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Influence of cell bioenergetics
on host-pathogen
interaction in the lung
Gaurav Kumar Lohia and Sebastián A. Riquelme*

Department of Pediatrics, Columbia University, New York, NY, United States
Pulmonary diseases, arising from infections caused by bacteria, fungi, and

viruses, or stemming from underlying genetic factors are one of the leading

causes of mortality in humans, accounting for millions of deaths every year. At

the onset of pulmonary diseases, crucial roles are played by phagocytic immune

cells, particularly tissue-resident macrophages, in regulating the immune

response at the mucosal barrier. Recent strides have illuminated the pivotal

role of host bioenergetics modulated by metabolites derived from both

pathogens and hosts in influencing the pathophysiology of major organs. Their

influence extends to processes such as the infiltration of immune cells, activation

of macrophages, and the polarization phenomenon. Furthermore, host-derived

metabolites, such as itaconate, contribute to the promotion of anti-inflammatory

responses, thereby preventing immunopathology and facilitating the

preservation of mucosal niches to thrive for the long-term. This review

explores recent advancements in the field of immunometabolism, with a

particular emphasis on the intricacies of disease progression in pulmonary

infections caused by bacteria such as P. aeruginosa, M. tuberculosis and S.

aureus and fungi like C. albicans.
KEYWORDS
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Introduction

According to recent epidemiology studies, pulmonary infections caused by pathogens

such as Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus and

Candida albicans represent significant contributors to global mortality (1, 2). These

infections are frequently observed in individuals with co-morbidities, such as cystic

fibrosis (CF), chronic obstructive pulmonary disease (COPD), and primary ciliary

dyskinesia (PCD), as well as during ventilator-associated pneumonia (VAP), which

complicate prognosis and disease management (3–9). In the lung, these pathogens

trigger a brisk inflammatory response that often aids in infection clearance. However, in

specific contexts, this immune response is either insufficient or aberrant, leading to tissue

damage, pathogen persistence, and chronic colonization. Multiple immunomodulatory
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platforms, including metabolites, cytokines, pathogen-associated

molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs) influence the outcome of the immune

response (10). Despite advances in understanding these

mediators, their role in modulating mucosal integrity through

host bioenergetics remains an emerging area of study. This review

examines recent progress in immunometabolism research, with

particular emphasis on host bioenergetics during pulmonary

infection by these pathogens.
Host bioenergetics and organ homeostasis

Host cell primarily rely on two pathways for producing energy;

namely, glycolysis and oxidative phosphorylation (OXPHOS).

These routes provide cells with ATP and substrates for various

cellular processes. However, different cell types specialize in specific

pathways to maintain their bioenergetic integrity. For example,

neurons rely heavily on OXPHOS as they lack key components of

the glycolytic pathway (11). Similarly, heart generates ~90% of its

energy from this same mitochondrial platform (12). Red blood cells,

on other hand, use glycolysis to synthesize ATP, as they lack

mitochondria (13). Brown adipose tissue (BAT), which is

involved in thermogenesis, uses the energy generated from fatty

acid oxidation (FAO) in mitochondria to produce heat instead of

ATP (14, 15). In contrast, immune cells, such as macrophages

exhibit remarkable plasticity in their bioenergetic pathways. This

bioenergetic dynamics plays a crucial role in regulating their

immunological properties. Pro-inflammatory responses in

macrophages are predominantly associated with enhanced

glycolysis and impaired OXPHOS (16). Consistently, anti-

inflammatory responses are marked by functional OXPHOS and

many networks that fuel this platform, such as FAO and the

tricarboxylic acid (TCA) cycle (17). During infection, balanced

pro- and anti-inflammatory responses are critical in macrophage

effector activity, as it helps in appropriate disease resolution, thereby

maintaining tissue integrity (18, 19). Thus, glycolysis and OXPHOS

are major coordinators of host cell bioenergetics, and their

modulation during infection might define the outcome of diseases.
Host bioenergetic reprogramming
during infection

The lung serves as the primary site of infections caused by P.

