtained from healthy
volunteers. The University of Michigan Institutional Review Board
(IRB) approved the study (HUMO00087890 and HUMO00174864-JEG),
which was conducted in accordance with the Declaration of Helsinki
Principles. Diagnosis of syphilis was confirmed by Fontana’s method,
patient information is presented in Supplementary Table 1.

Immunohistochemistry

FFPE skin tissue sections from biopsies of secondary syphilis patients
and healthy controls were heated at 60°C for 30 minutes, de-paraffinized,
and rehydrated (11). Slides were heated in pH6 or pH9 antigen retrieval
buffer at 125°C for 30 minutes in a pressure cooker water bath. After
treatment with 3% H,O, (5 min) and blocking using 10% goat serum (30
min), sections were incubated overnight at 4°C with the primary antibody
(Supplementary Table 2). Slides were then washed prior to addition of the
appropriate peroxidase-labelled secondary antibody, washed again, and
then developed using a diaminobenzidine substrate for 30 min.

Exposure of keratinocytes and PBMCs to
T. pallidum

To account for strain-to-strain variability, three T. pallidum strains
(Chicago, SS14, Nichols) were used in this study T. pallidum strains
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were grown in vitro and harvested as previously described (12).
Treponemal suspensions were provided at a concentration of 8.8x10
(7) cells/ml (Nichols), 1.2x10% cells/ml (SS14), and 2.0x10° cells/ml
(Chicago) in serum-based TpCM2 growth media supplemented with
20% sterile glycerol to preserve viability. Prior to freezing, treponemal
motility and integrity was assessed via dark-field microscopy, and only
cell suspensions with >99% of motile treponemes were used to make
frozen stocks. NTERT-2G keratinocytes knocked-out for STING (1
cell-line) or MyD88 (1 cell-line) were used as previously described (13).
Each well of a 24-well plate was seeded with 10,000 cells, in KC-SFM
medium (ThermoFisher #17005-042) supplemented with 30 pg/ml
bovine pituitary extract, 0.2 ng/ml epidermal growth factor, and 0.3
mM calcium chloride. After reaching confluence, the cells were
exposed to T. pallidum. For methods development, low (10,000 cells/
mL), medium (100,000 cells/mL), or high (1,000,000 cells/mL)
concentrations of T. pallidum were tested at two different time points
(6 and 24 hours). Only the highest concentration and the Chicago
strain was used for the main figures (see Supplementary Figure 1).
Whole blood was obtained from three donors, and PBMCs were
purified on Ficoll-Hypaque (Pharmacia Fine Chemicals, Uppsala,
Sweden), and subsequently exposed to T. pallidum as described
above in a 24 well-plate containing 400,000 cells per well.

RNA purification and bulk sequencing

Five 20-um sections were obtained from FFPE skin biopsies. For
bulk sequencing: nine skin samples from syphilitic patients and
three control samples were used. For single cell sequencing (SCC),
five patient skin samples and four healthy control samples were
used, were used.

RNA isolation was performed using the Qiagen RNeasy FFPE
Kit (cat. no. 73504). Libraries were prepped using the QuantSeq 3’
mRNA-Seq Library Prep Kit. Libraries were then sequenced using
standard procedures on the Illumina NovaSeq 6000 SP Flow Cells.
Data were analyzed with the Scientific Data Analysis Platform
(SciDAP; Datirium) (17): QuantSeq 3> mRNA-Seq single-read
was used to trim adapters, map reads to GRCh38.p14 (hg38), and
quantify gene expression. DESeq2 (18) was used to perform
differential expression analysis. Genes with a log2FC |>1| and
FDR <0.1 were considered significantly differentially expressed
genes (unless otherwise stated in the manuscript). RNA from
PBMCs and keratinocytes was processed using Qiagen RNeasy kit
and analyzed as abovementioned.

Single-cell RNA-sequencing

Single cell RNA sequencing was performed using 10X Genomics
Flex-seq kit. Tissue was dissociated per the manufacturer’s
instructions using the gentleMACS Octo Dissociator. In brief:
50um scrolls were placed into a GentleMACS C-tube (Miltenyi
BioTech). The scrolls were then deparaffinized, washed and
dissociated into a single cell suspension enzymatically using
Liberase TH. Reads were aligned to the GRCh38 genome.
CellRanger 7.0.1 was used to generate the gene x cell matrix.
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Matrices were loaded into Seurat v4.3.0. Ambient RNA was removed
using SoupX v1.6.2 using default settings. ScDblFinder v1.12.0 was
used to remove doublets using default settings. Cells containing fewer
than 200 UMI and more than 25% mitochondrial reads were
removed. Seurat v4.3.0 was used to normalize, scale, and reduce
dimensionality of the data using Uniform Manifold Approximation
and Projection (UMAP). Batch correction was performed using
harmony v 1.0, using donor as batch. Clusters were annotated
manually using a list of literature-based marker genes.

