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PI3K/Akt in IPF: untangling
fibrosis and charting therapies
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Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive lung disease

characterized by abnormal epithelial repair, persistent inflammation, and

excessive extracellular matrix deposition, leading to irreversible scarring and

respiratory failure. Central to its pathogenesis is the dysregulation of the PI3K/

Akt signaling pathway, which drives fibroblast activation, epithelial-mesenchymal

transition, apoptosis resistance, and cellular senescence. Senescent cells

contribute to fibrosis through the secretion of pro-inflammatory and

profibrotic factors in the senescence-associated secretory phenotype (SASP).

Current antifibrotic therapies, Nintedanib and Pirfenidone, only slow disease

progression and are limited by side effects, highlighting the need for novel

treatments. This review focuses on the role of PI3K/Akt signaling in IPF

pathogenesis, its intersection with inflammation and fibrosis, and emerging

therapeutic approaches targeting molecules along this pathway.
KEYWORDS

idiopathic pulmonary fibrosis, PI3K/AKT, inflammation, fibrosis, senescence, PI3K
inhibitor, PI3K inhibition
1 Introduction

Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive fibrosing interstitial

pneumonia of unknown origin, characterized by a progressively worsening dyspnea and

declining lung function (1, 2). It is a fatal age-related disorder, predominantly occurring in

males, with a median survival age of 2-5 years after diagnosis (3, 4). Although considered

rare, existing data indicates that the global occurrence of IPF rivals several cancer types,

including stomach, liver, testicular, and cervical cancers (5), with approximately 40,000

new cases diagnosed annually in Europe alone (6), and its incidence doubling with each

successive decade after the age of 50. The fatality of the disease, combined with its

increasing prevalence and the subsequent strain on healthcare resources, highlights the

urgency of addressing IPF treatment.

Historically, IPF was understood to be an inflammation driven disease that eventually

progressed to fibrosis. However, this concept was challenged by two pivotal clinical trials. The

first, INSPIRE, found that patients treated with Interferon-g did not experience significant

clinical benefits. The second, PANTHER, evaluated a combination of three

immunosuppressive agents (prednisone, azathioprine, and N-acetylcysteine) and revealed

increased risks of death and hospitalization compared to placebo. (1, 7). These trials marked a
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paradigm shift in our understanding of IPF, suggesting that fibrosis,

rather than inflammation, is central to IPF pathophysiology. Fibrosis

in IPF is characterized by fibroblast activation, excessive collagen

deposition, leading to the distortion of lung architecture and

impaired gas exchange (Figure 1). This fibrotic process is driven by

the aberrant activation of fibroblasts and myofibroblasts, which

secrete collagen and other extracellular matrix proteins, resulting in

the thickening and stiffening of the lung tissue. In the context of these

findings, two antifibrotic therapies, Nintedanib and Pirfenidone, have

been developed and approved for the treatment of IPF (8, 9).

However, these drugs only slow down disease progression (10) and

up to 40% patients discontinue treatment citing gastrointestinal,

dermatological or liver-associated adverse drug reactions (11).

Hence, lung transplantation remains the last resort for IPF patients,

which is impractical for a majority of cases, considering factors such

as age and comorbidities (4).

At a molecular level, the transition from inflammation to

fibrosis as the focus of IPF research was further substantiated by

studies that identified key signaling pathways involved in

fibrogenesis (12). Among these, the PI3K/Akt pathway is involved

in vital cellular processes such as survival, growth, proliferation,

metabolism, apoptosis and angiogenesis. PI3Ks are lipid kinases

divided into three classes – Class I, Class II and Class III. In

mammalian cells, Class I PI3K catalytic subunits catalyze the

phosphorylation of PtdIns-4,5-P2 (PIP2) to generate PtdIns-3,4,5-

P3 (PIP3). Upon phosphorylation, PIP3 recruits two pleckstrin

homology domain-containing kinases: the serine threonine

kinase, Akt, and phosphoinositide-dependent kinase 1 (PDK-1).
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Akt undergoes conformational changes on direct binding to PIP3,

exposing two of its amino acid sites, serine 473 and threonine 308,

for phosphorylation by mammalian target of rapamycin complex 2

(mTORC2) and PDK1, respectively (13, 14). Once fully activated,

Akt readily phosphorylates its downstream effectors such as

mammalian target of rapamycin (mTOR), nuclear factor-kB (NF-

kB), and p70 ribosomal protein S6 kinase (p70S6K), contributing to

various cellular processes. PI3K/Akt signaling mediates key cellular

functions such as proliferation and survival, bridging the

mechanistic overlap between tumorigenesis and fibrotic

progression of IPF. Understanding its regulation and potential for

therapeutic targeting is critical to advancing IPF research and

treatment strategies. Therefore, this review focuses on the role of

the PI3K/Akt pathway in IPF pathogenesis, examining its

multifaceted interactions and elucidating how dysregulation

within this signaling axis contributes to the progression of fibrotic

lung disease. Additionally, the review explores existing and

emerging therapeutic avenues targeting key molecules along the

PI3K pathway, discussing novel exploratory strategies for

IPF treatment.