aeruginosa, M. tuberculosis, and S. aureus. This mucosal

environment is guarded by immune cells, including resident

subsets like alveolar macrophages and other infiltrating

phagocytes, such as neutrophils and monocytes. During infection,

these myeloid cells undergo metabolic reprogramming to bolster

their inflammatory responses. This process is coordinated by many

PAMPs, such as lipopolysaccharide (LPS), flagella, and

peptidoglycan, which, respectively, interact with Pattern

Recognition Receptors (PRRs), like Toll-like receptor 4 (TLR4),

TLR5, and hexokinase (HK) (10, 20). These PAMP-PRR
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interactions alter host bioenergetics, particularly by disrupting

OXPHOS. OXPHOS dysfunction is further exacerbated by the

downregulation of key TCA cycle enzymes, like isocitrate

dehydrogenase (IDH), which is essential for the generation of

metabolites that sustain OXPHOS activity, such as aketoglutarate
(21). To overcome this bioenergetic deficit, infected cells switch to

glycolysis (22, 23). This shift not only provides ATP to maintain cell

viability but also stabilizes hypoxia-inducible factor 1-alpha

(HIF1a). Once stabilized, HIF1a translocates to the nucleus and

orchestrate the expression of a range of pro-inflammatory

cytokines, which are critical for confronting the infection (24).

However, if not adequately controlled, excessive inflammation can

result in tissue damage, a condition often observed in inflammatory

pathologies like sepsis, COVID-19, influenza, lupus, and arthritis (3,

25, 26). In such situations, tight regulation of bioenergetic pathways

becomes crucial to balance inflammation and prevent organ

oxidation. Thus, during infection, appropriate bioenergetic

reprogramming of myeloid cells ensures effective immunity

compatible with host health.

In this review, we will examine evidence on the impact of

bioenergetics on immune regulation and bacterial persistence

during infection caused by (A) intracellular pathogen such as M.

tuberculosis and (B) extracellular pathogen such as P. aeruginosa

and S. aureus. Furthermore, (C) we will cover emerging information

pertinent to fungal pathologies, and how specific the survival of

these organisms is modulated by metabolic cues.
A. Intracellular pathogens

Macrophage metabolism shapes M. tuberculosis
infection

M. tuberculosis (herein Mtb), the causative agent of tuberculosis

(TB), remains a major global health challenge, with nearly a quarter

of the world’s population harboring latent infections (Global

tuberculosis report 2024) (27). Mtb transmission primarily occurs

through the inhalation of aerosolized droplets containing the

pathogen, which subsequently deposit in the pulmonary alveoli

(28). Mtb primarily infects alveolar macrophages, which are

expected to be the primary cellular barrier against the infection

(28, 29). Mtb can also subsist within a range of other different

phagocytes, including neutrophils and dendritic cells, as well as

non-immune cells such as fibroblasts, endothelial cells, and

hematopoietic stem cells (30, 31). The infection triggers immune

cell recruitment, leading to the formation of granulomas (32), where

Mtb evades clearance by suppressing antigen presentation and

autophagy (33, 34). The granuloma environment determines

whether the infection remains contained or progresses to

systemic disease.

Mtb survival relies on host macrophage glycolysis. Emerging

evidence indicates that different Mtb strains influence macrophage

glycolysis to persist. For example, many strains like H37Ra

(avirulent strain) and H37Rv (virulent strain) trigger glycolysis,

which seems to be linked to TLR2 stimulation (35). This TLR2

activation drives the expression of the glucose transporters GLUT6
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and GLUT1/3 (36) (Figure 1). ESAT-6, a 6kDa early secretory

antigenic target protein, enhances macrophage glucose uptake by

facilitating GLUT3-mediated transport (36, 37). Multidrug-

resistant (MDR) strains exhibit elevated ESAT-6 expression,

further augmenting host cell glucose uptake (38). Mtb uses the

glycolytic byproduct lactate as a major carbon source to fuels its

TCA and gluconeogenesis. This is essential for the bacterium to

proliferate, as DlldD2 strains, which cannot oxidize lactate, fail to

grow intracellularly in human macrophages (39). However, other

groups have reported opposite results, where lactate enhances Mtb

clearance (40). To avoid their eradication, these Mtb strains inhibit

host glycolysis through microRNA-21 (miR-21), which targets

phosphofructokinase-M (PFK-M) (41) (Figure 1). Furthermore,

other Mtb strains differentially regulate downstream glycolytic

genes, such as 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 3 (Pfkfb3) (42). Differential regulation of glycolysis

