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Background: Although immune checkpoint inhibitors (ICIs) represent a

substantial breakthrough in cancer treatment, it is crucial to acknowledge that

their efficacy is limited to a subset of patients. The heterogeneity and stemness of

cancer render its response to immunotherapy variable, warranting the

identification of robust biomarkers for evaluation.

Methods: Publicly available Ovarian Cancer (OV) single-cell RNA (scRNA)

sequence dataset was collected and analyzed to elucidate the intrinsic driver

gene of OV cancer cells. Through genome-scale CRISPR screening of RNA

sequencing data from Project Achilles, essential genes specific to OV were

identified. A novel cancer stem cell index (CSCI) was developed and validated

using multiple advanced algorithms and large-scale datasets, as well as

corresponding clinical features, including 14 OV transcriptomic datasets, 7

pan-cancer ICI transcriptomic cohorts and one melanoma scRNA dataset

derived from PD-1 treated patients.

Results: Chromosomal 20q gain, 8q gain, and 5q loss have been identified as

ovarian cancer-specific driving variations. By analyzing large-scale datasets of

ovarian cancer transcriptomics, including scRNA and CRISPR cell line datasets,

we have identified a gene set that influences tumor intrinsic drivers and stemness

properties. We then developed the CSCI to predict the prognosis and response to

immunotherapy in ovarian cancer patients using advanced machine learning
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algorithms. When applied to PD1/PD-L1 ICI transcriptomic cohorts, CSCI

consistently and accurately predicts tumor progression and immunotherapy

benefits, with a mean AUC greater than 0.8. Notably, compared to previously

established signatures, CSCI demonstrates better predictive performance across

multiple ovarian cancer datasets. Intriguingly, we discovered that amplification of

CSE1L enhances the stemness of tumor-initiating cells, facilitates angiogenesis,

and the formation of ovarian cancer, which can serve as a potential therapeutic

target. Finally, experiments validated that CSE1L promotes progression,

migration, and proliferation of ovarian cancer.

Conclusions:Our study has uncovered a robust correlation between variations in

cancer intrinsic drivers and stemness, as well as resistance to immunotherapy.

This finding provides valuable insights for potential strategies to overcome

immune resistance by targeting genes associated with stemness.
KEYWORDS

cancer stemness, intrinsic heterogeneity, immunotherapy therapy, CSE1L, ovarian cancer
Introduction

The exceptional development in immuno-oncology and the

emergence of immunotherapeutic medications like ICIs and

chimeric antigen receptor (CAR) T cell therapy, as of the present,

furnish promising strategies to stimulate the inherent immune

system for conquering cancers (1). However, a significant

proportion of patients fail to experience substantial benefits from

immunotherapy. Consequently, there is an urgent need to identify

eligible patient populations for effective immunotherapy.

The effectiveness of immunotherapy relies on a complex

network involving multiple modulators. Conventional biomarker

inquiries have chiefly concentrated on analyzing the large quantity

of data gotten from RNA sequencing (RNA-Seq) of uninjured

tumor tissue or the tumor immune microenvironment (TME) (2).

Possibly owing to the tumor genetic diversity, the TME displays

significant differences among various cancer varieties and even

between distinct individuals (3). On top of that, previous studies

have proposed certain biomarkers associated with immune

response, such as tumor mutation burden (TMB), which plays a

crucial role in initiating the cancer-immunity cycle (4).

Nevertheless, because of tumor genetic heterogeneity, these

biomarkers fail to fully stratify patients for optimal therapeutic

benefits. As an instance, The often-used TMBmay fail to predict the

potency of combined anti-Programmed Cell Death 1 (anti-PD-1)

and anti-Cytotoxic T-Lymphocyte Associated Protein 4 (anti-

CTLA-4) treatment in a number of cancer varieties (4),

underscoring the necessity to establish robust markers and

optimize biomarker combinations. Advancing the detection of

novel triggers specific to cancer cells, the appearance of single-cell

RNA sequencing (scRNA-Seq) currently allows for the examination
02
of genomic characteristics and expression fashions at the single-cell

level (5).

Cancer stem cells (CSCs), which are involved in the

commencement, development, and dissemination of tumors, are

cells possessing the capacity for self-renewal (6). n the realm of

cancer, increasing evidence shows a substantial correlation between

stemness characteristics and immune avoidance as well as resistance

(7). Within 21 varieties of solid cancers, a prior study disclosed an

inverse correlation between heightened stemness and the

penetration of immune cells (8). Within pan-cancer cohorts,

Zhang Z discovered a reverse correlation between the stemness of

tumors and the effectiveness of ICI treatment (9). Nevertheless, the

relationship between tumor stemness and ICI efficacy in ovarian

cancer has been disregarded. Leveraging the powerful gene

expression-based stemness index (mRNAsi) developed by Lian H

et al., To examine the effect of stemness on ICI, we accurately

depicted cancer stemness and pinpointed stemness-associated

genes in large-scale ovarian cancer groups (9).

We uncovered the innate distinctions particular to ovarian

cancer and detected a reverse correlation between cancer-intrinsic

variation, cancer stemness, and the outcomes of ICI treatment in

SKCM single cell ICI cohorts. In this investigation, via carrying out

integrated analyses regarding the ovarian cancer transcriptome,

single-cell, and CRISPR cell line datasets (10). Subsequently, we

developed a cancer stemness cell index (CSCI) through integrative

analysis of 15 ovarian cancer cohorts comprising 2518 patients. The

precision of CSCI in predicting immunotherapy response was

further evaluated and validated using 7 independent anti-PD-1

ICI cohorts and the submap algorithm. Intriguingly, we identified

two stemness-associated genes, RAD21 and CSE1L, driven by

intrinsic tumor variations. Even though RAD21 has been
frontiersin.or
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previously noted for its copy number amplification helping with

tumor immune avoidance and lessening the efficacy of

immunotherapy (11), we also found that CSE1L amplification can

facilitate tumor cell invasion through the activation of JAK-STAT

and VEGF signaling pathways. This discovery suggests that CSE1L

may represent a novel potential immunotherapeutic target in the

future. Overall, our comprehensive analysis provides valuable

insights into the involvement of intrinsic variations and stemness

in ovarian cancer immunotherapy.
Methods

Cell lines

Human ovarian cancer cell lines SK-OV-3 and A2780 were

supplied by the Cell Bank of the Committee for Conservation of

Typical Cultures of the Chinese Academy of Sciences.These cell

lines were maintained using Dulbecco’s Modified Eagle Medium

(DMEM) sourced from Gibco (New York, USA), enriched with

10% fetal bovine serum.The medium was supplemented with

penicillin and streptomycin at a concentration of 100 IU/mL

(Gibco, New York, USA).
Immunohistochemistry

Ovarian cancer tissues and para-carcinoma tissues removed during

operations were rinsed with sterile PBS to remove blood stains, and

then fixed in paraformaldehyde solution for 24 hours. After the tissue

samples were extracted and encased in paraffin, they were consecutively

sliced to a thickness of 4 mm. Sections were affixed to slides using the

floating patch method, placed in an oven at 60°C, and baked overnight.