2 The PI3K/Akt signaling pathway:
senescence, fibrosis and the PI3K
signaling nexus

The PI3K/Akt signaling axis integrates key processes of cellular

senescence, linking hallmark features of aging—such as telomere
FIGURE 1

Pathophysiological mechanisms underlying Idiopathic Pulmonary Fibrosis. Created in BioRender. Ghigo, A. (2025) https://BioRender.com/2jn4ve5.
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attrition, mitochondrial dysfunction, and impaired autophagy—to

the molecular pathways underlying IPF pathogenesis. The

association between IPF and aging is evidenced by the

characteristic features of aging that are also observed in IPF,

including impaired autophagy, DNA damage, mitochondrial

dysfunction and telomere attrition. Telomere shortening triggers

senescence, and is also an important risk factor for IPF, particularly

familial IPF (15). Mutations in hTERT or hTR result in shorter

telomeres and this telomere attrition in murine alveolar epithelial

type 2 cells (AEC), but not mesenchymal cells, has been shown to

promote fibrosis (16, 17). Lung fibroblasts from IPF patients also

exhibit a senescent phenotype characterized by shorter telomeres

and mitochondrial dysfunction (18). However, cellular senescence

typically serves as a protective mechanism by limiting excessive cell

proliferation, hence its role in promoting fibrosis in IPF appears

paradoxical. Studies have shed light on the mechanisms through

which senescence contributes to fibrosis. (19, 20). Telomere

shortening exacerbates AEC dysfunction, while mitochondrial

impairment and increased reactive oxygen species (ROS) drive

the activation of pathways such as PI3K/mTOR. In the context of

aging and IPF, reduced or lost PTEN expression induces Akt-

dependent alveolar epithelial senescence (21). Akt hyperactivation

drives apoptosis resistance and mTOR activity leads to inhibition of

autophagy, factors which are necessary for fibrogenesis (22). This

process leads to the upregulation of senescence markers including

senescence-associated b-galactosidase, p21, p16, and p53, along

with the emergence of a senescence-associated secretory

phenotype (SASP). SASP is characterized by the secretion of pro-

inflammatory and pro-fibrotic cytokines, including interleukin-6

(IL-6), interleukin-8 (IL-8), and TGF-b.
The emergence of SASP, driven by upregulated senescence

markers, has been closely linked to PTEN loss and Akt

hyperactivation to senescence, as demonstrated in bleomycin-

induced models where Akt2 knockdown mitigated the senescence

phenotype (21). In IPF, AEC are particularly prone to this senescent

phenotype due to persistent PI3K/Akt activation in the absence of

adequate PTEN function (21, 23, 24). Although SASP production

occurs in both fibroblasts and AECs, it is the SASP from AECs that

appears to be critical for the progression of fibrosis. This

dysfunctional feedback loop of senescence, SASP production,

PI3K signaling mediated fibroproliferation and apoptosis

resistance, ultimately accelerates fibrosis, making the PI3K/Akt

axis a critical target for therapeutic intervention in IPF by

addressing the underlying mechanisms of senescence and fibrosis

(15, 24, 25).
2.1 The effectors upstream of PI3K/Akt and
their roles in IPF

Upstream and downstream effectors of the PI3K/Akt signaling

pathway drive IPF progression, mediating the interplay between

pro-fibrotic stimuli and cellular responses. Upstream, growth

factors and cytokines such as TGF-b, PDGF, and VEGF

aberrantly activate the pathway, driving processes like fibroblast
Frontiers in Immunology 03
proliferation and extracellular matrix production. Downstream,

PI3K/Akt signaling regulates key effector mechanisms, including

myofibroblast differentiation, epithelial-mesenchymal transition

(EMT), and metabolic reprogramming, which together perpetuate

the fibrotic environment. Understanding these interactions reveals

how dysregulated PI3K signaling orchestrates IPF pathogenesis.