by Mtb is mediated by strain-specific virulence factors. For instance,

less virulent strains, such as Mtb CDC1551, induce significantly

higher levels of Pfkfb3 compared to the hypervirulent Mtb HN878

(42, 43). Consistently, drug-resistant strains like W_7642 exhibit

even lower Pfkfb3 expression than HN878. This regulation is linked

to variations in cell wall lipid composition, particularly PDIMs
Frontiers in Immunology 03
(phthiocerol dimycocerosates) and other lipids that are highly

expressed in MDR strains (42, 44). HIF-1a, which regulates the

transcription of glycolytic genes, requires nitric oxide (NO) for its

activity (45). However, MDR and extensively drug-resistant strains

of Mtb induce an augmented IL-10 response, which inhibits NO

production. This disruption impairs glycolysis induction (46, 47).

These findings highlight the adaptability of Mtb strains in

calibrating host glycolysis to sustain survival.

Mtb also disrupts the macrophage TCA cycle to persist (43).

Mtb infection downregulates the enzymes IDH2 and succinate

dehydrogenase (SDH). While it still remains unclear how Mtb

suppresses SDH function, this pathogen limits IDH2 activity by

stimulating TLR2 signaling and downregulating the deacetylase

SIRT3 (48). Collectively, these interferences break the TCA cycle,

resulting in the accumulation of isocitrate and succinate,

respectively (21, 49) (Figure 1). This process repurposes

mitochondria from producing energy to manufacture ROS (3).

During early phase of infection, Mtb exploits ROS to enhance its

replication and induce macrophage necrosis (50). This is facilitated

by the generation of reactive nitrogen species (RNS), which act as

potent inhibitors of the electron transport chain (ETC), further

aggravating ROS signaling (51–53).
FIGURE 1

Modulation of bioenergetic pathways by M. tuberculosis: M. tuberculosis induces robust glycolysis in myeloid cells by increasing the uptake of
glucose via TLR signaling. This also promotes accumulation of lactate, which is used by the pathogen to generate energy. Lactate also hinders M.
tuberculosis growth. In response to this, M. tuberculosis induces expression of miR-21, that regulates the expression of phosphofructokinase-M
(PFK-M). M. tuberculosis regulates host TCA cycle by promoting the expression of Irg1, which inhibits SDH. This metabolic control attenuates the
expression of pro-inflammatory cytokine, such as IL-1b.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1549293
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lohia and Riquelme 10.3389/fimmu.2025.1549293
Mtb infection drives itaconate synthesis, which also contributes

to pathogenesis (Figure 1). By stimulating the TLR2-STING axis,

Mtb facil itates host upregulation of the enzyme Irg1

(Immunoresponsive Gene 1, also known as Aconitate

decarboxylase 1; ACOD1) (54). This enzyme diverts TCA cycle

aconitate to generate itaconate (17). Itaconate drives

immunosuppression, maintaining host survival and thus

providing Mtb with a functional niche to thrive for the long-term.

Indeed, mice lacking Irg1 rapidly succumb to the infection, process

mediated by neutrophil-driven inflammation (55). Furthermore,

Mtb prospers by exploiting lipids and fatty acids as key nutritional

sources. Mtb induces abnormal lipid accumulation in macrophages,

leading to the formation of foamy cells (56). These metabolically

altered cells exhibit elevated expression of genes involved in lipid

synthesis and uptake, while showing reduced expression of genes

responsible for lipid efflux (56). Mtb worsens this setting by

inhibiting lipid droplet degradation, particularly by suppressing

lipophagy, thereby creating a favorable environment for bacterial

growth (56–58).

