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The role of Fusobacterium
nucleatum in macrophage M2
polarization and NF-kB pathway
activation in colorectal cancer
Wei Zheng1,2†, Yuxin Wang1,2†, Haoyang Sun1,2†, Surina Bao1,2,
Shuai Ge1,2 and Chunshan Quan1,2*

1Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of
Life Science, Dalian Minzu University, Dalian, China, 2Department of Bioengineering, College of Life
Science, Dalian Minzu University, Dalian, Liaoning, China
Fusobacterium nucleatum is strongly linked to colorectal cancer (CRC)

progression, but its mechanisms for influencing macrophage polarization and

tumor development are not well understood. We established an in vitromodel of F.

nucleatum infection in RAW264.7 macrophages to investigate these processes.

Macrophage polarization was evaluated using scanning electron microscopy

(SEM), real-time quantitative PCR (RT-qPCR), and immunofluorescence staining.

RNA sequencing (RNA-Seq) identified differentially expressed genes (DEGs) and

enriched pathways, focusing on the role of the NF-kB signaling pathway in

macrophage polarization. F. nucleatum infection induced M2 polarization in

RAW264.7 macrophages, as confirmed by SEM analysis and RT-qPCR validation.

A total of 2,029 DEGs were identified after F. nucleatum infection, with 763

upregulated and 1,266 downregulated. GO and KEGG enrichment analysis

showed that cytokine-cytokine receptor interaction, TNF signaling, and NF-kB
signaling pathways are upregulated in macrophages after F. nucleatum infection,

indicating enhanced cytokine activity and immune response. Key genes (Nfkb1,

Nfkb2, Malt, Lta, Ltb, Tnf) and proteins (P50, P100) in the NF-kB pathway are

upregulated, indicating the crucial role of the NF-kB pathway in M2 macrophage

polarization. This study offers crucial evidence regarding the role of the NF-kB
signaling pathway in modulating F. nucleatum-induced macrophage M2

polarization, underscoring its significance in the progression of colorectal cancer.
KEYWORDS
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1 Introduction

Colorectal cancer (CRC) is one of the most common

malignancies globally and poses a significant threat to human

health (1–3). Recent accumulating evidence has shown that the

human gut bacterium Fusobacterium nucleatum is associated with

the progression of colorectal cancer (4, 5). F. nucleatum influences

all stages of CRC development by creating a pro-inflammatory

microenvironment and promoting CRC cell proliferation and

migration. (6–9). Research has shown that F. nucleatum, which is

enriched in CRC tissues, can induce oncogenic inflammatory

responses and impair anti-tumor immunity by expressing the

adhesins FadA and Fap2 (10–12). Furthermore, F. nucleatum can

stimulate tumor cells to secrete multiple cytokines and chemokines,

including IL-8 and CXCL1, thus enhancing tumor growth and

metastasis (13, 14).

Macrophages constitute a major component of the innate immune

system response, exerting a broad spectrum of immunomodulatory

effects and participating in the physiological processes of pathogen

clearance, tissue homeostasis maintenance, and repair. Within the

tumor microenvironment, macrophages typically display duality,

differentiating into phenotypes with distinct functions: the pro-

inflammatory M1 type and the anti-inflammatory, pro-tumor M2

type (15–17). Tumor-associated macrophages (TAMs), which

predominantly exhibit M2 polarization, have been implicated in

tumor progression, invasion, and metastasis (18, 19). Research has

demonstrated that infection with F. nucleatum leads to an increased

infiltration of TAMs at the tumor site, promoting M2 polarization and

thereby accelerating colorectal cancer (CRC) progression (20–23). The

regulation of macrophage polarization by F. nucleatum involves

multiple signaling pathways, including NF-kB, STAT3, and PI3K/

Akt (24–26). Hu et al. observed a significant abundance of M2-type

tumor-infiltrating macrophages in CRC tissues positive for F.

nucleatum, and in vitro macrophage polarization experiments

corroborated that F. nucleatum induced M2 polarization. Their

findings indicate that F. nucleatum promotes M2 macrophage

polarization via activation of the TLR4/NF-kB/S100A9 cascade,

thereby facilitating CRC progression (27). Xu et al. (28) reported

that F. nucleatum enhanced CRC metastasis through the miR-1322/

CCL20 axis and M2 polarization. Recent studies highlight the pivotal

role of the NF-kB signaling pathway in macrophage polarization.