In IPF, damaged alveolar epithelial cells, alveolar macrophages

and fibroblasts release profibrotic cytokines such as TGF-b, Platelet-
Derived growth factor (PDGF), Connective Tissue Growth Factor

(CTGF) Vascular Endothelial Growth Factor (VEGF), and

fibroblast growth factor (FGF) which aberrantly stimulate the

PI3K/Akt pathway (26–28), hence perpetuating the cycle of injury

and dysregulated repair. PDGF, a key target of Nintedanib, plays a

critical role in stimulating fibroblast proliferation and collagen

deposition via the PI3K/Akt pathway (29). TGF-b is the primary

orchestrator of lung fibrosis, driving fibroblast activation,

differentiation, and Extra Cellular Matrix (ECM) deposition.

TGF-b also activates CTGF expression by primary AECs (30),

which further stimulates EMT and upregulates ECM deposition.

CTGF in turn induces activation of TGF-b as well as VEGF in a

positive feedback loop (30, 31). This loop can be broken by CTGF

inhibition, but CTGF expression by type 2 AECs and active

fibroblasts is more prominent in the early stages of fibrosis and

reduced in the later stages (32). This could explain why a phase 3

study of a CTGF inhibitor, Pamrevlumab, showed no clinical

benefits compared to placebo (33). Apart from its direct effect on

CTGF, TGF-b, increases hypoxia-inducible factor-1a (HIF-1a)
expression via Smad signaling, thereby upregulating VEGF gene

expression (34, 35). Akt activation also induces the upregulation of

HIF-1a expression, which subsequently increases VEGF levels,

promoting angiogenesis (36). Growth factors play a complex and

sometimes isoform-specific role in fibrosis, with certain variants

promoting fibrotic responses while others exhibit antifibrotic

properties. For instance, VEGF165b has been shown to inhibit

fibrosis, in contrast to VEGF165a, which promotes fibrotic

processes (37, 38), implying that a more isoform-specific

approach is required to yield substantial clinical benefits.

Similarly, FGF was traditionally considered profibrotic, but newer

findings suggest a preventative and therapeutic role. FGF1

attenuates TGF-b1 induced fibrosis by decreasing e-cadherin

expression and inhibiting myofibroblast differentiation (39), FGF2

suppresses collagen production and fibroblast differentiation (40)

while FGF7 and 10 improve lung repair and prolong survival in

mouse models (41).

Growth factor activation of PI3K promotes cell survival, but

PTEN counterbalances it by dephosphorylating PIP3 to inhibit Akt

(42). Myofibroblasts extracted from IPF biopsies show reduced

PTEN expression alongside Akt upregulation, and in bleomycin-

induced mouse models, PTEN deficiency has been shown to

exacerbate fibrosis, resulting in a 55% increase in collagen content

compared to wild-type mice (43, 44). PTEN suppression and

aberrant activation of Akt can result in decreased autophagic

activity, creating an environment that promotes fibroblast

proliferation and apoptosis resistance. When IPF fibroblasts

interact with type I collagen—a major component of the ECM in
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fibrotic tissues— Akt activity remains high while autophagy

markers, such as LC3-II, are suppressed (45–47).
2.2 The effectors downstream of PI3K/Akt
and their roles in IPF

A recent groundbreaking study in fibroblast lineage tracing

identified a fibrotic fibroblast subset and two distinct inflammatory

fibroblast subsets that drive both fibrosis and chronic inflammation.

The fibrotic fibroblasts, marked by high Collagen Triple Helix

Repeat Containing 1 (CTHRC1) expression, are central to active

fibrotic foci and serve as the predominant producers of collagen and

extracellular matrix (ECM) components, thereby driving fibrosis.

The inflammatory fibrotic subset 1 localizes near the fibrotic foci,

while inflammatory fibrotic subset 2 resides within the fibrotic foci,

toward the interstitial side (48, 49). The PI3K/Akt signaling

pathway has been shown to promote persistent fibrosis by driving

apoptosis resistance and fibroblast proliferation, suggesting that this

pathway may contribute to the maintenance and expansion of the

fibrotic fibroblast population. Downstream of PI3K/Akt, Akt

phosphorylates and inactivates FOXO3a, impairing its ability to

regulate apoptosis, thereby allowing fibroblast accumulation and

transition into myofibroblasts, further exacerbating fibrosis (50–

52). While CTHRC1-expressing fibrotic fibroblasts are central to

fibrosis progression, Tsukui et al. demonstrated that eliminating

this population alone was insufficient to attenuate fibrosis,

highlighting the involvement of additional fibroblast subsets.