They were then deparaffinized twice in xylene solution and rinsed in a

gradient ethanol solution after soaking and rinsing in PBS. The sections

were placed in citrate antigen retrieval solution and incubated under

high pressure for 1 hour. The sealing solution was carefully aspirated,

diluted primary antibody was added dropwise, and the sections were

placed in a wet box for overnight incubation at 4°C. Then the wet box

was rewarmed at room temperature for 1 hour. The application of the

secondary antibody was carried out by dropping. After that, the

sections were incubated in the wet box for 2 hours, rinsed in PBS

five times, and the excess PBS around the samples was wiped off. Add

DAB chromogen solution, observe the degree of color development

under the microscope, and rinse with water to terminate the reaction

when the appropriate color depth is reached. The slices were washed

twice in deionized water, stained with hematoxylin and eosin, rinsed

under running water until colorless, then dehydrated in a gradient

ethanol solution, immersed in xylene twice, each time for 5 minutes,

sealed with neutral gum, and dried in a fume hood. Finally, the samples

were examined using a light microscope. The experimental procedures,

protocols and informed consent for this study were all approved by the

Research Ethics Committee of Binzhou Medical University Hospital.

We confirm that researches involving human participants including

collection of histological specimens and immunohistochemical staining
Frontiers in Immunology 03
of patients were all performed in accordance with the Declaration of

Helsinki. From all the individuals involved and/or their legal protectors,

the consent after thorough information communication was obtained.
Knockdown in ovarian cancer cell lines

The siRNA targeting CSE1L was synthesized by Biotend Co.,

Ltd. Transfections with 50 nM of this siRNA were carried out for 24

hours using the Lipofectamine 3000 transfection kit (Thermo Fisher

Scientific, Waltham, Massachusetts, USA).
Western blotting

For the Western blot analysis, the cultured cells were first rinsed

with ice-cold PBS. Total cell protein lysates were then extracted at 4°C

using RIPA lysis buffer (Beyotime, Shanghai, China) supplemented

with 1% protease inhibitor cocktail (MedChemExpress, New Jersey,

USA). After centrifugation at 12,000 g for 20 minutes at 4°C, the

supernatant containing proteins was collected and mixed with loading

buffer. The samples were subsequently separated by 10% SDS-PAGE

and transferred onto a PVDF membrane. In the environment of room

temperature, the membrane was covered with 5% skim milk for two

hours, followed by an overnight incubation at 4°C with primary

antibodies. Following washes with Tris Buffered Saline, the

membrane was incubated with secondary antibodies, and protein

bands were detected using enhanced chemiluminescence reagents

(Beyotime, Shanghai, China). The primary antibodies used in this

analysis included CSE1L (22219-1-AP, Proteintech, Wuhan, China)

and Alpha Tubulin (11224-1-AP, Proteintech, Wuhan, China).
Cell viability measurement

To assess cell viability, 2×10^3 cells were plated in each well of a

96-well plate and incubated for a predetermined period. Following

this, 10 ml of CCK-8 reagent (Dojindo Molecular Technologies,

Kumamoto, Japan) was added to each well and incubated for one

hour. The measurement of absorbance at 450 nm (OD450) was

subsequently carried out for evaluation.
Assessment of cell migration abilities

To assess cell migration capability, adjust the cell density for

seeding to achieve approximately 100% confluence before making a

scratch. Use the tip of a 10 ml pipette to create a linear wound on the

cell surface. Add serum-free medium and incubate at 37 °C with 5%

CO2. Capture images using an inverted microscope at 0 hours and

24 hours post-incubation for quantitative analysis.

Simultaneously, 4×10^4 cells were suspended in 200 mL of

culture medium and seeded into the upper chamber of Transwell

plates (BD Biosciences, Bedford, MA, USA). Meanwhile, 600 L of

medium with 10% FBS was introduced into the bottom
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1549656
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1549656
compartment. After a 24-hour incubation at 37 °C, the cells on the

outside of the Transwell membrane were fixed with 4%

paraformaldehyde for 30 minutes and then stained with 0.25%

crystal violet for an additional 30 minutes. Once the cells inside the

chamber were removed, the migrated cells on the outside of the

membrane were photographed and quantified.
Retrieval and preprocessing of large-scale
ovarian cancer datasets

The ovarian cancer RNA sequencing (RNA-seq) data and survival-

related data sourced from The Cancer Genome Atlas (TCGA) were

fetched from the UCSC Xena data portal (12). Gene Expression

Omnibus (GEO): fourteen OV GEO cohorts with detailed survival

data were downloaded, namely GSE13876, GSE138866, GSE140082,

GSE14764, GSE17260, GSE18520, GSE18521, GSE19829, GSE26712,

GSE30161, GSE31245, GSE49997, GSE63885 and GSE9891.
Immunotherapy-associated datasets
collection

Multipledatasetswithanti-PD-L1/PD-1cohortwerecollected in the

study to investigate theassociationbetween immunotherapyefficacyand

cancer stemness. The Rose TL cohort (13) (GSE176307: ICB treated

metastatic urothelial cancer). The JungH cohort (14) (GSE135222: anti-

PD-1/PD-L1 treated non-small cell lung carcinoma) and the Riaz N

cohort (15) (GSE91061: anti-CTLA4 andPD-1 treatedmelanoma)were

obtained fromGEO.TheLiu/VanAllen cohort (16) (phs000452.v3: anti-

PD1/CTLA4-treated metastatic melanoma) was downloaded from

dbGaP database (https://www.ncbi.nlm.nih.gov/gap/).The Necchi

cohort (17) (IMvigor210: Atezolizumab treated advanced or

metastatic urothelial carcinoma) was downloaded using

“IMvigor210CoreBiologies” R package. The Wang GY cohort (18)

(anti-PD-1/PD-L1 treated melanoma) was downloaded from the

Supplementary Tables of this research. The Braun DA cohort (19)

(anti-PD-1 treated advanced clear cell renal cell carcinoma) was

downloaded from the Supplementary Tables of this research. ICI-

treated OV cohort was downloaded from cds database (http://

cdsdb.ncpsb.org.cn/) which also can be obtained from GEO

database (GSE188249). In addition, Gene expression and clinical

information of these datasets with immunotherapy treated were

collected. All cohorts used in this article were described in

Supplementary Table S1.
Single cell datasets of OV and ICI treated
SKCM collection