Activation of the NF-kB pathway not only mediates the pro-

inflammatory response of M1-type macrophages but also regulates

the anti-inflammatory and reparative functions of M2-type

macrophages (29, 30). M2-polarized macrophages contribute to

tissue repair and remodeling of the tumor microenvironment by

secreting anti-inflammatory cytokines such as IL-10 and TGF-b (18,

19). It has been reported that NF-kB p50 directly promotes the

formation of M2-type macrophages by inhibiting the expression of

pro-inflammatory gene and up-regulating the expression of M2

polarization-related genes. The NF-kB p100 may indirectly support

M2 polarization by activating the non-classical NF-kB pathway (31).

Although previous research has indicated that the F. nucleatum

is closely related to the occurrence and development of various
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inflammatory diseases and colorectal cancer. Compared with

normal intestinal tissue, the enrichment of F. nucleatum is more

significant in colorectal cancer tissue (9). In the field of colorectal

cancer research, F. nucleatum is considered a key factor in tumor

formation and development. Through its diverse pathogenic

mechanisms, it plays an important role in the occurrence,

development, immune evasion, and chemotherapy resistance of

colorectal cancer. The components and metabolites of

microorganisms can activate macrophages through specific pattern

recognition receptors (PRRs) and guide them to differentiate into

M1 or M2 types, thereby altering the characteristics of immune

responses (32). F. nucleatum can bind with various immune cells

such as macrophages and T cells, triggering immune suppression in

the intestinal mucosa and creating a favorable microenvironment

for the survival of colorectal cancer cells (33). In the tumor

microenvironment, macrophages can differentiate into phenotypes

with different functions, such as M1 type with pro-inflammatory

functions and M2 type with anti-inflammatory and pro tumor

functions (34). Regulating the polarization state of macrophages,

especially inhibiting M2 or activating M1 macrophages, has become

a potential strategy in tumor therapy. Therefore, studying the

molecular mechanisms behind the polarization of macrophages

into M1 or M2 not only deepens our understanding of the

interaction between hosts and pathogens, but also provides a

theoretical basis for exploring new therapeutic methods. This

study explores and reveals the key molecular pathways by which

Fusobacterium nucleatum infection induces M2 polarization in

macrophages through transcriptomic analysis and experimental

validation of the RAW264.7 infection model, in order to

understand how Fusobacterium nucleatum promotes the

development of colorectal cancer. In this study, we aim to

elucidate the molecular mechanisms through which F. nucleatum

infection induces M2 polarization of tumor-associated macrophages

(TAMs) via the NF-kB pathway. The polarization direction of

macrophages was characterized in a model of RAW264.7

macrophages infected with F. nucleatum. RNA-Seq transcriptome

sequencing was performed on the transcriptional-level impaction of

F. nucleatum infection. The investigation will deepen our

understanding of the NF-kB pathway’s role in TAM polarization

and potent ia l ly ident i fy new therapeut ic targets for

CRC immunotherapy.
2 Materials and methods

2.1 Bacterial growth conditions

F. nucleatum ATCC 23726 was obtained from the American

Type Culture Collection (ATCC) and routinely cultured in Tryptic

Soy Broth (TSB) supplemented with 1% Bacto Peptone and 0.25%

freshly prepared L-cysteine (TSPC). For solid cultures, TSPC agar

plates were enriched with 1% Vitamin K1-hemin solution. All

cultures were grown in an anaerobic incubator at 37°C under a gas

mixture of 93% N2, 5% CO2, and 2% H2.
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2.2 Infection model and invasion assay

RAW264.7 cells were seeded at a density of 1 × 106 cells per 60-

mm culture dish in 6 ml of complete DMEM (500 mL DMEM basic

(1 ×) high glucose, 10% FBS Premium, 100U/mL Penicillin-

Streptomycin Solution) and incubated at 37°C with 5% CO2 for

12 hours. Separately, F. nucleatum was cultured for 12 hours,

collected by centrifugation (6,000 × g, 5 min, 4°C), and washed

three times with PBS. The bacterial pellet was resuspended in

DMEM (DMEM basic (1 ×) high glucose) to an OD600 of 1.0.