Beyond fibroblast proliferation, fibrosis progression also involves

epithelial remodeling through epithelial-mesenchymal transition

(EMT), a key process in which epithelial cells lose their identity

and acquire mesenchymal traits, further contributing to the

expansion of pro-fibrotic fibroblast populations. EMT is

characterized by the loss of epithelial markers like E-cadherin and

upregulation of mesenchymal markers such as a-smooth muscle

actin (a-SMA), vimentin, and fibronectin (53). Akt promotes EMT

by activating transcription factors like Snail, ZEB1/2, Twist, and

LEF-1, which repress E-cadherin and induce mesenchymal marker

expression (54). Akt also phosphorylates GSK3-b, preventing b-
catenin degradation. This stabilizes and translocates b-catenin to

the nucleus, driving EMT-associated gene transcription (55, 56). In

vivo, Akt1−/− mice show resistance to hypoxia-induced pulmonary

fibrosis, directly linking Akt inhibition to reduced fibroblast activity

and apoptosis resistance (57). Considering that EMT-derived

fibroblasts may also contribute to the fibrotic fibroblast pool, the

PI3K/Akt axis appears to play a central role in sustaining fibrotic

fibroblast populations through both direct fibroblast proliferation

and EMT-driven mesenchymal transition.
3 PI3K/Akt signaling based strategies
to treat IPF

Over the past two decades, extensive clinical trials have aimed to

identify effective treatments for IPF. However, most investigational
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therapies have failed to demonstrate significant efficacy,

highlighting the complex and challenging nature of this disease

(58, 59). This challenge arises in part from the poorly understood

mechanisms driving IPF progression and the difficulty of reversing

established fibrosis. Current approved therapies, Pirfenidone and

Nintedanib, offer some benefit in slowing disease progression but

are far from optimal in halting or reversing the fibrotic processes.
3.1 Commonalities between lung cancer
and IPF

IPF and non-small cell lung cancer (NSCLC) share molecular,

cellular, and genetic similarities, including mutations in genes like

p53, KRAS, and p21. Shared genetic predispositions, such as

mutations in SFTPA1 and SFTPA2, lead to endoplasmic

reticulum stress, impaired protein secretion, and apoptosis,

driving fibrosis in IPF and tumorigenesis in lung cancer. Both

diseases exhibit epigenetic changes, such as deregulated noncoding

RNAs like miR-21, and involve common processes like EMT and

apoptosis resistance. Abnormal activation of pathways like Wnt/b-
catenin and PI3K/Akt further contributes to metaplasia,

hyperproliferation, fibrosis, and tumor growth (60–62).The PI3K/

Akt pathway is central to both diseases, promoting cell survival,

proliferation, and resistance to apoptosis in NSCLC, and driving

fibroblast proliferation, ECM deposition, and apoptosis resistance

in IPF. Its influence on EMT, a shared process in fibrosis and

cancer, facilitates epithelial marker loss and mesenchymal trait

acquisition, fueling fibrosis and tumor invasion.

Despite these overlaps, IPF differs from cancer as it lacks

monoclonality and metastatic potential. Cancer often begins in

one organ and spreads, while IPF is a bilateral disease from early

stages (63, 64). These differences necessitate tailored treatment

strategies for IPF. Drugs like Nintedanib, originally developed for

cancer, target pathways common to fibrosis and tumorigenesis,

slowing disease progression in both NSCLC and IPF. Similarly,

Pirfenidone inhibits EMT and tumor stroma, addressing fibrosis

and cancer metastasis. However, both treatments have dose-

limiting toxicities, highlighting the urgent need for new therapies

in IPF.
3.2 PI3K/Akt/mTOR inhibitors to target IPF

Based on the overlapping metabolic profiles of IPF and lung

cancer, Omipalisib was the first PI3K/mTOR inhibitor originally

developed for solid tumors, and later repurposed for IPF.

Pharmacokinetic studies with Omipalisib showed a decrease in

glucose uptake and an acceptable tolerability profile; however,

patients also experienced adverse events like gastrointestinal

disturbances and hyperglycemia, which are consistent with the

expected toxicities of PI3K/mTOR inhibition (65, 66). These

findings highlight the therapeutic promise of PI3K/mTOR

inhibitors for IPF while emphasizing the need for safer alternatives.
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3.2.1 Repurposed PI3K/mTOR inhibitors
Prior to Omipalisib, Everolimus, a selective mTORc1 inhibitor, was

tested in 89 IPF patients but worsened disease progression, possibly due

to its partial inhibition of 4E-BP1, a key driver of TGFb1-induced
collagen production (67, 68). Newer dual mTORc1/mTORc2