Collectively, these findings suggests that Mtb survival hinges on

its ability to manipulate host macrophage metabolism. By

reprogramming glycolysis, disrupting the TCA cycle, and

exploiting lipid metabolism, Mtb outcompetes immune responses,

sustains its growth, and establishes a persistent niche within

the host.
B. Extracellular pathogens

P. aeruginosa exploits pro-OXPHOS metabolites
to thrive in the host

P. aeruginosa, a Gram-negative ESKAPE pathogen, induces a

brisk inflammatory response in the respiratory tract. Instead of

clearing the infection, this inflamed milieu aggravates tissue

destruction, providing P. aeruginosa with cell debris and

metabolites to flourish. This environment supports bacterial

growth, with the pathogen existing as planktonic cells or biofilms

(59). Macrophage metabolic reprogramming plays a central role in

this process, as the succinate released from this cell, a pro-OXPHOS

nutrient, fuels P. aeruginosa’s TCA cycle and bioenergetics (59). As

directed by the catabolite repressor locus (Crc), succinate is the

preferred carbon source for P. aeruginosa, which is consumed

before any other nutrient available (59–61). Thus, the survival of

P. aeruginosa in the alveolar space is tightly linked to host

OXPHOS, primarily to succinate metabolite activities.

P. aeruginosa is a prominent pathogen in people with CF

(pwCF) (19) . CF is caused by mutat ions in the CF

transmembrane conductance regulator (CFTR) (62). In pwCF,

lack of CFTR compromises the function of PTEN, which is an

essential metabolic checkpoint that directs mitochondrial

bioenergetics. At baseline, CFTR forms a complex with PTEN at

the cell membrane, which directs mitochondrial OXPHOS (62). In

pwCF, lack of the CFTR-PTEN complex drives mitochondrial

OXPHOS disruption, leading to succinate accumulation and

release (62). During infection, this succinate supports P.
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aeruginosa bioenergetics, promoting bacterial proliferation,

stimulation of inflammation, and massive infiltration of myeloid

cells (59, 62). This succinate-rich milieu worsens IL-1b-driven
inflammation, facilitating alveolar oxidation and progressive

pulmonary decline (62).

P. aeruginosa exacerbates host bioenergetic reprogramming and

succinate release by exposing LPS on its surface through the

transporter lptD (63). By stimulating TLR4, membrane-attached

LPS disrupts lung mitochondrial OXPHOS, impairing host

bioenergetics (10, 64) (Figure 2). Mechanistically, LPS depletes

pulmonary ATP synthase, compromising OXPHOS integrity. In

response, respiratory cells upregulate glycolysis, fueling the release

of pro-inflammatory cytokines that accelerate tissue damage, such

as IL-1b and elevated bacterial burden (3, 19). Furthermore, this

inflamed environment permeabilizes the alveolar space, enabling

the infiltration of different nutrients from circulation that the

pathogen exploits to reduce LPS exposure and thus adapt to the

host to be better tolerated, like ketone bodies (19) (Figure 2).

Macrophage succinate metabolism also drives ROS production

through SDH and IDH (65). However, by sensing this ROS, P.

aeruginosa activates the bacterial antioxidant response, limiting

planktonic growth and fostering the formation of biofilms (62,

66). This lifestyle shift permits the bacterial community to persist in

harsh environments, such as the imparted by antibiotics (67–69).

This setting has been observed in CF, COPD, PCD and VAP,

validating the clinical significance of succinate and ROS metabolism

during P. aeruginosa pulmonary pathology.