Based on the desired multiplicity of infection (MOI), the

appropriate volume of bacterial suspension was added to

RAW264.7 cells for a 12-hour co-culture. After co-cultivation,

cells were washed with PBS, and fresh DMEM (DMEM basic

(1 ×) high glucose) was added. Cells were incubated for 1 hour to

remove extracellular bacteria, followed by gentle washing with PBS.

Intracellular F. nucleatum was released by lysing cells with cold

sterile distilled water. Lysates were serially diluted and plated on

TSPC agar for colony-forming unit (CFU) enumeration (35).

Experiments were performed in triplicate.
2.3 Immunofluorescence analysis

Slides were pre-treated with detergent, rinsed with water,

sterilized in 75% ethanol, and dried. RAW264.7 cells (1 × 106)

were seeded on slides following the infection protocol. After

infection, cells were fixed with 4% paraformaldehyde for 10 -15

minutes and blocked with 3% BSA at room temperature for 30

minutes. Primary antibodies were added, and slides were incubated

overnight at 4°C in a humidified chamber. After washing with PBS,

fluorescent secondary antibodies were applied for 50 minutes at

room temperature. DAPI staining was performed for 10 minutes in

the dark. Slides were mounted with anti-fade medium, and

fluorescence was visualized at excitation wavelengths of 330-380

nm (DAPI), 510-560 nm (Cy3-iNOS), and 465-495 nm (488-

CD206). Images were acquired and analyzed.
2.4 Transcriptome analysis (RNA-Seq)

RAW264.7 cells were infected with F. nucleatum at anMOI of 100:1

for 4 hours. Total RNA was extracted using Trizol reagent, and three

biological replicates were analyzed (36). Strand-specific RNA sequencing

was conducted by Novogene using the Illumina HiSeq platform. Clean

reads were mapped to the RAW264.7 genome using Bowtie2, and gene

expression was quantified with HTSeq-count. Fragments per kilobase of

transcript permillionmapped reads (FPKM) values were calculated, with

normalized data provided in Data Set S1.
2.5 RT-qPCR

Total RNA was extracted as described above. cDNA synthesis

and quantification were performed using the BeyoFast™ SYBR

Green One-Step qRT-PCR Kit (Beyotime) on a CFX96 Touch Real-
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Time PCR Detection System (Bio-Rad). GAPDH served as the

reference gene. Each 20 µl reaction contained 500 ng RNA, 300 nM

primers, 2 µl 10× SYBR Green One-Step Enzyme Mix, and 10 µl 2×

SYBR Green One-Step Reaction Buffer. The primers used in this

study are listed in Table 1. Reactions were conducted in triplicate.
2.6 Western blotting

RAW264.7 cells infected with F. nucleatum were washed with

cold PBS and lysed in RIPA buffer containing protease and

phosphatase inhibitors. Lysates were centrifuged (12,000 × g, 15

min, 4°C), and protein concentrations were measured using the

BCA assay. Equal protein amounts (20-30 µg) were separated by

SDS-PAGE, transferred to PVDF membranes, and blocked with 5%

non-fat milk in TBS-T for 1 hour. Membranes were incubated with

primary antibodies targeting P50, P100, and GAPDH overnight at
TABLE 1 Primers used in this study.