Ligand—receptor interaction analysis

CellphoneDB (v2.0.0) (14) was applied for ligand-receptor
analysis. The potential ligand-receptor pairs were identified using
Seurat normalized counts and sub-cluster annotation as input. Pairs
with p-value >0.05 were filtered out. The sub-clusters were divided
into Control-specific sub-cluster and a Syphilis-specific sub-cluster.
CellphoneDB was then run on the syphilis cells and on the control
cells. The pairs from the sub-clusters for the same cell type were
merged to find ligand-receptor pairs between the major cell types.
The pairs with higher interaction scores were plotted. For the
ligand-receptor analysis restricted to immunoglobulins and
complement, a custom list of interactions was added to the
default CellphoneDB reference panel using GRCh38 annotations.

Results

Transcriptomic characterization of the
overall immune signals in secondary
syphilis secondary skin lesions

Bulk RNA sequencing was performed on skin biopsies with
positive staining for treponemes (not shown) from five patients
with secondary syphilis. A total of 1,452 upregulated and 1,396
down-regulated genes were identified (Log2 fold-change (FC) >1, or
<-1, FDR<=0.05, Figure 1A) when compared to healthy skin
samples. IL21, CXCL13 were among the top upregulated genes,
both of which are involved in B-cell homing and activation (40).
Increased expression of IFNG, CXCL9, CXCL10 indicated Th1 cell
activation. Evidence for matrix remodeling was reflected in the
upregulation of the metalloproteinases MMPI and MMP]I2. Lastly,
upregulation of SPPR2 family members and SI00A7 suggested an
impact on epidermal differentiation. Pathway analysis (Reactome)
demonstrated upregulation of IL-21, IL-10, and IFN signaling
(Figure 1B). Cellular signals included enrichment for CD4 and
CD8 T cells, which were more prominent than the transcriptomic
signature for B cells (Figure 1B). Enriched disease-perturbation
analysis showed overlap with a broad range of transcriptomic
signatures of skin diseases, including discoid lupus, psoriasis, and
eczema (Figure 1B). We validated some of these findings by
immunohistochemistry, where samples exhibited a highly variable
immune infiltrate (Figure 1C), and showed major T-cell, B-cell, and
DC infiltrates in syphilis skin (Figure 1D), consistent with previous
reports (7, 15). Prominent co-localization was observed with the T
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cells (CD3), B cells (CD20), and antigen-presenting cells (CD11c,
TREM2, CLEC9A) being in close proximity in syphilis skin
lesions (Figure 1D).

Distinct cell contributions to the
inflammatory environment of secondary
syphilis secondary skin lesions

Skin biopsies were processed for single-cell RNA sequencing to
differentiate the respective cellular contributions to the inflammatory
environment. Following quality control, our dataset encompassed
26,962 high-quality cells across 15 major cell types (Figure 2A). The
mean gene count per cell was 1,697 and the mean read count per cell
was 3,203. The expected increase in T, myeloid, and plasma cell
proportions was confirmed (Figure 2B). A closer observation of gene
expression enriched in T cells in secondary syphilis skin compared to
T cells from control skin showed enrichment for complement
activation and was also seen in plasma and myeloid cells. Notably,
T and myeloid cells expressed high levels of the B/plasma cell-
chemokine CXCLI3, with plasma cells expressing high levels of
genes involved in immunoglobulin expression (Figure 2C).
Prominently enriched pathways shared between multiple immune
cell types in secondary syphilis included type I and type II interferon
signaling, IL-4/IL-13 signaling, and Toll-like receptor (TLR)
activation (Figure 2D). Plasma cells were more inclined towards
enrichment for type I interferon and IL-4/IL-13, while myeloid cells
exhibited IL-10 signals and regulation of IFN-y. The predicted
transcription factors identified included the NF-kB regulators,
RELA/RELB, and the interferon-related transcription regulator
IRF1, as most prominently enriched (Figure 2E).