inhibitors, such as Sapanisertib and Vistusertib, have shown promise

in reducing TGF-b1-induced EMT, fibrosis markers, and

proinflammatory cytokines like tumor necrosis factor-alpha (TNF-

a), interleukin-1 beta (IL-1b) and interleukin-6 (IL-6)in preclinical

models (69–71). Their clinical success, however, depends on balancing

efficacy and safety, a challenge for PI3K/mTOR inhibitors. Current

limitations of mTOR inhibitors suggest a need for better selectivity and

targeted delivery. A key question that remains unaddressed in IPF is

whether isoform selective PI3K inhibition, such as with drugs like

Alpelisib that selectively target PI3Ka, could provide improved clinical

benefits. If isoform-specific inhibition is sufficient to halt fibrosis

progression, a PI3Ka degrader like WJ112-14, which selectively tags

the alpha isoform for degradation, could offer greater efficacy over

reversible kinase inhibition by ensuring sustained depletion of PI3Ka
levels, although this remains to be clinically validated (72). Notably, a

dual PI3K-d/g inhibitor, Duvelisib, indicated for Chronic Lymphocytic

Leukemia, was recently shown to attenuate fibrosis in vivo and in vitro

(73). Although these findings are clinically relevant, delivery, dosage

and toxicity remain key considerations given the heterogenous nature

of this disease. In contrast to isoform-specific inhibition, a first-in-class

pan-PI3K and dual mTORc1/mTORc2 inhibitor, Gedatolisib, was

shown to have superior potency and efficacy over alpelisib,

capivasertib (AKT inhibitor), and everolimus in breast cancer cell

lines. Currently, a global combinatorial phase 3 study with Gedatolisib

is underway for patients with HR+/HER2− ABC mutations (74). The

results of this trial may inform future studies exploring the potential of

pan-PI3K/dual mTOR inhibitors in the treatment of IPF.

3.2.2 Novel PI3K/mTOR inhibitors
While drug repurposing remains a promising strategy,

significant advancements have also been made in developing

novel PI3K/mTOR inhibitors designed specifically for IPF

pathophysiology. These drugs provide unique mechanisms of

action and modes of administration, which could potentially

leading to greater clinical benefits over existing drugs. Campa

et al. developed KITCL27, as an inhalation-based prodrug pan-

PI3K inhibitor designed to be activated only after hydrolysis inside

target cells. Preclinical studies of KITCL27 in bleomycin-induced

mouse models showed that inhaled CL27c effectively reduced lung

fibrosis by decreasing collagen deposition and downregulated key

pro-fibrotic markers, including TGF-b1, CTGF, Collagen type I

(Col1a1), and matrix metalloproteinase-2 (MMP2) (75). Another

innovative approach to PI3K inhibition was the development of

FAPL-PI3Ki1 by Hettiarachchi et. al., which is a PI3K inhibitor

conjugated to a ligand that targets fibroblast activation protein

(FAP), a protein exclusively expressed by collagen-producing

myofibroblasts. This FAPL-PI3Ki1 demonstrated reduced collagen

deposition, decreased the expression of fibrotic markers such as a-
SMA and Col1A1, and improved survival in bleomycin-induced

mice (76).
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3.2.3 Akt inhibitors
Considering the ineffectiveness of existing drugs, the toxicity of

PI3K inhibitors and the role of Akt hyperactivation in fibrosis

progression, targeting Akt through pharmacological inhibition

offers a new therapeutic approach for IPF. Given the extensive

research and development that has already been conducted on Akt

inhibitors for cancers, their pharmacokinetics, safety profiles, and

molecular interactions are well understood, making them strong

candidates for repurposing in IPF (Table 1) (57, 77). Notably, Akt

inhibitors like Triciribine and MK-2206 have already been tested in

bleomycin-induced mouse models of IPF (78, 79) supporting their

use and development for IPF.

Similar to oral PI3K inhibitors, the development of Akt

inhibitors faces challenges due to adverse effects such as diarrhea,

nausea, and skin rashes, as observed in clinical trials for solid

tumors. ATP-competitive inhibitors like ipatasertib and

capivasertib struggle with selectivity issues within the AGC kinase

family, leading to off-target effects. In contrast, allosteric inhibitors

that bind to the Pleckstrin Homology domain of Akt offer greater

specificity for Akt. However, these allosteric inhibitors have shown

limited clinical efficacy and require optimization before they can be

considered viable options for IPF treatment.