Gene Sequences

GAPDH Forward primer TCAACGGCACAGTCAAGG

Reverse primer ACTCCACGACATACTCAGC

INOS Forward primer CCCTTCCGAAGTTTCTGGCAGCAGC

Reverse primer CCAAAGCCACGAGGCTCTGACAGCC

CD86 Forward primer TCAGTCAGGATGGGAGTGGTA

Reverse primer ATCCAAGAGCCATTCCTACCT

CD206 Forward primer GTCATATCGGGTTGAGCCACT

Reverse primer AATCATTCCGTTCACCAGAGG

MR Forward primer CATGAGGCTTCTCTTGCTTCTG

Reverse primer TTGCCGTCTGAACTGAGATGG

16s Forward primer CAGAGTTTGATCCTGGCT

Reverse primer AGGAGGTGACCAGCCGCA

Nfkb1 Forward primer GGCCTGCAAAGGTTATCGTT

Reverse primer CCGTGCTTCCAGTGTTTCAA

Nkfb2 Forward primer CCAGAAACTTCAGAGGCAGC

Reverse primer TGGGAGATCACAGGCTTCAG

Malt1 Forward primer AACCCAGAATCCAAGGCAGT

Reverse primer CTGTTGTTAACCCGGCAGAC

Lta Forward primer GAGCAACAACTCCCTCCTGA

Reverse primer GAGGCACATGGAAGGGGTAT

Ltb Forward primer TCACCCTCTAGCCTCTCAGA

Reverse primer GTTGAACCCCTGGATCTGGT

Nfkbia Forward primer TTGGTCAGGTGAAGGGAGAC

Reverse primer CAGGCAAGATGTAGAGGGGT

Tnf Forward primer TGCTTGTTCCTCAGCCTCTT

Reverse primer AGATGATCTGACTGCCTGGG
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4°C, followed by HRP-conjugated secondary antibodies. Protein

bands were visualized using ECL and quantified with ImageJ.

Experiments were performed in triplicate.
2.7 Scanning electron microscopy

Log-phase F. nucleatum cultures were centrifuged (6,000 × g, 5

min, 4°C) and fixed in 2.5% glutaraldehyde at 4°C for 4 hours. Samples

were dehydrated in ethanol gradients (25%, 50%, 75%, 100%) and air-

dried on silicon chips. Dried samples were gold-coated and visualized

under SEM. RAW264.7 cells underwent a similar fixation, dehydration,

and coating process before SEM observation.
2.8 Statistical analyses

Data are expressed as mean ± SD. Statistical differences were

determined using unpaired Student’s t-test or one-way ANOVA

with Bonferroni post hoc analysis. Differences were considered

significant at p < 0.05. Analyses were performed using GraphPad

Prism. Significance levels are indicated as follows: p < 0.05, *p <

0.01, **p < 0.001, a and not significant (N.S., p > 0.05).
3 Results

3.1 F. nucleatum infection promotes M2
macrophage polarization

To investigate the effect of F. nucleatum on macrophage

polarization, RAW264.7 cells were infected at MOIs of 10:1 and
Frontiers in Immunology 04
100:1. CFU measurements over 6 hours revealed that at MOI 10:1,

bacterial counts peaked at 4 hours (1.0 × 106/ml) and decreased by 6

hours (9.0 × 105/ml). At MOI 100:1, counts similarly peaked at 4

hours (7.0 × 106/ml). Therefore, MOI 100:1 with a 4-hour infection

period was chosen for subsequent experiments (Figure 1A).

Microscopic analyses revealed morphological changes in

infected RAW264.7 cells . Optical microscopy showed

transformation from round to polarized shapes with projections

(Figure 1B), while scanning electron microscopy confirmed

elongated forms with spike-like projections and bacterial adhesion

to the cell surface (Figure 1C).

RT-qPCR analysis demonstrated significant upregulation of M2

markers (Cd206 andMr) following infection, with minimal changes

in M1 marker s (Cd86 and Nos2 ) (F i gure s 2A , B) .

Immunofluorescence analysis supported these findings: CD206

protein expression increased, while iNOS fluorescence intensity

decreased (Figure 2C). These results indicate that F. nucleatum

infection drives M2 polarization in RAW264.7 macrophages.
3.2 Differential gene expression analysis

Transcriptomic profiling was performed to explore the

molecular mechanisms underlying F. nucleatum-induced M2

polarization. Sequencing generated high-quality data (Q20/Q30>

97%; GC content: 49.0-49.5%), and PCA confirmed distinct

clustering between control and infected samples (Figure 3A).

Using a threshold of Fold Change ≥ 2 or ≤ 0.5 (i.e., |Fold

Change| ≥ 2) and a q-value < 0.05, a total of 2,029 differentially

expressed genes were identified, comprising 763 upregulated and

1,266 downregulated genes (Figure 3B).
FIGURE 1

F. nucleatum infection promotes M2 macrophage polarization. (A) Intracellular bacterial counts after F. nucleatum infection at different MOIs over
time. (B) Optical microscopy images of RAW264.7 cells in normal (left) and polarized states (right) bars, 10 um. (C) Scanning electron microscopy
images of F. nucleatum and RAW264.7 cells. Left, F. nucleatum; middle, RAW264.7; right, RAW264.7 after F. nucleatum infection; Bars, 5 um.
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Based on the volcano plot analysis (Figure 3C), we identified

significant upregulation of several genes, including Il12b, H2-Ea,

Nox3, Ptgs2, and Muc3, which suggests that F. nucleatum infection

may induce macrophage polarization toward the M2 phenotype.