CD4* and CD8* T cells show distinct
profiles but share common interaction
signals with B cells

To differentiate T cell subsets, subclustering was performed,
demonstrating distinct populations of CD4*, CD8" T cells,
regulatory T cells, and gamma delta T cells (Figure 3A), defined
by their marker gene expression (Figure 3B). CD8" T cells were the
most enriched subset, whereas there was a decreased frequency of
CD4+ T cells, with other T cell subsets showing lesser change
(Figure 3C). To assess for changes in the biological functions of T
cells in syphilis skin, we compared their differentially-expressed
genes DEGs (FDR<0.05) to healthy control T cells on a per-cell type
basis. Examples of DEGs in CD8 and CD4 T cells can be seen in
Figure 3D. A total of 184 DEGs were identified, with 42 shared
between CD4" and CD8" T cells (Figure 3E), with the core response
of CD4 and CD8 T cells involving B cell interactions, upregulation
of the B cell chemokine CXCLI13, and Th1/Th17 disease signatures
(Figure 3E). CD4" T cells showed, in addition, a Th2 skewing with
enrichment for IL-4 responses and asthma disease signature, along
with upregulation of regulatory markers, including CTLA4 and
LAG3. CD8" T cells, however, displayed enriched IL-6 and IFN-
Y signaling.
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FIGURE 1
Transcriptomic characterization of the overall immune signals in secondary syphilis. Paraffin-embedded blocks were sectioned for bulk RNA
sequencing n=9 and compared to healthy controls without skin diseases n=8. (A) volcano plot of the upregulated (red) and downregulated
transcripts with fold change (FC) >2 or <-2. (B) Gene Set enrichment of the upregulated transcripts in (A). (C) H&S staining of the five clinical biopsies
analysed in bulk sequencing, Black squares indicate the magnified areas. (D) Immunohistochemistry staining of selected secondary syphilis biopsies.
The complete area of the biopsy and a higher magnification insert are depicted. T. pallidum, Treponema pallidum. Significantly different transcripts

with FDR<0.05.

Myeloid cells in syphilis secondary skin
lesions express immunomodulatory
cytokines, including 1L10 and TGFB

Myeloid cells in samples from syphilis patients showed prominent
immunomodulatory/immunosuppressive cytokine expression, including
IL10, TGFBI, IDOI, and the B/plasma cell chemokine CXCLI3
(Figure 4A). Subclustering of myeloid cells (2,667 myeloid cells from
syphilis lesions, and 740 from healthy skin) showed several subsets that
were restricted to syphilis samples and absent in healthy skin (Figure 4B-
D), including TREM2 macrophages, plasmacytoid dendritic cells
(pDCs), and conventional dendritic cell type 1 and types 2A and 2B

(Figure 4C). Notably, there was a prominent decrease of Langerhans cells
in syphilis skin (Figure 4C). B and Plasma cells clustered with the
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myeloid cells and increased in syphilis skin (Figure 4C). To assess which
of the myeloid cell populations contribute to IL10, IDOI, TGFBI, and
PD-LI expression, we used feature plots to determine their expression,
with monocytes, M1-like macrophages, TREM2 macrophages, cDC2B

being the main contributors (Figure 4E).

Immune crosstalk in syphilis lesions is
characterized by diminished intercellular
communications in the epidermis and
altered differentiation

To picture the intercellular interactions in secondary syphilis,
ligand-receptor analysis was assessed using CellPhonedB (14).
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Distinct cell contributions to the inflammatory environment of secondary syphilis. (A) UMAP plot of the cells retrieved from secondary syphilis skin

biopsies and healthy controls showing the 15 subsets identified. (B) Proport

ions of the 15 cellular subsets (up) and the markers used for the

identifications (down). (C) Volcano plot of the upregulated (red) and downregulated transcripts with FC >2 or <-2, comparing syphilitic vs. healthy
skin. (D) Gene Set enrichment of the upregulated transcripts. (E) Gene set enrichment analysis of transcription factors in nine of the cell types using
ChEA 2022. S. syphilis, secondary syphilis. Significantly different transcripts with FDR<0.05. secondary syphilis (n=5) or controls (n=4).