3.2.4 Akt degraders
A novel alternative to pharmacological inhibition of Akt is to

reduce intracellular Akt levels via protein degradation. This strategy

has led to the development of Akt degraders, which are proteolysis

targeting chimeras linked to Akt inhibitors. INY-03-041 is a pan-

Akt degrader that combines GDC-0068, a pan-Akt inhibitor, with

Lenalidomide, an immunomodulatory drug that recruits Cereblon

(CRBN) and brings it into close proximity to Akt. CRBN acts as a

substrate adaptor, guiding Akt to the E3 ubiquitin ligase complex,

where Akt is tagged with ubiquitin and subsequently degraded by

the proteasome (80, 81). To date, there are only a handful of Akt

degraders currently under development for solid tumors, including

INY-03-041, MS21, MS143 and MS5033. Although they are yet to

be repurposed for clinical studies in IPF, Akt degraders exhibit a

longer half-life and a more prolonged pharmacological effect

compared to their constituent Akt inhibitors alone (81), which

could provide added benefits in terms of dose reduction. However,

the on-target toxicities already observed with pharmacological AKT

inhibitors, combined with the increased potency of AKT degraders

suggest that AKT degraders may have a smaller therapeutic

window. Therefore, it will be critical to explore dosages to achieve

a balance between safety and efficacy for both, cancers and IPF.
3.3 Targeting other mediators along the
PI3K/Akt pathway

Since the approval of Nintedanib, several tyrosine kinase

inhibitors have been repurposed for IPF with mixed outcomes.

Imatinib, a PDGFR and TGF-b inhibitor, was discontinued due to

lack of clinical benefits (82). Pamufetinib, a VEGFR, PDGFR, and

HGFR inhibitor, showed acceptable safety in a phase 2 trial (83).
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Similar to Nintedanib, Pamufetinib also inhibits both PDGFR-a
and PDGFR-b (29), however, the targeted inhibition of PDGFR-b
but not PDGFR-a attenuates fibrosis (84) in bleomycin-treated

mice. Additionally, some tyrosine kinases like VEGFR and FGFR

exhibit isoform-specific, context-dependent profibrotic or

antifibrotic effects which make growth factor inhibition

increasingly complex.

TGF-b remains a key therapeutic target upstream of PI3K/Akt,

though its inhibition poses challenges due to adverse effects,

including heart valve lesions and skin cancers (85–87). Indirect

approaches like integrin inhibition with Bexotegrast, a dual avb6/
avb1 inhibitor, have shown promise, reducing lung function

decline in a phase 2 study with no severe adverse events (88).

Longer and larger clinical trials are awaited to conclude positive

clinical outcomes. Another novel strategy to indirectly inhibit TGF-

b signaling involves targeting lysyl oxidase–like 2 (LOXL2), an

enzyme restricted to fibroblasts. Inhibition of LOXL2 enzymatic

activity induces its auto-oxidation, leading to the creation of a

metabolite that directly inhibits TGF-b receptor I (TbRI) kinase

(89). Although TGF-b is the main driver of fibrosis, in vivo deletion

of TGF-b is shown to exacerbate inflammation, hence it is crucial to

consider drug design, dosage and strategies for targeting TGF-b.
Downstream of PI3K/Akt/mTOR, drugs targeting NFkB, GSK-3b
(90) and p706Sk have been developed, though not all have been

tested in IPF models (91). Specifically, ACT001, an NFkB inhibitor,

was the latest of NFkB inhibitors that demonstrated anti-fibrotic

activity in fibroblasts from IPF patients (92).
3.4 Senolytics in IPF

Despite the pervasive role of senescence in IPF, current

standard-of-care drugs have no effect on senescence markers in

IPF tissues (93), highlighting the possibility of a more direct

approach. Senolytics, a class of drugs targeting senescent cells,
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showed promising preclinical and early clinical trial results in IPF

patients (20). Quercetin attenuated bleomycin-induced pulmonary

fibrosis, by reducing senescence markers like p21 and SASP, and

inhibiting apoptosis resistance via modulating Akt activity (94). A

first-in-human study with Quercetin and Dasatinib demonstrated

selective senescent cell elimination, reduced markers, and modest

functional improvement, supporting their potential as IPF therapies

(95). Although, larger, randomized clinical trials are necessary to

further validate this data, given that mTOR inhibitors have also

directly demonstrated reduction in senescence markers, it would be

interesting to evaluate the effects of more diverse “senolytic

cocktails” targeting both senescence and fibrosis. Senolytics may

also complement PI3K inhibitors, offering a synergistic approach to

disrupt the profibrotic cycle. Furthermore, other classes of anti-

senescence drugs, including SASP inhibitors and drugs targeting

senescent pathways such as Navitoclax could be included in these

drug cocktails to develop newer therapies. Considering that

shortened telomeres are linked to higher risks of IPF, telomerase

activators such as TA-65 (96), which counteract telomere

shortening linked to IPF progression could be studied in IPF,

alone and in combination with inhibitors of PI3K/Akt.
4 Roadblocks of PI3K/Akt inhibition in
IPF and biomarker-driven solutions