While Il12b is typically associated with Th1 responses, its

upregulation may contribute to M2 polarization through immune

regulatory pathways under certain conditions. The increased

expression of H2-Ea, an antigen presentation-related gene, aligns

with the tissue repair role of M2 macrophages. Additionally, the

upregulation of Ptgs2 indicates that COX-2 and its product PGE2

may promote M2 polarization through anti-inflammatory

mechanisms, while the expression of Nox3 could be linked to the

metabolic reprogramming required for M2 polarization.

Furthermore, enhanced expression of Muc3 suggests that

macrophages may support host defense by strengthening

barrier functions.
Frontiers in Immunology 05
These gene expression changes are consistent with our findings

from fluorescent immunostaining and RT-qPCR experiments,

providing additional evidence that F. nucleatum infection drives

M2 polarization in macrophages. Overall, these results highlight a

potential link between F. nucleatum infection and M2 macrophage

polarization, offering a foundation for further investigation into the

underlying molecular mechanisms.
3.3 Functional enrichment analysis

A total of 2,099 differentially expressed genes (DEGs) were

subjected to Gene Ontology (GO) enrichment analysis, with results

summarized in Figure 4A. The DEGs were categorized into

biological processes (BP, 34%, 2,074 genes), cellular components

(CC, 50%, 4,347 genes), and molecular functions (MF, 26%, 2,203
FIGURE 3

Differential gene expression analysis. (A) PCA plot. (B) Bar chart of differentially expressed genes (DEGs). Differential expression analysis identified
2029 DEGs, with 763 upregulated and 1266 downregulated genes. (C) Volcano plot of DEGs.
FIGURE 2

Validation of M2 polarization in RAW264.7 cells. (A) qPCR results for M1 polarization marker genes, CD86 and iNOS. (B) qPCR results for M2 polarization
marker genes, MR and CD206. (C) Immunofluorescence images of M1 and M2 polarization. DAPI stains nuclei in blue; iNOS (red) is the marker for M1
polarization, and CD206 (green) is the marker for M2 polarization. ns (not significant): P > 0.05, indicating no statistically significant difference.
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genes). These distributions reflect the extensive alterations in

cellular functions and components induced by F. nucleatum

infection. In the BP category, significantly enriched terms

included immune-related processes such as inflammatory

response, cellular response to lipopolysaccharide, and cellular

response to tumor necrosis factor. In the CC category, DEGs

were predominantly localized to the cytoplasm, indicating

substantial changes in intracellular dynamics post-infection.

Enriched terms in the MF category, such as protein binding and

cytokine activity, suggested enhanced protein interactions and the

secretion of signaling molecules (Figure 4B).

The top 20 GO terms with the lowest P-values, visualized in a

bar chart (Figure 4C), showed significant enrichment in processes

such as inflammatory response, cytokine activity, and cellular

response to chemical stimuli. These terms underscore the

extensive transcriptional reprogramming of macrophages

following infection, involving immune activation, signal

transduction, and metabolic adaptation. Furthermore, a bubble

plot analysis highlighted dynamic changes in genes linked to

inflammation, immune regulation, and metabolic processes

(Figure 4D). Collectively, these findings indicate that F.

nucleatum infection induces profound transcriptional alterations

in macrophages, enhancing protein interactions and activating

immune signaling networks to reinforce host defenses against

pathogenic invasion.

The biological significance of these molecular functions was

further validated through KEGG enrichment analysis, which

identified the NF-kB signaling pathway as a critical mediator of
Frontiers in Immunology 06
the host immune response during F. nucleatum infection (Figure 5).

KEGG analysis also revealed that cytokine-cytokine receptor

interactions and NF-kB activation play key roles in orchestrating

immune and inflammatory responses. Specifically, NF-kB signaling

drives M2 polarization of macrophages by coordinating cytokine-

mediated interactions, influencing disease progression and host-

pathogen dynamics.
3.4 Protein-protein interaction and NF-kB
pathway analysis

Protein-protein interactions among DEGs (score>400) were

analyzed using the STRING database, and the resulting

interaction network was visualized with Cytoscape (Figure 6A).