Preprocessed gene expression profiles of ovarian cancer (OV)

were obtained from the GEO database under accession number

GSE184880 (20), comprising five non-malignant tissues and seven

high-grade serous ovarian cancer tissues. Additionally, with the aim

of exploring the correlation between the stemness of cancer cells
Frontiers in Immunology 04
and the efficacy of immunotherapy, a melanoma cohort that

incorporated both data on ICI response and single-cell RNA

sequencing was accessed through the GEO accession number

GSE115978 (10).
Identifying essential OV genes

The genome-wide CRISPR screening of OV cells was obtained

from the DepMap portal (https://depmap.org/portal/download/). The

CERES algorithm (21) was used to calculate dependency scores for

approximately 17,000 candidate genes. Essential genes were

identified as those with a CERES score of <−1 in 75% of OV cell

lines (n = 73).
Identifying cancer intrinsic heterogeneity
and stemness related genes and
construction of CSC prediction model

We constructed an innovative framework for cancer intrinsic

heterogeneity and stemness prediction modeling, illustrated in

Figure 1A. Initially, to elucidate genes driving tumor intrinsic

heterogeneity, we analyzed the OV single-cell dataset

(GSE115978) with inferCNV (22) R software. Our analysis

revealed widespread chromosomal alterations across OV tumor

cells, specifically chr 5q deletions and 8q/20q amplifications

(Figure 1A: step1-I; S1F-H). Given that genomic amplifications

potentially enhance gene expression and tumorigenic properties, we

focused on 203 heterogeneity-associated genes located within

amplified regions on chromosomes 8q and 20q. Subsequently, to

pinpoint essential genes in OV pathogenesis, we examined genome-

wide CRISPR-based functional screens from DepMap. This

investigation identified 687 genes essential for maintaining

viability across 73 OV cell lines (Figure 1A: step1-II). By

intersecting these datasets, we pinpointed 11 critical tumor-

intrinsic genes (Figure 1A: step2-I).

Concurrently, recognizing stemness contributions to

immunotherapy resistance, we compiled 14 OV transcriptome

datasets from GEO (Figure 1A: step1-III, Supplementary Table S1).

We employed the mRNA-based stemness index (mRNAsi) to quantify

stemness characteristics within each sample, following methodologies

described in previous studies (23). Our approach utilized reference

stem cell gene signatures with weighted coefficients (23) to calculate

stemness scores through Spearman correlation analysis between

sample expression profiles and canonical stem cell patterns. These

correlations were normalized to a 0-1 scale for comparative assessment,

with higher values indicating enhanced stem-like properties. We then

examined relationships between global mRNA expression and

stemness indices, defining mRNAsi-associated transcripts as those

showing significant positive correlations (Cor > 0, P < 0.05) in at

least 50% of datasets (7/14), yielding 464 stemness-linked mRNAs

(Figure 1A: step1-III). Through dataset integration, we established 79

stemness-related genes fundamental to tumor cell viability (Figure 1A:

step2-II; Supplementary Table S2).
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Finally, using seven OV cohorts with survival information, we

developed our CSC prediction model. We implemented multiple

machine learning approaches: random forest (RSF), elastic network

(Enet), gradient boosting machine (GBM), ridge regression,

Stepcox, plsRcox, CoxBoost, LASSO, and SuperPC. By inputting

the expression matrix that integrates cancer stemness with intrinsic

driver genes, we employed multiple machine learning algorithms to

forecast both the survival duration and status of patients.

Ultimately, scores for each patients were computed (Figure 1A:

step 3). The C-index was determined using the scores predicted by

the model, applying the ‘coxph’ function to assess the survival

duration and status of patients. The model that achieved the highest

average C-index across several datasets is deemed the most effective.

In this process, survival, randomForestSRC, glmnet, plsRcox,

superpc, gbm, CoxBoost, survivalsvm, BART, miscTools, and

compareC R packages were involved.
Gene set variation analysis and pathways
enrichment analysis

To investigate the correlation between cancer immunity cycle

and CSE1L, we employed the “GSVA” R package (24) for the

execution of GSVA enrichment analysis.
Immune cell infiltration abundance
calculation

The matrices for estimating the infiltration of immune cells in

patients with OV, which were calculated using the algorithms from

the Tumor Immune Estimation Resource (TIMER) (25), were

acquired by uploading the expression matrix and downloading

them from the TIMER database (https://cistrome.shinyapps.io/

timer/).
Prediction of immunotherapy outcomes

To assess the efficacy of PD-1/CTLA4 immunotherapy, we

began by calculating tumor immune dysfunction and exclusion

(TIDE) scores using expression data from patients with thyroid

cancer. Firstly, we performed a two-step normalization process on

the gene expression matrix by first centering each sample by its

median expression value and then centering each gene by its

median expression across all samples, effectively removing

systematic biases to make both samples and genes more

comparable for downstream analysis. Subsequently, we processed

these expression profiles on the TIDE (26) database platform

(http://tide.dfci.harvard.edu/) to forecast patient outcomes by

uploading the expression matrix to the website, where we selected

‘other’ in the ‘cancer type’ section and ‘no’ in the ‘Previous

immunotherapy’ section. We created input files necessary for

SubMap analysis through a careful data processing procedure. We

commenced with the original raw expression data, imposing strict
Frontiers in Immunology 05
filters to eliminate genes with low expression (specifically, those

exhibiting values below 1 in more than 90% of samples). To ensure

the gene expression data was standardized, we identified

overlapping gene lists across various datasets and conducted a

log2 transformation by applying the formula (log2(x + 1)) to

normalize the expression levels and address possible numerical

difficulties. Sample classification involved dividing samples into two

separate groups: low-CSCI and high-CSCI. Each group was

assigned a numerical rank to aid in computational analysis,

designating CSCI-low as rank 1 and CSCI-high as rank 2. The R

function generateInputFileForSubMap() was employed

systematically to create two essential files needed for SubMap

analysis: SubMap.gct and SubMap.cls. The SubMap.gct file

contains the log2-transformed gene expression matrix,

maintaining the molecular specifics of each sample, while the

SubMap.cls file provides the corresponding sample classification

data along with their assigned numerical ranks. This methodology

ensures that the generated files fulfill the rigorous input criteria of

the SubMap algorithm, allowing for accurate comparative analysis

of gene expression profiles across various immunological clusters.
Evaluation of pathway activity using
PROGENy

In order to assess the function of various pathways in patients

with ovarian cancer (OV), PROGENy (27) was employed as a tool

for inferring pathway activity based on gene expression. This

technique entails the utilization of key genes responsive to

pathways, which were obtained from an extensive assortment of

perturbation experiments that are publicly accessible.
Prediction of favorable drugs in high and
low CSE1L groups and drug sensitivity
screening