The systemic toxicities of oral PI3K/Akt inhibitors, including

gastrointestinal effects, hyperglycemia, and skin rashes, have driven

next-generation approaches against the PI3K/Akt pathway such as

Akt degraders, inhalation-based drug delivery, prodrugs, and

fibroblast-specific conjugates to enhance target selectivity and

reduce adverse effects. However, whether such next-generation

drugs will not face the same challenges as older ones still needs

further clinical experimentation. Despite the promising

improvements in safety and efficacy offered by the new class of
TABLE 1 Summary of Akt inhibitors used as monotherapies for cancers, with the potential for repurposing in IPF.

Drug
Name

Original Indication
Mechanism
of Action

Relevance in IPF

Triciribine
Solid Tumors and
Hematological Malignancies

ATP-competitive
Akt inhibitor

In bleomycin-induced mouse models, Triciribine reduced pro-inflammatory cytokines
(TNF-a, IL-6) and fibrosis markers (TGF-b, collagen I).

MK-2206
Solid Tumors including non-small
cell lung cancer (NSCLC)

Allosteric
Akt inhibitor

In bleomycin-induced mouse models, MK-2206 reduced inflammatory cytokine release
(TNF-a, IL-6) and decreased ECM production in fibroblasts.

Perifosine Multiple Myeloma and Other Cancers
Allosteric
Akt inhibitor

In radiation-induced lung injury models, Perifosine inhibited the PI3K/Akt pathway in
Sox9-expressing lung epithelial cells.

Afuresertib Solid Tumors
ATP-competitive
Akt inhibitor

Clinical evidence required to study its use in IPF

Ipatasertib Prostate Cancer, Breast Cancer
ATP-competitive
Akt inhibitor

Further research needed to explore antifibrotic effects in IPF relevant models

Capivasertib Prostate Cancer, Breast Cancer
ATP-
competitive
inhibitor

Further research needed to explore antifibrotic effects in IPF relevant models

Uprosertib Solid Tumors including NSCLC ATP-competitive
Akt inhibitor

Further research needed to explore antifibrotic effects in IPF relevant models, could be
repurposed considering its effects in NSCLC
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mTOR inhibitors like Gedatolisib over existing drugs in breast

cancer (74), if repurposed to IPF, chronic PI3K inhibition may still

lead to unexpected compensatory activation of alternative pro-

fibrotic pathways such as Mitogen-Activated Protein Kinase

(MAPK) signaling (97). These pathway redundancies could be

addressed by Akt degraders like INY-03-041, which was initially

developed for oncology, and leverages short-term, high-intensity

therapy to achieve rapid systemic Akt depletion, suppressing tumor

growth. However, while cancer patients may tolerate these effects

during short-term therapy, IPF patients require long-term

treatment. These obstacles could be overcome by considering

newer routes of administration, intermittent dosing strategies and

biomarker detection to monitor early signs of toxicity and resistance

to treatment.

In addition to pre-existing issues, these therapeutics will also

face new challenges arising from their novelty, such as the inhaled

route of administration, prodrug formulations, or unique structures

like fibroblast-specific conjugates. Inhaled formulations could

enhance local drug bioavailability while minimizing systemic

toxicity, as shown by a clinical trial with inhaled pirfenidone (98)

but this would bring about inhalation-based challenges such as

limited biodistribution due to reduced airflow in areas of severe

fibrosis and reduced efficacy due to poor lung penetration. Next,

prodrug formulations are a promising approach for minimizing

toxicities, but they could generate highly reactive intermediates,

increasing the risk of adverse effects, such as DNA damage or

mitochondrial dysfunction. Drugs with unique conjugates in their

structures like FAPL-PI3Ki1, aim to restrict drug action to fibrotic

lung tissue by binding to FAP, whose expression is limited to lungs,

thus improving precision and reducing systemic toxicity. However,

FAP expression varies across different fibrotic foci and is not

uniformly upregulated in all myofibroblasts (99), potentially

leading to incomplete pathway inhibition, and subsequently, in

residual fibrosis progression despite treatment.