P. aeruginosa adapts to itaconate to capitalize
persistent infection

To balance the harmful effects of succinate, LPS, and ROS,

macrophages produce itaconate as a protective immunometabolite

(70). However, P. aeruginosa turns this host defense into an

advantage. In contrast with most opportunist, P. aeruginosa’s

genome harbors the ict-ich-ccl locus (71). This platform helps the

pathogen to breakdown itaconate into less toxic metabolites, like

acetyl-CoA and pyruvate, which enter the bacterial central

metabolism to drive bioenergetics (59, 71). Furthermore, P.

aeruginosa adapts to the outer membrane stress caused by

itaconate by forming biofilms, gaining protection against diverse

threats, such as antibiotics, ROS, antibodies, and phagocytosis (59)

(Figure 2). As reported in pwCF, throughout the course of the

infection, P. aeruginosa adapts to this itaconate-rich environment,

s e l e c t ing for communi t i e s tha t co-evo lve wi th the

immunometabolite (59). These strains further exploit itaconate to

enrich pulmonary ketone bodies, which promote bacterial

populations that are better tolerated by the host immune system

(19) (Figure 2). By inducing infection tolerance, these ketone-

adapted P. aeruginosa communities attenuate immunopathology,

preserving both host survival and the lung as a functional niche to

thrive for the long-term (19).

The extraordinary ability of P. aeruginosa to survive in mucosal

tissues synchronized with the bioenergetic changes experience by

infected macrophages is strong evidence of co-evolution with host

defenses. This principle is supported by the development of
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infection tolerance, where P. aeruginosa readily adapts to the airway

environment integrating into the local microbiome as discrete

communities to thrive. These findings highlight the clinical

significance of host bioenergetics directing chronic pathogen

activities in mucosal tissues.

S. aureus adapts to host bioenergetic
reprograming to subsist

S. aureus is a Gram-positive ESKAPE pathogen that normally

resides in the human microbiome (72). Under still unclear

conditions, it can invade mucosal tissues, causing severe and life-

threatening infections such as endocarditis, bacteremia, and

pneumonia (72). The risk escalates when medical devices become

contaminated, providing a gateway for infection (72, 73). In

infected subjects, S. aureus drives both acute and chronic

infections, characterized by intense neutrophil-mediated

inflammation (74, 75). To enhance tissue damage and neutrophil

infiltration, S. aureus produces toxins like leukocidins and

hemolysins, which induce host cell death and create an

inflammatory, oxidative environment (76, 77) (Figure 3). Instead
Frontiers in Immunology 05
of being cleared, S. aureus thrives in this detrimental milieu, feeding

off nutrients derived from damaged tissue.

The preferred S. aureus carbon source is glucose, which is used

to drive glycolysis (78, 79). However, in the host lung, glucose is

limited, as myeloid cells consume it through their own glycolysis in

response to S. aureus sensing (78–80). This glucose limitation forces

S. aureus to adapt to alternative carbon sources to persist. During

pneumonia, tissue repair mechanisms activate fibroblasts to release

proline, a key component of collagen (81, 82). S. aureus adapts to

utilize proline, particularly in diseases like CF, where chronic

infection and progressive tissue scarring result in extensive

collagen deposition (82). By capitalizing on proline availability

during tissue remodeling, S. aureus generates energy and biofilms

to sustain infection, promoting inflammation and persistent

infection (82) (Figure 3). The high metabolic plasticity harbored

by S. aureus provides the pathogen with essentials advantages to

coexist with metabolically reprogrammed phagocytes.

Host cells respond to S. aureus infection by releasing itaconate

(83). However, unlike P. aeruginosa, S. aureus lacks the ict-ich-ccl

locus and hence cannot degrade itaconate (83). To persist in the
FIGURE 2

Mitochondrial metabolites drive P. aeruginosa infection. Left panel: At baseline, macrophage bioenergetics is primarily fueled by OXPHOS. Glycolysis
contribution to ATP synthesis is limited. Middle panel: Upon P. aeruginosa infection, OXPHOS is impaired, and glycolysis is increased. Glycolysis
drives release of tissue-damaging cytokines. To mitigate immunopathology, mitochondria express Irg1 and produces itaconate. Right panel: P.
aeruginosa adapts to itaconate by increasing the ict-ich-ccl locus, selecting for strains that exploit the immunometabolite to generate energy.
Furthermore, itaconate-adapted P. aeruginosa also favor local enrichment of ketone bodies, particularly from fibroblasts. These ketone bodies
maintain tissue integrity by suppressing P. aeruginosa expression of surface-exposed LPS and by fueling host OXPHOS. This milieu favors the
progressive establishment of infection tolerance.
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itaconate-rich airway, S. aureus forms biofilms. To generate these

communities, S. aureus specializes in the manufacture of

extracellular polysaccharides (84, 85) (Figure 3). Furthermore,

this pathogen exploits this same itaconate response to abrogate

neutrophil function, particularly by blocking the oxidative burst

required to kill the bacteria. In tissues different than the lung, S.

aureus releases lactate, which contributes to immune evasion by

altering the activity of Histone deacetylase 11 (HDAC11),

redirecting host cells to produce IL-10 and thus skew immune

responses towards an immunosuppressed phenotype

(86) (Figure 3).