Compared to healthy skin, where most interactions were confined
between keratinocyte subsets, syphilis lesions showed fewer inter-
keratinocyte interactions, with no apparent immune-epithelial
crosstalk (Figure 5A, B). Pathway analysis of the different subtypes of
keratinocytes showed that differentiation was altered in all subtypes of
keratinocytes concerning desmosome function and other adhesion-
related mechanisms (Figure 5C). Distribution of differentiation
markers showed a more robust expression of KRT10 and KRTI in
keratinized, cycling, and differentiated keratinocytes in syphilis lesions
compared to healthy skin (Figure 5D), with the expression of the major
antimicrobial peptides shifted (Figure 5E). The expression of KRT14,
was redistributed: higher expression in basal keratinocytes in syphilis
compared to healthy skin but lower in differentiated and keratinized
keratinocytes. Surprisingly, expression of KRT6C, a stress-related
keratin, was markedly diminished in syphilis samples compared to
healthy skin (Figure 5D), confirming the significant impact of the
infection on all keratinocyte subtypes.
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Fibroblasts exhibit a pro-inflammatory
state and shift towards immunoglobulin/
complement activation in syphilis
secondary skin lesions

Fibroblasts exhibited altered gene expression profile in syphilis
skin, including increased expression of various chemokines,
including the neutrophil chemokine CXCL8, Thl chemokine
CXCLI10, and CXCLI3 (Figure 6A), reflecting in enriched
inflammatory pathways such as neutrophil chemotaxis, response
to type II IFNs, and defense response to a bacterium (Figure 6B).
Further analysis of the outgoing communication pattern showed
that myeloid and endothelial cells were part of a broad interaction
web, including cycling keratinocytes and other immune cell subsets
(Figure 6C). The incoming communication patterns showed that
myeloid and T cells shared similar interactions with fibroblasts and
cycling keratinocytes that is absent in healthy skin. Next, given the
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hallmark B and plasma cell infiltration in syphilis lesions, we
focused on complement and immunoglobulin-related interactions
to determine if those could be a driver of the immune-stromal
crosstalk in the host response to T. pallidum. Thus, a marked
increase was observed in stromal-immune interactions in syphilis
skin, with fibroblasts, endothelial cells, and pericytes being a
significant source of complement components as well as
expressing receptors for plasma cell-derived immunoglobulins
(Figure 6D, E). This suggests that a major feature of immune-
stromal crosstalk in syphilis secondary skin lesions is centered
around immunoglobulin/complement activation.

Intact T. pallidum inhibits innate immune
responses in PBMCs while sonicated
bacteria trigger an inflammatory response

Secondary syphilis is a systemic phase of the disease in which
treponemes disseminate from the primary chancre to virtually all
bodily organs. How T. pallidum escapes the innate and adaptive
immune responses is only partially understood. Therefore, we
exposed human PBMCs to live or sonicated T. pallidum and
collected exposed cells after 6 hours for bulk RNA analysis
(Figure 7A). Transcripts that were dysregulated (FDR<0.05) were
used for enrichment analyses. Transcripts upregulated ((Log2
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FC>=1) after 6 hours of exposure to sonicated T. pallidum vs.
baseline (n=83) belonged to chemokine and neutrophils-related
pathways, with IL-10 and negative regulation of IL-12 among the
top-upregulated signatures (Figure 7B). Notably, only 24 transcripts
were selectively upregulated in PBMCs exposed to live intact T.
pallidum, with Neutrophil Degranulation (p=0.0009) and Innate
Immune System (p=0.02975) significantly enriched. Although
intact T. pallidum did not trigger strong immune responses in
PBMCs downregulated transcripts (Log2 FC<-1) encompassed
neutrophil-related pathways and chemotaxis, indicating that
intact T. pallidum bacteria selectively inhibit immune responses
within 6 hours of contact. Comparing the 6 hours—exposed samples
with one another, the sonicated bacteria elicited a strong
upregulation of CXCL8, CXCLI, CXCL3, and CCL4 (Figure 7C, D).

Human keratinocytes respond to
T. pallidum with activation of interferon
responses dependent on MyD88

Skin microabrasions can be an entry site for syphilis and is one of
the sites of manifestation of secondary syphilis, where T. pallidum can
frequently be found in the space between keratinocytes. To provide a
cleaner view of the skin-specific reaction to the earliest events upon
skin penetration, we exposed keratinocytes to T. pallidum, either live
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Myeloid cell function in secondary syphilis inflammatory responses. (B) UMAP plot restricted to 2,278 myeloid cells, with (C) comparison of the cell
proportion between healthy skin and secondary syphilis and (D) the markers used to classify the myeloid cell markers. (A) violin plots of transcripts
involved in regulatory immune responses in the major cell clusters. (E) UMAP plots of single markers expression in myeloid cells relevant to

regulatory immune responses.