Using the ‘oncoPredict’ R package and the calcPhenotype

method, the prediction of drug sensitivity in cell lines was

accomplished by analyzing gene expression profiles. In order to

estimate the IC50 of drugs, a ridge regression model was

constructed based on the gene expression profiles of cell lines

obtained from GDSC using the pRRophetic algorithm (28).
Differential expression, survival analysis and
statistical analysis

The comparison of various characteristics between high- and low-

CSE1L groups was conducted using the Wilcoxon test. The Chisq test

was employed to analyze the variance in immunotherapy response

between low- and high- CSCI groups. Pearson’s correlation coefficient

was used to calculate the relationship betweenmRNA andmRNAsi. To

investigate the association between CSCI, CSE1L, and survival, Kaplan-

Meier survival analysis was performed, with the log-rank test used to
frontiersin.org
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FIGURE 1

Identification and validation of a negative association between cancer stemness and ICI response in cancer. (A) Workflow of identification of Cancer
intrinsic heterogeneity and stemness associated mRNAs and construction of predictors via multiple machine learning algorithms. (B–D) t-Distributed
Stochastic Neighbor Embedding (tSNE) plot of malignant cells from SKCM. (B) tSNE plots label the malignant cells by response phenotype. (C) tSNE
plot of AUCell score of CSC associated genesets in malignant cells, red indicates higher scores (high stemness) while blue indicates lower scores
(low stemness). (D) Raincloud plot of AUCell scores by response phenotype (NR vs. TN) in SKCM cohort. The center of the box plot are median
values, the bounds of the box are 25% and 75% quantiles (Wilcoxon test; ***P < 0.001). NR, non-responders; TN, treatment naïve patients.
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determine the significance of observed differences. The prognostic and

immunotherapy benefits of CSCI were assessed using time-dependent

receiver operating characteristic (ROC) curves, utilizing the ‘pROC’ R

package (29). Additionally, patients were categorized based on the

optimal threshold determined by the ‘survminer’ R package. A

significance threshold of P or adjusted P < 0. 05 served as the

threshold to determine statistical significance.
Results

Cancer intrinsic heterogeneity and
stemness is associated with ICI resistance

To investigate the clonal organization and cellular origins of OV

malignant cells, we initially acquired a single cell RNA profile of OV

carcinoma. This profile consisted of five normal ovarian tissues and

seven OV tissues. Our first step was to filter out cells that expressed

less than 200 genes and eliminate cells with over 20% expression of

mitochondrial genes. Following quality control measures, we then

classified the filtered cells into eight primary cell types using

established biomarkers. These cell types included T cells, NK

cells, Fibroblast, Myeloid, Epithelial, B cells, Plasmablast, and

Endothelial (Supplementary Figures S1A, B). Subsequently, we

employed the inferCNV algorithm to examine the copy number

variations (CNV) and clonality of the OV malignant cells derived

from epithelial cells (ECs). Out of the 3,396 epithelial cells obtained

from OV tissues, our analysis revealed that 2,807 ECs displayed

high CNV scores and were therefore considered to be malignant

(Supplementary Figure S1C).

Then, the evolutionary tree of phylogenetics was implemented to

visually represent the clonality and progression of malignant cells from

OV (Supplementary Figure S1D). The presence of 20q and 8q

amplifications, as well as loss of 5q, were universally observed in

100% of malignant OV cells (Supplementary Figures S1D, E). To

further analyze and identify the intrinsic drivers responsible for these

genetic alterations, UpSet plots were utilized, revealing a collective

count of 203 genes that were shared among eight subclonal cell

populations harboring 20q/8q amplifications and 5q loss in OV

samples (Supplementary Figures S1F, G; Supplementary Table S3).

Additionally, to identify key candidate genes implicated in OV

malignancy, an extensive investigation of DepMap-derived CRISPR-

based loss-of-function screens was conducted on a genome-wide scale.

Through this approach, a total of 687 genes were found to be critical for

the survival of 73 OV cell lines. After conducting a thorough analysis,

11 copy number variations driven genes were selected, as they

displayed significant impacts on the progression of ovarian cancer

cells (Figure 1A). Interestingly, it was observed that all 11 of these genes

exhibited copy number amplification, thus pointing towards a potential

role of 20q/8q gain in influencing the survival of tumor cells.

Additionally, taking into consideration the potential role of

cancer stemness in the resistance against ICIs, we gathered a total of

14 transcriptome datasets on ovarian cancer (OV) from the GEO
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we calculated the mRNA expression-based stemness index

(mRNAsi) for each patient (9). Using the Pearson correlation

coefficient, we identified mRNAs that displayed a significant

correlation with mRNAsi across multiple samples (Cor>0 &

P<0.05). Then, we discovered 464 mRNAs that were positively

correlated with the stemness index in at least half of the datasets (7

out of 14) and were deemed as tumor stemness-associated mRNAs.

Among these, we selected 79 mRNAs by overlapping the OV

mRNAsi-associated mRNAs with the mRNAs selected by CRISPR

(Supplementary Table S3). All these cancer stemness and intrinsic

drivers were chosen for further analysis. We then employed AUCell

enrichment analysis (30) to confirm the high specificity of the gene

set comprising cancer stemness and intrinsic drivers in recognizing

neoplastic cells in scRNA-seq data of OV (Supplementary Figure

S2A). To verify the impact of cancer stemness and inherent driver

genes on the efficacy of immunotherapy, we initially employed a

formerly published scRNA-seq dataset of melanoma (SKCM)

patients treated with ICI to analyze the correlation between

cancer stemness and the outcomes of ICI treatment (10). After

excluding patients without data on malignant cells, we included a

total of 23 patients from this cohort, consisting of 10 non-

responders (NR) and 13 treatment-naïve (TN) patients. Ideally, it

would have been preferable to conduct a comparison of cancer

stemness between individuals who responded to ICI treatment (R)

and those who did not respond (NR). However, the available dataset

did not include data specifically for responders. Since treatment-

naïve patients are likely to include both potential responders and

non-responders, we proceeded to compare the levels of stemness

between the non-responder group (NR) and the treatment-naïve

group (TN), as previously explained (10). As shown in Figures 1B,

C, the NR subgroup exhibited a higher abundance of cancer cells

with elevated stemness scores. Further analysis uncovered that

tumors from the NR subgroup exhibited significantly elevated

levels of stemness (P < 0.001, Figure 1D), suggesting a negative

association between cancer intrinsic driver and stemness with

immune checkpoint inhibitor outcomes.
Construction of cancer stemness cell index
based on large scale OV RNA-seq cohorts

To further construct a prediction model for cancer stemness cell

index (CSCI), we utilized nine machine learning algorithms on a

combination of six GEO OV datasets and OV TCGA dataset.