By adapting to glucose scarcity and other pulmonary amino

acids involved in repair, like proline, S. aureus generates energy to

survive. Furthermore, by exploiting the own host metabolic

response to preserve tissue integrity, itaconate, S. aureus disrupt

neutrophil function, skewing immune responses towards a state of

infection tolerance. These findings, phenocopying the behavior of

other pathogens like Mtb and P. aeruginosa, showcase the ability of

S. aureus to thrive in bioenergetically altered environments, like the

inflamed lung.
C. Fungal infections

Metabolic pathways driving fungal infection
dynamics

Fungal infections, primarily caused by Candida albicans,

Cryptococcus neoformans, and Aspergillus sp. are responsible for

high mortality especially in immunocompromised individuals and

pwCF (87, 88). However, the impact of bioenergetic pathways
Frontiers in Immunology 06
during fungal infection is still an emerging field, and how it

associates with clinical outcomes remains unclear.

Recent findings indicate that glycolysis is central to the immune

response against fungal infection (89, 90). Anti-fungal neutrophils

rely heavily on glycolysis, particularly on expression of key glucose

transporters, like GLUT1 (90). GLUT1 perturbation in these cells

blunt phagocytosis, ROS, and formation of extracellular traps,

facilitating fungi survival (89, 90). During C. albicans infection, in

the yeast phase, host cells respond by promoting glycolysis,

OXPHOS, and glutamine metabolism. This supports higher

energy demands required for a robust oxidative burst and

cytokine response. However, at later stages, as C. albicans

transitions from yeast to hyphal forms, the induction of glycolysis

and OXPHOS is reduced leading to an attenuated oxidative burst

and a diminished cytokine response (91). These distinctive

programs are attributed to the difference in the cell wall

composition, such as the presence of b-glucans, that acts as a

major PAMP for the PRR Dectin-1 (92). To curb host immunity,

C. albicans reduces the surface expression of b-glucans, particularly
when exposed to the glycolysis byproduct lactate (93) (Figure 4).

This adjustment also promotes active glycolysis in C. albicans,

depleting glucose form the milieu and starving immune cells to

death (94). Inhibition of host glycolysis by 2-DG or by

dichloroacetate, which is an enhancer of pyruvate dehydrogenase,

perturbs the host response against C. albicans. This phenotype is

associated with reduced expression of IL-1b, TNFa, and IL-6 in

human monocytes (91, 95). Additionally, these treatments impair

the production of IL-17, IL-22, IFN-g and IL-10, cytokines regulated
by Th1/Th17 T cells and crucial for host protection during C.

albicans infection (91). In line with this, activation of host glycolysis
FIGURE 3

S. aureus adapts to lung bioenergetic changes: Left panel: During initial infection, S. aureus causes pulmonary pathology by secreting various toxins
that kills neutrophils. To maintain survival, neutrophils deplete glucose to fuel their glycolysis, which is required to eliminate the pathogen via
oxidative burst. Right panel: In addition to consume glucose, infected neutrophils block S. aureus glycolysis by inhibiting aldolase. Glycolysis
interference by neutrophils promotes S. aureus adaptation to proline, released from activated fibroblast. Proline fuels S. aureus OXPHOS.
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by nutritional supplementation of glucose facilitates health and C.

albicans eradication (94). Thus, during C. albicans infection, there is

a dynamic host-pathogen glycolytic competition that determines

the outcome of the disease.