or sonicated. The number of downregulated transcripts (Log2 FC<-1,
FDR<0.05) after 6 hours of exposure surpassed the upregulated ones
(Log2 FC>1, FDR<0.05) (Figure 7E) with 421 upregulated transcripts
and 764 downregulated. In the cells exposed to the sonicated bacteria,
298 upregulated transcripts were identified and 701 were
downregulated. No strong proinflammatory signals were generated,
and pathway analysis of upregulated transcripts identified type I
interferon as the main common pattern of response between intact
and sonicated bacteria (Figure 7F). When reproducing the
experiment using keratinocytes knocked out for MyD88, a
downstream effector of IL-1/TLR signaling, the inflammatory
responses were absent, indicating a TLR-dependent mechanism of
detection of treponemal cells in keratinocytes (Figure 7G), as
previously published (16-18).

Discussion

Our data provide some insights into the mechanisms involved
and the sequence of events that drive the unique histological
features of secondary syphilis, including the rich B- and plasma
cell infiltrates. It sheds light on the ability of T. pallidum to invade
and multiply in the skin and mucosa that is crucial to its
contagiousness and also generates hypothesis regarding how the
bacteria evades immune response and establishes latency.
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A striking finding of this work was the response of epidermal
keratinocytes to T. pallidum. Overall, the keratinocyte response to
both live and sonicated T. pallidum were more modest than those of
PBMCs. Our data confirm the dependence of keratinocyte immune
responses to T. pallidum on MyD88. MyD88 is downstream of both
IL-1/IL-36 and TLR responses (19, 20). Our findings align with
others on the role of MyD88 in response to T. pallidum, particularly
flagellin, in both keratinocytes (21) and PMBCs (22), and further
supports the role of TLR signaling in response to syphilis infection
(23, 24), which likely involves TLR2 and TLR5 responses, as shown
by others (22, 24, 25). Notably, one of the most marked features
observed in the single-cell sequencing data was the effect of syphilis
infection on desmosome organization and epithelial cell-to-cell
adhesion. Desmosomes play a crucial role in providing
intercellular junctions that provide adhesions between cells to
provide mechanical strength to the epidermis and skin barrier
functionality (26, 27). T. pallidum can be identified in both the
epidermis and dermis of secondary syphilis lesions (28), and these
lesions are believed to be contagious by direct contact. Our data
suggest that the spread of T. pallidum may be facilitated by these
changes in adhesion structures in the epidermis, and this may be
one of the mechanisms by which the bacterium promotes
dissemination, although the exact mechanisms by which T.
pallidum induces these changes in differentiated epidermis require
further study.
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FIGURE 5

Shifts in cell-cell interactions in syphilis compared to healthy skin. (A, B) Heatmap of the number of ligand/receptor pairs with a higher score in
secondary syphilis compared to normal skin among all the cell types identified. The ligands were expressed by the cell types in the row, and the
receptors were expressed by the cell types in the column. The color scale represents the number of ligand/receptor pairs. (C) Gene-enrichment
analysis using GO BP focused on downregulated transcripts in all keratinocyte cell subsets and upregulated transcripts in keratinized keratinocytes.
(D) Violin plots of transcripts markers of keratinocyte differentiation and (E) of transcripts from genes coding for antimicrobial peptides.

Another important finding from our study is the characterization
of the broad and mixed inflammatory responses we observe in
secondary skin lesions. Secondary syphilis has been termed the
“great masquerader” because its skin lesions show such diverse
clinical and histological morphologies mimicking a broad range of
inflammatory skin diseases (28). Our data confirm the broad immune
activation in skin with both enriched anti-inflammatory mechanisms,
involving IL-10, and pro-inflammatory stimuli mediated by TNF and
TLR responses, type I and type II IFN responses, enriched Th2 and
Th17 responses, along with neutrophil activation, B-cell chemotaxis,
plasma cell activation, and enriched IgG/complement responses.
Notably, even in light of T-cell phenotype, we see broad ranges
overlapping with as diverse transcriptomic disease patterns as
systemic lupus erythematosus (SLE), asthma, and pulmonary
tuberculosis in CD4+ T cells, and acne, SLE, and sarcoidosis in
CD8+ T cells from syphilis skin. Thus, it can be speculated that
different balances between the effector immune cells in syphilis skin
can lead to dramatically different clinical manifestations despite the
same underlying disease mechanisms.