Subsequently, by employing these predictors, we computed the

risk score for each sample in the seven cohorts. To assess the

performance, we determined the average C-index for each

algorithm. Intriguingly, the majority of these predictors

demonstrated a notably high average C-index (Figure 2A). This

observation can be partially attributed to the exceptional quality of

our intrinsic cancer drivers and stemness markers. Out of all the

models, random forest (RSF) exhibited the highest precision level
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(mean C-index > 0.90, Figure 2A) and was selected as the ultimate

CSCI. Furthermore, using univariate cox analysis, we established a

significant association between high CSCI in the seven cohorts and

unfavorable survival outcomes (P<0.05, Figure 2B).

The advancement of next-generation sequencing and big data

mining technologies has fostered the extensive exploration and

development of gene expression-based signatures that can predict

outcomes. To comprehensively compare the performance of the

CSCI with other signatures, we systematically gathered published

signatures from the past decade. In total, 79 signatures were

included in this study, as detailed in Supplementary Table S4. It

is worth noting that the robustness of the CSC index in terms of

survival prediction surpassed that of almost all other models across

seven cohorts, namely GSE138866, GSE17260, GSE26712,

GSE49997, GSE63885, GSE9891, and TCGA, with mean AUC >

0.9 across the aforementioned cohorts (Figures 2C, D).

Considering the significance of cancer intrinsic driver and

stemness mRNAs in forecasting the effectiveness of tumor

immunotherapy, we employed the submap algorithm available on

GenePattern websites to anticipate the probability of immune

therapy response according to high- and low- CSCI clusters.

Notably, an intriguing observation emerged whereby patients

belonging to the low CSCI cluster manifested a substantial

response towards PD-1 immunotherapy (P < 0.05, Bonferroni

corrected P < 0.05, Figure 2E), thus exemplifying the exceptional
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forecasting capability of the CSCI model in the realm of PD-1

immunotherapy effectiveness.
Cancer stemness cell index as a promising
predictor for immunotherapy outcomes in
pan-cancer cohorts

In this study, we focused on evaluating the predictive value of the

CSCI in immunotherapy outcomes using different datasets associated

with PD-1/PD-L1 immune checkpoint inhibitors. Our findings

consistently showed that patients with certain types of cancer

(SKCM, UC, KIRC, or metastatic urothelial carcinoma) who had low

CSCI scores had significantly improved overall survival (OS) or

progression-free survival (PFS) after immunotherapy compared to

those with high CSCI scores (Figures 3A, B), suggesting that high

CSCI scores may compromise the benefits of immunotherapy.

Furthermore, the response to PD-1/PD-L1 ICI treatment differed

between patients with high and low CSCI scores. The pan-cancer

analysis revealed that patients with elevated CSCI scores exhibited a

poor response to ICI treatment, whereas over fifty percent of patients

with low CSCI scores demonstrated a positive response (Figure 3C),

including those with ovarian cancer (Supplementary Figure S1I).

Patients with high CSCI scores responded poorly to treatment, while

more than half of the patients with low CSCI scores responded, with a
FIGURE 2

Construction of cancer stemness cell index based on large scRNA-seq and bulk RNA-seq cohorts. (A) The C-indexes of 9 algorithms in the 7
validation cohorts. (B) Univariate Cox regression of RSF score in seven OV cohorts. (C) Heatmap showing the stability of various 79 models
compared with CSCI in 7 OV cohorts. Risky, worse survival rate (HR>1 & P<0.05); Protective, better survival rate (HR<1 & P<0.05). (D) ROC curves of
CSCI for predicting clinical status in different OV cohorts. (E) Predicted response rate of different CSCI groups to immune checkpoint inhibitors
(CTLA4 and PD1, R, Response; NR, no Response).
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FIGURE 3

Cancer stemness cell index as a promising predictor for immunotherapy outcomes in pan-cancer cohorts. (A) Kaplan-Meier estimates of overall survival
of patients treated with immunotherapy in UC (GSE176307), metastatic urothelial carcinoma (IMvigor210), KIRC (KIRC David (A) Braun et al., 2020),
SKCM (GSE91061) and SKCM (phs000452.v3.p1). (B) Kaplan-Meier estimates of progression free survival of patients treated with immunotherapy in UC
(GSE176307), NSCLC (GSE135222), KIRC (KIRC David (A) Braun et.al), SKCM (Wang GY el.al 2022) and SKCM (phs000452.v3.p1). (C)The response to
immunotherapy in different CSCI group patients. Response means CR/PR and Non-response means PD/SD (CR, complete response; PD, progressive
disease; PR, partly response; SD, stable disease). (D) ROC curves of CSCI for predicting response status in different ICI cohorts. (E) Multivariate Cox
regression of CSCI and clinical features in metastatic urothelial carcinoma (IMvigor210). (F) Kaplan-Meier estimates of overall survival of patients with
different groups in metastatic urothelial carcinoma (IMvigor210). The log-rank P value differences between each two groups are shown in the table.
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response rate of up to 96% (Figure 3C). Specifically, the high CSCI

group primarily exhibited no response (progressive disease or stable

disease), whereas the low CSCI group mostly showed a response

(complete response or partial response). Importantly, our analysis

demonstrated that CSCI had reliable predictive value in predicting

PD-1/PD-L1 ICI immunotherapy response, as indicated by the area

under the curve (AUC) values. The AUC curve showed strong

predictive performance, with a mean AUC > 0.8 in the seven cohorts

analyzed (Figure 3D). Additionally, we conducted further analysis

using the IMvigor210 dataset and found that even after removing

samples with incomplete clinical information, CSCI remained an

independent predictor of immunotherapy outcomes. Notably, it was

even more significant than PD-L1 expression in tumor cells (TC),

immune phenotype, or tumor mutation burden (TMB), based on

multivariate Cox regression analysis (Figure 3E). To extend the clinical

utility of our model, we investigated the combination of CSCI with

other commonly used immunotherapy response markers. We

specifically examined the combination of CSCI with TMB, a well-

established predictor of immunotherapy efficacy. Our results showed

that patients with low CSCI scores and high TMB had the most

optimal immunotherapy outcomes, whereas patients with high CSCI

scores had the poorest benefits from immunotherapy (Figure 3F).

In summary, our study provides valuable insights into the

predictive value of CSCI in immunotherapy outcomes. High CSCI

scores may compromise the benefits of immunotherapy, while low

CSCI scores are associated with improved survival and treatment

response. The combination of CSCI with other biomarkers, such as

TMB, may further enhance the stratification of patients

for immunotherapy.
Cancer intrinsic drivers and stemness
properties to portrait the path of OV
malignant cells progression

The concept of cancer stemness pertains to the tumors’ capacity

for self-renewal and differentiation into various lineages, often

observed in the initial phases of tumor differentiation.

Consequently, we postulate that the evaluation of tumor stemness

and intrinsic driver genes enables the quantification of tumor

proliferation and progression in ovarian cancer.