These challenges pose significant hurdles that could delay drug

development, but rather than obstacles, they should be seen as critical

checkpoints that refine the drug development strategy. Major

concerns such as target engagement, response to treatment,

resistance mechanisms, and toxicities related to PI3K inhibitors

could be better addressed with biomarker-driven patient

monitoring. In this regard, response and resistance biomarkers are

integral to future clinical trial design. IPF is a highly heterogeneous

disease with multiple pathogenic drivers, and the absence of PI3K

mutations suggests that its activation in IPF is more likely due to

signaling dysregulation rather than genetic alterations. Moreover,

disease progression is highly variable and some patients experience

acute lung function decline with rapid fibrosis, while others may

remain stable for years without significant deterioration. Thus IPF-

specific molecular biomarkers would facilitate classification of patient

subgroups most likely to benefit from therapies like PI3K inhibitors,

Akt degraders or senolytic cocktails. Considering trials with current

standard of care, for monitoring Pirfenidone efficacy, serum

surfactant protein (SP)-D, a protein released by damaged AECs is a

validated pharmacodynamic biomarker with limited prognostic

value, while SP-A and KL-6 have been tested as efficacy biomarkers
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for both Nintedanib and Pirfenidone in a single-center retrospective

study (100, 101). However, these biomarkers reflect alveolar epithelial

injury but do not capture PI3K/Akt-specific pathway activity or

therapeutic response. This makes it even more crucial to establish

biomarkers that specifically reflect PI3K/Akt pathway activation and

response to inhibition.

Some biomarkers used to assess PI3K inhibitors in cancer could

potentially be translated to IPF, given their shared mechanisms. The

Omipalisib trial has already demonstrated the feasibility of using p-Akt

levels in bronchoalveolar lavage (BAL) fluid macrophages to track

target engagement in IPF patients, indicating its relevance as a

transferable biomarker (65). Pharmacodynamic biomarkers of PI3K

inhibition relevant in tumors—such as phosphorylated proteins like p-

PRAS40, p-S6 kinase, and p-4EB, metabolic markers like glucose

metabolism, GLUT1, and GLUT4, or imaging biomarkers like 18F-

FDG-PET (102, 103)—could also have relevance in IPF. Additionally,

computational analyses of large IPF datasets could identify new

biomarkers, although thus far they have primarily been used to

identify diagnostic or predictive markers, rather than prognostic

biomarkers tailored for pathway-specific therapies. To date, no single

biomarker readout has clear prognostic value over the treatment

course. Since a standard-of-care has been established for IPF, new

clinical trials cannot ethically incorporate a true placebo. Thus, a

composite biomarker framework for monitoring PI3K inhibitor

efficacy in IPF, combining endpoint markers like Forced Vital

Capacity with transcriptional biomarkers (like FOXO3A),

senescence-associated markers (p21, SA-b-gal), and phosphorylation-

based readouts would enable dynamic monitoring of patient response,

drug efficacy and disease progression. Despite the added complexity of

standard-of-care, as more PI3K inhibitors are tested in clinical settings,

integrating computational analyses of large-scale patient data in the

study design will progressively address the gap in efficacy biomarkers

specific to IPF. This strategy will enhance biomarker discovery and trial

design efficacy, accelerating the translation of PI3K inhibitors from

bench to bedside.
5 Conclusion

IPF is a chronic, interstitial lung disease marked by significant

patient heterogeneity and a lack of relevant biomarkers to guide

drug development. Over the years, considerable progress has been

made in understanding the mechanisms driving IPF, particularly

the dysregulation of the PI3K/Akt pathway. While recent advances

in selective PI3K inhibitors, Akt degraders, and dual PI3K/mTOR

inhibitors offer promising therapeutic potential, challenges such as

selectivity and systemic toxicities remain significant barriers to their

clinical application. Innovative strategies, such as inhalation-based

prodrugs [e.g., KITCL27 (75)] and fibroblast-specific conjugates

[e.g., FAPL-PI3Ki1 (76)], represent important steps toward

reducing systemic toxicity while enhancing therapeutic efficacy.

Senescence is increasingly recognized as a key driver of IPF, with

PTEN loss and PI3K/Akt hyperactivation exacerbating senescence in

alveolar epithelial cells and fibroblasts, forming a feedback loop that

accelerates disease progression. Senolytics, such as Dasatinib and
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Quercetin, offer a transformative approach by selectively eliminating

senescent cells, reducing fibrosis and inflammation in preclinical

studies. Addressing IPF requires a multifaceted strategy combining

targeted therapies like PI3K inhibitors with interventions tackling

aging-related mechanisms, including mitochondrial dysfunction and

telomere attrition. Exploring such combination therapies may provide

greater benefits by addressing multiple aspects of IPF pathogenesis.

While current treatments remain limited, optimizing drug

formulations, developing better biomarker-driven patient selection

strategies, and combining these therapies with other antifibrotic

agents may help overcome these hurdles and improve treatment

outcomes in IPF.
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