In contrast to C. albicans, melanin is a major component of the

cell wall in A. fumigatus (96). This melanin serves as a key driver of

metabolic reprogramming in immune cells (97). Mechanistically,

within the phagosome, melanin released from the spores promotes

the sequestering of calcium, which triggers the recruitment of

mTOR on the phagosome (97). mTOR is a major regulator of

glycolysis. It regulates the expression level of HIF1a and other genes

involved in glycolysis (98). By promoting mTOR and HIF1a
activity, A. fumigatus induces glycolysis in the infected

macrophage, leading to the release of cytokines involved in tissue

oxidation (97). Additionally, melanin also aids in the consolidation

of the pathology by modulating calcium signaling. Melanin

effectively blocks secretion of chemokines such as CXCL1 and
Frontiers in Immunology 07
CXCL8, reducing the infiltration of anti-fungal immune cells (99).

These studies show how fungal pathogens use specific PAMPS to

modulate glycolysis, cytokine release, and myeloid cell recruitment.

By stimulating glycolysis, fungal organisms trigger inadequate

immune responses, leading to tissue disruption and organ disease.
Conclusion

In this review, we highlight the impact of metabolism on host-

pathogen interactions in the lung, particularly through modulation

of cellular bioenergetics. We examine recent evidence suggesting

how pulmonary pathogens exploit host bioenergetic platforms to

persist, and how this environment influences inflammatory

responses and disease progression. Bacterial pathogens like P.

aeruginosa, Mtb, and S. aureus alter lung cell bioenergetics -

inducing shifts like increased glycolysis, impaired OXPHOS, and
FIGURE 4

Differential regulation of host metabolic pathway by C. albicans: Left panel: In response to C. albicans b-glucans, primarily exposed on yeast form,
host cell responds by enhancing glycolysis, OXPHOS, and glutamine metabolism. This metabolic shift triggers anti-fungal responses by supporting
ROS production and cytokine response. Enhanced glycolysis results in elevated lactate levels, which limits b -glucans expression and drives
glycolysis in C. albicans, depleting glucose from extracellular milieu. Right panel: Reduced exposure of b -glucans on hyphae form of C. albicans
fails to activate glycolysis and the pentose phosphate pathway, leading to reduced mitochondrial ROS production and cytokine response. This
setting favors C. albicans survival.
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the release of metabolites like succinate, proline, and itaconate - to

evade immune responses and promote survival. This metabolic

disruption weakens antimicrobial defenses, exacerbates tissue

damage, and drives chronic inflammation. Although similar

findings have been reported during fungal diseases, the influence

of bioenergetics and metabolism on mycoses remains

underexplored. Metabolism plays a critical role in many

physiological processes, which can be co-opted by opportunists to

drive tissue disruption via a range of mechanisms, including

autophagy, cell death pathways – i.e., apoptosis and ferroptosis -

and epigenetic modifications, shaping immune responses to fuel

pathology evolution instead of organ repair. Given the impact of

bioenergetic platforms on infection outcomes, these metabolic

pathways emerge as potential therapeutic targets for drug design.

Key players such as GLUT1/3, HK, and SDH have been considered

to prevent exacerbated inflammatory response and promote anti-

inflammatory routes, especially during sepsis and other

immunopathologies (17). Similarly, inhibition of PKM2 (Pyruvate

Kinase M2) during sepsis reduces inflammation via NLRP3 (100).

This also provides implication of nutrition in bioenergetics

dynamics. However, further investigation is needed to uncover

how dietary interventions, or metabolic modulators could

influence infectious disease progression. Interfering pathogens

from utilizing immunometabolites such as succinate, itaconate,

and lactate could also aid in clearing the infection and resolution

of inflammation. On the host side, major challenges associated with

immunometabolism-based therapy are the so-called off-target

effects, impacting homeostasis of “healthy” cells. In such

scenarios, delivering the drugs to the specific cells by utilizing

nanoparticle formulation would improve treatment outcome (17,

101). These processes may open new avenues for metabolo-

therapies aimed at restoring immune balance, mitigating mucosal

damage, and limiting pathogen persistence in diseases such

as pneumonia.
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