Key genes with high connectivity, including Ccl2, Ccl5, Ccl4

(involved in immune cell recruitment), Tnf, and Il10 (regulators

of inflammation), were identified in Table 2. Notably, Tnf emerged

as a central hub within the NF-kB pathway, influencing cell

survival, proliferation, and inflammation modulation. These

findings suggest a complex regulatory network that modulates

macrophage immune responses upon F. nucleatum infection.

Within the NF-kB pathway, regulatory genes such as Nfkbia and

Nfkb1 play pivotal roles in macrophage polarization and

inflammatory responses. Nfkbia controls the duration of NF-kB
activity, while Nfkb1 drives the expression of inflammatory genes.

Tnf, a key cytokine, amplifies NF-kB signaling and promotes M2

polarization by enhancing tissue repair and anti-inflammatory
FIGURE 4

GO enrichment analysis. (A) Bar chart of GO enrichment statistics for DEGs. (B) GO enrichment bubble plot. (C) Bar chart of the top 20 GO terms
with the lowest p-values. (D) GO enrichment scatter plot.
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functions mediated by cytokines like IL-10 and TGF-b. These
interactions support the hypothesis that F. nucleatum infection

induces M2 polarization through the TNF/NF-kB axis.

To elucidate gene interactions within the NF-kB pathway, a gene

interaction network was constructed using Cytoscape (Figure 6B).

Nodes represent individual genes, while edges denote interactions.

Nfkb1 emerged as the central node with extensive connections,

highlighting its crucial role in regulating immune responses,

inflammation, and cell fate. Other key genes, including Rel, Relb,

Nfkbia, Nfkibb, Nfkb2, and Bcl3, were identified as interacting

partners. For instance, Nfkbia and Nfkibb inhibit Nfkb1 activity by

forming inhibitory complexes, which can be reversed upon specific

signals, allowing Nfkb1 to translocate into the nucleus and regulate

target gene expression. Additionally, Bcl3 modulates NF-kB activity

by binding to the complex, thereby fine-tuning downstream

responses. These findings provide a comprehensive view of the NF-

kB-mediated regulatory network during F. nucleatum infection,
Frontiers in Immunology 07
revealing its role in promoting M2 macrophage polarization and

coordinating immune responses to infection.
3.5 Validation of NF-kB pathway activation

Transcriptomic analysis identified a clear upregulation of the

NF-kB signaling pathway in RAW264.7 macrophages following F.

nucleatum infection. To validate this observation and elucidate the

molecular mechanisms underlying M2 macrophage polarization,

we conducted RT-qPCR and Western Blotting to assess NF-kB
pathway activation at both mRNA and protein levels. These

experiments aimed to verify the hypothesis that F. nucleatum

drives M2 polarization through TNF/NF-kB pathway activation.

Transcriptomic data revealed significant upregulation of key

NF-kB pathway genes, including Il1b, Tnf, Cd40, Nfkbia, Nfkb1,

Traf1, and Traf2, while genes such as Tnfsf13b, Rank, and Tlr4 were
FIGURE 5

KEGG enrichment analysis. (A) Bar chart of KEGG enrichment statistics for DEGs. (B) KEGG enrichment bubble plot. To interpret KEGG enrichment
pathways from multiple perspectives, the bubble plot was constructed. The x-axis represents the enrichment factor, and the y-axis shows pathway
names. The size of the bubbles represents the number of significantly enriched genes annotated to each GO term, while the color indicates the
Q value.
FIGURE 6

Interaction network diagram. (A) Protein-protein interaction (PPI) network. Using the STRING protein interaction database, interaction networks of all
DEGs were analyzed, filtering for interaction scores >400. The PPI network was visualized using Cytoscape software. (B) NF-kB gene interaction
network. The STRING database was used to analyze interactions between key NF-kB pathway proteins and DEGs from transcriptome analysis. The
network was visualized using Cytoscape software.
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downregulated (Figure 7). Upregulated genes were highlighted in

red and downregulated genes in green, with intensity reflecting their

respective log2 fold changes. Among these, the central role of Nfkb1

in the interaction network underscored its importance in regulating

immune responses, inflammation, and macrophage polarization.

Previous researches demonstrated that Nfkb1, along with other

pathway components such as Nfkbia, Rel, and Relb, forms dynamic

complexes to modulate gene expression in response to

infection stimuli.