In order to evaluate this hypothesis, our initial step involved

reorganizing OV neoplastic cells obtained from scRNA-seq. This

process resulted in the discovery of 5 distinct neoplastic subclusters

(Figure 4A). Next, to analyze the diversity in gene expression among

the tumor cell population, we took a step further and started

identifying intra-tumor expression programs. These programs

included groups of genes that were found to be co-expressed in

each tumor sample. This was accomplished by employing a

technique called non-negative matrix factorization (NMF). The

resulting expression programs served as gene modules, indicating

high expression levels in specific subsets of tumor cells within each

individual tumor. A representative tumor, GSM5599631, was used

to showcase the NMF outcome (Figure 4B). Overall, we analyzed a

total of 31 intra-tumor expression programs across seven OV
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programs (MPs) found in multiple tumors (Figure 4C;

Supplementary Figure S2B; Supplementary Tables S5, S6).

Module1 (Stress response) was characterized by expression of

genes such as FOS and JUN, thus representing a stress-response-

related signature in tumor cells. Module2 (Immune activated) was

characterized by enrichment of allograft rejection. Additionally, we

found that Module3 (Immune activated) was enriched for

Interferon gamma/alpha response, which are related to the

immune activated pathways. Module4 (Prolification) was

characterized by enrichment of cancer prolification pathways,

including myc targets V1 and mtorc1 signaling. Module5 (Cell

cycle) was characterized by expression of Cell cycle-related genes

such as MKI67 and CDKN3 and enrichment of cell cycle, E2F

targets and G2M checkpoint pathways (Supplementary Table S5),

which was considered to be the inception of tumor development.

Interestingly, we found cancer intrinsic driver and stemness

associated mRNAs were significantly enriched for cell cycle and

DNA replication pathways (Figure 4D), implying the association

between tumor stemness-related genes and the initiation of

tumorigenesis. Then, we performed an overlap analysis of the

gene set comprising tumor intrinsic driver genes impacting tumor

progression and tumor stemness-related genes (Figure 4E). This

enabled us to identify the core genes associated with tumor

stemness induced by tumor intrinsic variations and finally we

selected four genes: RAD21, EXOSC4, CSE1L and RAE1. Earlier

investigations demonstrated that the amplification of RAD21

epigenetically restrains interferon signaling, thus promoting

immune escape in ovarian cancer and having the potential to

function as a molecular sign for immunotherapy regarding

ovarian cancer (11). Using AUCell, we found that these four

genes exhibit significantly higher predictive efficacy for malignant

tumor cells compared to all other tumor intrinsic driver and

stemness-related genes (Figure 4F, S2A). Next, pseudo-time

analysis was performed on the 5 malignant subclusters

(Figure 4G), and cell cycle cluster C4 was serves as the initiation

of tumorigenesis, followed by evolutionary progression along the

proliferative C2 cluster. Consistent with this, we found that RAD21

was highest expressed in the C4 subclass, and interestingly, we also

found that CSE1L was also in line with this trend, whereas there

were no significant differences observed in EXOSC4 and RAE1

among various subgroups (Figures 4H, S2C). Moreover, we also

found EXOSC4, CSE1L, and RAE1 were high expressed in no-

response OV patients, further proving that stemness-related genes

may affect the effect of immunotherapy (Supplementary Figure

S2D). The evolutionary trajectory also verified this result,

suggesting its utility in predicting OV malignant cell progression

(Figure 4I). Immune suppressive factors are the main obstacles

influencing tumor immunotherapy (31). Therefore, to investigate

the mechanisms by which RAD21 and CSE1L affect the efficacy of

immunotherapy, we examined the correlations between various

immune suppressive factors and RAD21/CSE1L in 14 ovarian

cancer datasets (Figure 4J). Our findings indicated that RAD21

primarily activates the expression of VTCN1 (B7-H4), while CSE1L

is significantly associated with VEGFB. Prior investigations have
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FIGURE 4

Cancer intrinsic drivers and stemness properties to portrait the path of OV progression. (A) tSNE plot showing the composition of 5 main subtypes
derived from OV malignant cells. (B) Heatmap showing expression programs derived in a representative patient using NMF. (C) Relative expression
scores of meta-programs in each OV malignant cell cluster. (D) KEGG enrichment of cancer intrinsic driver and stemness associated mRNAs.
(E) Venn diagram showing the overlap between intratumoral heterogeneity driven genes and cancer stemness associated genes. (F) AUCell score of
selected 4 intrinsic variation driven cancer stemness associated genes in different cell types. (G) t-SNE visualizes the evolutionary trajectory of tumor
cells calculated by slightshot. (H) Violin plots illustrating the expression of RAD21 and CSE1L across different malignant cell subtypes. (I) The
relationship between gene expression and evolutionary time. (J) The correlation between inhibitory and RAD21, CSE1L in fifteen OV datasets.
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shown that the co-inhibitory molecule B7-H4 negatively controls

the T cell immune response and helps with immune escape through

suppressing the proliferation rate, cytokine secretion, and cell cycle

progression of T cells (32). Hence, we suspect that the amplification

of RAD21 promotes immune escape by activating B7-H4

expression in OV malignant cells, whereas CSE1L potentially

influences tumor progression by stimulating the expression

of VEGF.

Collectively, these findings suggested that stemness originating

from cancer’s intrinsic variability could function as predictive

markers for the progression of ovarian cancer. Additionally,

RAD21 and CSE1L possess the capability to be employed as

immunotherapy predictions.
Investigating CSE1L-related immune
landscapes and providing drug therapy
strategies

To verify the performance of cancer intrinsic variation driven

stemness in clinical implementation, we further investigated the

intrinsic drivers and stemness properties applied in CSCI. Among

these drivers, RAD21 and CSE1L were found to be tumor

intrinsic copy number variation-driven factors associated with

tumor stemness and tumor evolution. Previous studies have

shown that RAD21 amplification epigenetically interacts with

YAP/TEAD4 transcriptional co-repressors, recruiting the NuRD

complex to inhibit interferon (IFN) signaling and promote

immune evasion in ovarian cancer (11). However, limited

research has focused on the ro l e o f CSE1L in the

immunotherapy response of OV cancer.

Kaplan-Meier survival analysis revealed a significant association

between CSE1L and poor prognosis in ovarian cancer (Figure 5A).

To further understand the function of CSE1L in immunotherapy,

we assessed immune cell infiltration in high- and low- CSE1L group

patients in a GEO cohort. Using TIMER web, they found that most

immune cells, such as CD8+ T cells, DC cells, and Neutrophil cells,

were significantly higher in the low-CSE1L group compared to the

high-CSE1L group (Figure 5B). This suggests that CSE1L is capable

of suppressing the activation of immune cells, potentially inhibiting

the effectiveness of immunotherapy.