As described before, the inflammatory infiltrate in syphilis is
very localized, involving complex lymphoid-like collections that
often surround the superficial blood vessels in the skin. The
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presence of tertiary lymphoid structures (TLS) in secondary
syphilis has been suggested (8), and may contribute to the
progression of immune responses in skin. The increased CXCL13
mRNA expression we detected aligned with increased infiltration of
CXCR5+ cells, but CXCR5 can be seen on B cells, Tth cells (29, 30),
and follicular dendritic cells (31, 32). Our data is also consistent
with an inflammatory network characterized by the production of
immunoglobulins and complement components. While plasma
cells are the source of both IgG and IgA antibodies, other cell
types, particularly stromal cell types, contributed both as potential
targets of the IgA antibodies through Fc receptor expression or
expression of various complement components or receptors.
Circulating immune complexes that contain treponemal antigen
together with antibody and complement have been shown to be
active in secondary syphilis (33-36).

Moreover, our data may provide some indications by which T.
pallidum may evade clearance. Previous work has suggested that T.
pallidum displays several strategies for immune evasion. This
includes their slow growth (36-44 hour generation time), antigenic
variation, and the paucity of surface-exposed antigens on the
pathogen outer membrane, which shields highly immunogenic/
immunodominant sub-surface antigens such as lipoproteins and
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Fibroblasts and Immune-stromal interactions in secondary syphilis. (A) Volcano plot of the upregulated (red) and downregulated transcripts in
fibroblasts, with fold change >2 or <-2, comparing fibroblasts in samples from syphilis patients and healthy controls. Significantly different transcripts
with p<0.05. (B) Gene-enrichment analysis using the GO biological process (BP), focused on upregulated transcripts in fibroblasts. (C) Comparison
of each cell subset's incoming and outcoming communication patterns in samples from secondary syphilis and healthy skin. (D, E) Circos plot of
ligand—receptor pairs restricted to complement and immunoglobulins, in healthy (left) and secondary syphilis (right).
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flagellar components, which delays the initial host response (5). The
presence of this outer membrane explains our findings of stronger
immune responses triggered by the sonicated bacteria than intact
ones. However, “active inhibition” of the immune system could be
witnessed after exposing PBMC:s to live T. pallidum, which could not
be explain by a lack of detection of surface antigens. Indeed, other
mechanisms are suggested in the literature and include interference
with immunosuppressive or immunomodulatory mechanisms such
as IL-10 or TGF-B. T. pallidum-specific antigens have been shown to
promote IL-10 production and TGF-B in monocytes (37), which is
consistent with our data showing that expression of genes involved in
IL-10 signaling is significantly altered in secondary skin lesions. Other
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mechanisms that could contribute to this and suggested in our
data include the altered keratinocyte differentiation and relative
paucity of antimicrobial responses, which may limit the local
bacterial clearance (38). Also, the differences between sonicated and
intact bacteria could depend on the inactivation of heat-sensitive
proteins, as described in Treponema denticola (39). Lastly, myeloid
cells may also contribute through mechanisms involving IDO,
TGFBI, or PD-LI, which were all dramatically upregulated in
syphilis, with each one providing a potential mechanism
contributing to immune evasion.

Several limitations should be acknowledged. First, the number
of samples that were analyzed with single-cell RNA sequencing is
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low, and the cellular composition of the paraffin-embedded tissue
might not reflect all cell types actually present in the skin at the time
of the biopsy collection. However, quality control reached satisfying
levels and many different cell types were identified. Also, the body
sites of the skin biopsies for the single-cell sequencing were more
heterogenous in patients compared to the healthy controls that were
taken from the hip. Additionally, patients were all male whereas the
majority of controls were female. While this could have contributed
to some of the differences identified in the data, we think it is
unlikely to have a major impact on our findings. Finally, monolayer
cultures of keratinocytes are not as physiological as actual
human skin tissue, but allowed for a first characterization of
the keratinocytes responses to T. pallidum in both WT and
KO keratinocytes.

In conclusion, our data highlight the broad and mixed
inflammatory patterns in syphilis secondary skin lesions and
emphasize how this disease is an excellent model for studying

Frontiers in Immunology

host-pathogen interactions. Our data provide insights into some
of the mechanisms by which syphilis may evade immune
responses as well as those that may facilitate transmission

through the skin.
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