RT-qPCR analysis confirmed the significant upregulation of

Tnf, Malt1, Nfkb1, and Nfkb2 following infection, consistent with

transcriptomic findings. Elevated expression of MALT1 and TNF,

two critical mediators of NF-kB signaling, reflects enhanced cellular

responses to infection, potentially amplifying immune and

inflammatory processes in RAW264.7 cells. Additionally, tumor

necrosis factor-related genes Lta and Ltb were upregulated,

suggesting a pro-inflammatory response facilitated by NF-kB
pathway activity.

Western blotting further corroborated these findings, revealing

increased expression of NF-kB pathway proteins P50 and P100 in

infected cells compared to controls (Figure 8). Quantitative analysis

of band intensities confirmed a significant rise in P50 and P100

protein levels, validating NF-kB activation at the protein level. This

upregulation aligns with RT-qPCR results, indicating enhanced

immune and inflammatory responses in RAW264.7 cells under F.

nucleatum-induced stress.

Together, these results provide compelling evidence that the

NF-kB pathway serves as a central regulator in the macrophage

response to F. nucleatum infection. The observed activation of NF-

kB signaling corroborates transcriptomic data, supporting the
Frontiers in Immunology 08
hypothesis that F. nucleatum induces M2 macrophage

polarization through TNF/NF-kB signaling, thereby modulating

host defense and inflammatory responses.
4 Discussion

In this study, we systematically examined the impact of F.

nucleatum infection on macrophage polarization, particularly the

mechanism by which it promotes M2 polarization of RAW264.7

cells via the NF-kB signaling pathway. By establishing an in vitro

infection model, we demonstrate that F. nucleatum infection not

only induces morphological alterations in macrophages but also

significantly upregulates M2 polarization-associated markers

(CD206, MR). The infection of macrophages by F. nucleatum has

little effect on cell proliferation (The relevant experimental results

are not presented in this article.). Our findings align with and

expand upon previous studies, highlighting the complex interplay

between F. nucleatum and macrophage polarization in CRC (20,

27). These results offer novel mechanistic insights into the role of F.

nucleatum in promoting immune regulation within the

tumor microenvironment.

Through the application of scanning electron microscopy, RT-

qPCR, and immunofluorescence assays, it was observed that

RAW264.7 cells exhibited characteristic M2-type polarization

following infection with F. nucleatum. This finding is consistent

with other reports that F. nucleatum promotes M2 polarization of

macrophages in the microenvironment of CRC. By promoting an M2

phenotype in macrophages, F. nucleatum appears to suppress anti-

tumor immunity and foster a microenvironment conducive to tumor
TABLE 2 Gene node number.

Gene Nodes Description of function References

Tumor necrosis factor (Tnf) 78
A principal inflammatory cytokine that modulates inflammatory
and immune responses

(37).

Monocyte chemotactic protein 2 (Ccl2) 53
A chemokine functions to recruit and activate monocytes into the
area of inflammation

(38, 39)

Interleukin-10 (Il10) 52 A pivotal anti-inflammatory cytokine. (40).

toll-like receptor 2, Squamous cell carcinoma associated protein
2 (Tlr2)

51
Playing a crucial role in the activation of the innate immune
system through the recognition of pathogen-associated
molecular patterns

(41).

Nuclear factor kappa B repressor alpha regulates NF - k B
signaling (Nfkbia)

45 Participates in various immune and inflammatory responses
(42)

CD40 molecule (Cd40) 41
A crucial receptor in the immune system that plays a key role in
modulating B cell proliferation and antibody production

(43)

RANTES (Ccl5) 40
Potentially contributing to the recruitment of immune cells to the
site of inflammation

(44)

Nuclear factor kappa B1 (Nfkb1) 40
A pleiotropic transcription factor implicated in the regulation of
inflammatory and immune responses

(45)

MIP-1 b (Ccl4) 40
A chemokine that plays a crucial role in the recruitment and
activation of immune cells

(38, 39)

Spleen tyrosine kinase (Syk) 36
Regulatory molecules involved in the signal transduction pathways
of B cell receptors and other immune receptors

(46)
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progression (20, 47–49). Similar effects have been observed in other

cancer types, such as oral squamous cell carcinoma. For example, F.

nucleatum activates NF-kB signaling to promote an inflammatory

and immunosuppressive TME (50). Notably, our study observed

morphological changes in macrophages post-infection, along with

upregulation of key NF-kB pathway genes (Nfkb1, Nfkb2, Tnf, and

Malt1), further establishing F. nucleatum’s contribution to an

immunosuppressive TME in CRC.