Tertiary lymphoid structures (TLS) function as germinal

centers for immune cells within the tumor microenvironment

(TME), therefore, we assessed the expression of different

chemokines involved in TLS formation. Interestingly, a significant

upregulation of most chemokines was observed in the low- CSE1L

group. Specifically, patients with low CSE1L levels displayed

increased levels of CCL7, CCR4, CCL25, CXCR3, CCR3, CCR7,

CCR5, CCR2, CCL22, CCL21, and XCL1 (Figure 5C). In brief, the

expression of these chemokines, crucial for attracting immune cells

to the TME, was comparatively lower in the high CSE1L group

when compared to the low CSE1L group. Additionally, we noted

that the lower expression of CSE1L was linked to several interferons
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and their respective receptors (e.g., IFNB1), as well as the majority

of interleukins and their receptors (Figure 5C). Similarly, CSE1L

demonstrated a negative correlation with the effector genes of these

immune cells infiltrating the tumor (Figure 5D).

The functions of the chemokine system and other

immunomodulators directly manifest as the activities of the

cancer immunity cycle (33). Triggering the release of cancer

antigens (step1) occurs in the high-CSE1L group, suggesting that

amplification of CSE1L leads to the emergence of OV malignant

cells. This amplification enables the immune system to recognize

cancer-released antigens during the initiation stage of

tumorigenesis. As the tumor continues to evolve, the expression

of CSE1L decreases, resulting in a reduction in tumor cell stemness.

Subsequently, other cycles, including cancer antigen presentation

(step2), priming and activation (step3), and trafficking of T cells

(step4), are activated (Figure 5E).

Moreover, to investigate the potential mechanism behind the

effectiveness of CSE1L in tumor progression, we performed an

assessment of the activity of 14 signaling pathways associated with

cancer using the R package “PROGENy”. Through the

implementation of the Kruskal-Wallis test, our analysis revealed

that the JAK-STAT and VEGF pathways were specifically activated

in patients belonging to the high CSE1L group (Figure 5F),

suggesting that CSE1L plays a crucial role in activating the JAK-

STAT signaling pathway and subsequently suppressing immune

system activation. Additionally, it possesses the ability to foster

angiogenesis by stimulating the VEGF signaling pathway. Then, to

validate this founding, we stratified malignant tumor cells based on

the expression of CSE1L into CSE1L+ malignant cells and CSE1L-

malignant cells. Through GSEA, we discovered a significant

activation of the VEGF signaling pathway in cells expressing

CSE1L, further confirming our findings (Figure 5G and

Supplementary Figure S2E). To further validate the role of CSE1L

in ovarian cancer, we extended our investigation to include two

additional datasets, GSE30161 and GSE9891. Intriguingly, we

observed that the expression of CSE1L increased with the

progression of tumor malignancy (Figures 5H, I).

Considering the crucial role of combining chemotherapy and

immunotherapy in treating OV patients, we additionally examined

the variation in chemotherapy response between high- and low-

CSE1L groups. Intriguingly, using oncoPredict R package, our

findings revealed that patients belonging to the high-CSE1L

group exhibited heightened sensitivity towards VEGF inhibitor

medications such as Sapitinib, Osimertinib, and Afatinib

(Figure 5G). To further verify this result, we then also calculated

the IC50 of Sorafenib, a VEGF inhibitor, using pRRopetic R

package. We found that the IC50 of Sorafenib was also higher in

low CSE1L group than that in high CSE1L group (Supplementary

Figure S2F).

In summary, the CSE1L has the potential to function as a

dependable predictor of patients ’ prognosis regarding

immunotherapy. Additionally, it can serve as an efficient biomarker

in foreseeing patients’ responsiveness to chemotherapeutic medications.
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FIGURE 5

Investigating CSE1L-related immune landscapes and providing drug therapy strategies. (A) Kaplan-Meier estimates of overall survival of patients in
OV dataset (GSE9891). (B) Box plots comparing the proportion of immune cells between low- and high- CSE1L groups (GSE26712). (C) Heatmap of
the expression of chemokines and their corresponding receptors, interferons and their corresponding receptors, and interleukins and their receptors
in low- and high-CSE1L groups (GSE26712). (D) Heatmap of the GSVA score of seven steps in cancer immunity cycle in low- and high- CSE1L
groups (GSE26712). (E) Heatmap of the expression of effector markers of tumor-infiltrating immune cells in low- and high-CSE1L groups (GSE26712).
(F) Box plots comparing the activity of JAK/STAT and VEGF pathway between low- and high- CSE1L groups (GSE26712). (G) Dot plot showing the
drug drug susceptibility of chemotherapy drugs. The x-axis represents the log2FC of IC50, where a positive value indicates that the IC50 of the low
CSE1L group is greater than that of the high CSE1L group. The y-axis represents -log2 P-value (GSE26712). The drugs highlighted in red are
chemotherapy drugs that inhibit VEGF. (H) Box plots comparing the expression of CSE1L between low- and high- Stage groups in GSE30161 and
GSE9891. (I) Box plots comparing the expression of CSE1L between low- and high- Grade groups in GSE9891. (Wilcoxon test; ns, no significant;
*P < 0.05; ***P < 0.001).
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FIGURE 6

CSE1L promotes progression of ovarian cancer in vitro. (A) Representative immunohistochemistry results showed that CSE1L expression was
significantly upregulated in tumor tissues compared to adjacent non-cancerous tissues. (B) Validation of CSE1L of knockout in OVCAR-3 and A2780
cell lines by Western Blotting analysis. (C) Proliferation ability of CSE1L-knockout ovarian cancer cells detected by CCK8 assay. (D, E) Evaluation and
quantitative analysis of the migration ability of CSE1L-knockout OVCAR-3 and A2780 cell lines using wound healing assays. (F) Analysis and
quantitative assessment of the effect of CSE1L knockdown on the migration ability of ovarian cancer cells using Transwell assays. Scale bar, 100mm.
(Wilcoxon test; *P < 0.05).
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CSE1Lpromotes progression of ovarian
cancer in vitro

To further verify the oncogenic role of CSE1L in ovarian cancer,

Immunohistochemistry was conducted, and the results indicated

that CSE1L expression was significantly upregulated in tumor

tissues compared to adjacent non-cancerous tissues (Figure 6A).

Also, CSE1L was knocked down in SK-OV-3 and A2780 cell lines,

and the effectiveness of the knockdown was confirmed by Western

blot analysis at the protein level (Figure 6B). Notably, the

knockdown of CSE1L significantly inhibited cell proliferation in

the SK-OV-3 and A2780 cell lines (Figure 6C), emphasizing the

crucial role of CSE1L in promoting ovarian cancer cell growth.