Similar to F. nucleatum, other pathogens such as Helicobacter

pylori and pathogenic E. coli strains have been shown to influence

macrophage polarization and contribute to tumor progression

through immune modulation. For instance, H. pylori, a well-

known gastric cancer risk factor, drives M2 polarization via the

cag pathogenicity island and NF-kB activation, promoting immune

tolerance within the gastric TME (51). Similarly, E. coli strains

harboring pks islands can induce DNA damage in colon cells and

drive M2 macrophage polarization, contributing to CRC

development by creating an immunosuppressive environment

(52). Another example is Porphyromonas gingivalis, an oral

pathogen implicated in pancreatic cancer, which activates NF-kB
Frontiers in Immunology 09
signaling to induce M2 polarization and foster a tumor-supportive

immune profile (53).

These examples underscore a shared strategy among pathogens,

wherein NF-kB activation leads to M2 macrophage polarization,

enabling immune evasion and facilitating tumor progression (54,

55). While NF-kB signaling is a key driver of the M2-polarizing

effects of pathogens like H. pylori and E. coli, our study uniquely

highlights F. nucleatum’s role in CRC. Beyond inducing M2

polarization, F. nucleatum upregulates genes involved in

angiogenesis, cytokine signaling, and immune responses,

underscoring its multifaceted regulation of the TME and its

significant contribution to CRC progression.

Through RNA-Seq and GSEA analysis, we identified that F.

nucleatum infection markedly upregulates several signaling

pathways associated with inflammation and tumor progression,

notably key genes in the NF-kB pathway, including Nfkb1, Nfkb2,

Tnf, and Malt1. Subsequent RT-qPCR and Western Blot analyses

confirmed a significant increase in the expression levels of P50 and

P100 proteins following infection, which suggests that the NF-kB
pathway is crucial in regulating M2-type polarization induced by F.
FIGURE 7

NF-kB pathway map. Upregulated genes are marked in red, with deeper colors indicating higher log2(fold change). Downregulated genes are
marked in green, with deeper colors indicating lower log2(fold change).
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nucleatus infection. These fundings suggest that disrupting the M2

macrophage phenotype or inhibiting NF-kB signaling may offer

new strategies to combat pathogen-driven CRC. T These strategies

may also be broadly applicable to other cancers associated with

chronic bacterial infections, such as those linked to H. pylori, E. coli,

and P. gingivalis. Collectively, this study lays the groundwork for

developing pathogen-targeted immunotherapies that could

transform the management of CRC and other infection-

associated cancers.

This study provides a strong experimental basis for F.

nucleatum-induced M2 macrophage polarization but has

limitations. It uses in vitro cell models without in vivo validation.

Future research should use mouse models to strengthen the link

between F. nucleatum infection and M2 polarization, improving

clinical relevance. Additionally, validating the association in
Frontiers in Immunology 10
colorectal cancer patient samples could assess F. nucleatum’s

potential as a biomarker or therapeutic target.

5 Conclusion

In conclusion, this study demonstrates that F. nucleatum induces

M2 macrophage polarization through NF-kB activation, contributing

to an immunosuppressive tumor microenvironment in colorectal

cancer (CRC). By comparing F. nucleatum with other pathogens

utilizing similar mechanisms, we highlight the broader role of

bacterial modulation of macrophages in cancer progression. These

findings improve our understanding of F. nucleatum’s involvement in

CRC andmay guide the development of immunomodulatory therapies

targeting macrophage reprogramming or NF-kB pathways, potentially

enhancing outcomes in pathogen-associated cancers.
FIGURE 8

Validation of NF-kB pathway-related genes. (A) RT-qPCR analysis of NF-kB pathway-related genes. Significant changes in expression levels were
observed post-infection compared to the uninfected control group. (B) Western blot analysis. Bands show protein expression in Control and Treat
(post-infection) samples. Increased expression of P50 and P100 was observed in infected cells compared to the control group. (C) Quantitative
analysis of Western blot band intensity. ns (not significant): P > 0.05, indicating no statistically significant difference. *: P≤0.05, indicating a statistically
significant difference. **: P≤0.01, indicating a very significant difference. ***: P≤0.001, indicating an extremely significant difference. ****: P≤0.0001,
indicating an exceedingly significant difference.
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