Additionally, in the scratch wound healing assay, knocking down

CSE1L significantly impaired the migration ability of SK-OV-3 and

A2780 cell lines (Figure 6D). This was further confirmed by

Transwell assays, demonstrating the important function of CSE1L

in promoting ovarian cancer cell migration (Figures 6E, F).
Discussion

Tumor immune evasion and the effectiveness of immunotherapy

are influenced by tumor intrinsic heterogeneity and stemness, which

are crucial elements. While the relationship between cancer stemness

and anti-tumor immunity has been extensively investigated (6, 8),

there is currently no reported direct evidence uncovering the

connection between tumor stemness and ICI response in OV.

Additionally, prior studies have neglected to recognize the

predictive capacity of tumor stemness in determining the response

to ICI in OV (34).

In this study, we initially detected inherent copy number

variations (CNVs) that promote malignancy in ovarian cancer cells

at the single-cell level. These CNVs encompass gains of chromosomal

20q and 8q, as well as loss of chromosomal 5q. Subsequently, through

the integration of multiple omics data, including single-cell,

transcriptome, and CRISPR cell line data, and utilizing a previously

published stemness index (9), we identified genes associated with

tumor stemness, which are also influenced by intrinsic variations in

tumors. It is worth noting that we found a reverse relationship

between stemness and the outcomes of ICIs, which was supported

by the findings from a scRNA-Seq cohort of SKCM (10). Following

this, to evaluate the prognostic impact of tumor stemness genes in

ovarian cancer patients, we utilized various machine learning

algorithms to construct a predictive model for CSCI. The

performance of this model was then validated across seven

independent cohorts using multiple evaluation metrics. Ultimately,

the Random Survival Forest (RSF) model emerged as the selected

CSCI, as it demonstrated significantly enhanced stability and

accuracy compared to previously established models. Furthermore,

our investigations unveiled the effectiveness of the CSCI in predicting

the therapeutic efficacy of PD-1 immune checkpoint inhibitors.

Cancer Stem Cells have been identified in nearly all types of solid

tumors (6). Based on these findings, we postulated that the CSCI
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could have broad applicability in predicting the response to

immunotherapy across diverse cancer types. Consequently, we

conducted a large-scale comprehensive analysis to assess the

accuracy of the CSCI in predicting the response to immunotherapy

in other cancer types. Remarkably, the CSCI exhibited excellent

performance in predicting ICI response across multiple

independent cohorts utilizing bulk RNA-Seq data, with a mean

Area Under the Curve (AUC) exceeding 0.8.

CSCs are self-renewal cells that promote tumor initiation,

progression, and metastasis (6). In comparison to regular tumor

cells, tumor stemness exert their influence primarily during the

initial stages of tumor development. Through single-cell data

analysis, we have discovered a subset of tumor cells positioned at

the initial stage of tumor development. These cells exhibit specific

activation of pathways such as the cell cycle and undergo evolution

towards highly proliferative tumor cells. Consistent with these

findings, our KEGG enrichment analysis of CSC gene set also

reveals significant enrichment in the cell cycle pathway. Previous

investigations have demonstrated that the improper activation of

the cell cycle signaling pathway results in a boost in the expression

levels of transcription factors (for example, CDK, MKI67, and p53),

potentially facilitating the formation and sustenance of tumor

stemness (35). This indicates that the CSC gene set can depict the

evolutionary trajectory of malignant ovarian tumor cells.

Furthermore, we have identified two endogenously amplified core

genes, RAD21 and CSE1L, promoting the progress of OVmalignant

cells. These two genes serve as potent tools for delineating the

trajectory of malignant cell progression in OV. Deng P et al.

discovered that RAD21, an essential adhesive protein, its

amplification promotes interaction with YAP/TEAD4 and recruits

NuRD to form a complex that suppresses IFN signaling pathway

gene expression, thereby inhibiting the response to immunotherapy

(11). Moreover, we have also observed that RAD21 facilitates the

upregulation of VTCN1 (B7-H4) expression. B7-H4, as an immune

checkpoint molecule expressed on antigen-presenting cells,

functions to interact with CD8+ T cells, thereby suppressing the

activity of immune cells and inhibiting their anti-tumor response

(36). Given the paucity of research on the role of CSE1L in ovarian

cancer, we also investigated its impact on immunotherapy and

provided a therapeutic strategy involving chemotherapy drugs. We

found that CSE1L exhibited a significant association with immune

cell suppression, which was further validated through the use of

immune factors and markers of immune cells. Additionally, we

discovered that CSE1L not only activates the VEGF signaling

pathway but also triggers the JAK/STAT signaling pathway. This

suggests that CSE1L may promote OV tumor progression through

the activation of the JAK/STAT signaling pathway (37, 38). Finally,

the IC50 values of drugs demonstrated that the high-CSE1L group

displayed heightened sensitivity to VEGF inhibitor drugs, including

Sapitinib, Osimertinib, and Afatinib. Collectively, these results

implicate that cancer intrinsic variation derived stemness could

serve as predictive indicators of disease progression in ovarian

cancer. Moreover, RAD21 and CSE1L have the potential to be

utilized as novel predictive targets for immunotherapy.
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Although the notable precision of the CSCI in forecasting the

effectiveness of immunotherapy should be emphasized, it is crucial

to recognize specific constraints within this investigation. Initially,

the OV model’s capacity to predict ovarian cancer immunotherapy

outcomes relies on projections derived from the submap algorithm,

and the accuracy of the CSCI necessitates confirmation with actual

OV ovarian cancer immunotherapy cohorts. Additionally, our

analysis could not definitively assess whether essential genes in

ovarian cancer or stemness-related genes contributed more

substantially to the model’s predictive power. Traditional linear

models, such as LASSO or Cox regression, provide interpretable

feature weights, where each gene’s importance is reflected in its

coefficient. In contrast, random forest evaluates feature importance

through alternative metrics (e.g., Gini impurity), which do not yield

directly comparable weights between gene categories. As a result, we

were unable to draw conclusive comparisons regarding the relative

importance of these two gene sets in our model. Furthermore,

additional experimental verification is imperative to unveil the

molecular mechanisms underlying the relationship between

CSE1L, immunotherapy response, and tumor advancement.
Conclusion

To summarize, a stable and reliable CSC signature was

developed through integrative analysis of CRISPR OV cell lines,

as well as large-scale bulk OV tissues and single cell cohorts. This

signature enables the stratification of OV patients and the prediction

of immunotherapy outcomes. Our study is the pioneering

investigation that comprehensively examines the correlation

between cancer stemness and immunotherapy in OV. It offers a

broad foundation for comprehending the significance of cancer

stemness in immuno-oncology, clinical advantages, and practical

applications. In light of our findings, this research expands our

understanding of the relationship between cancer stemness and

immunotherapy in OV, opening up new possibilities for

treatment approaches.
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SUPPLEMENTARY FIGURE 1

Investigating intrinsic heterogeneity in OV through single-cell analysis. (A)
tSNE plot showing the composition of eight main cell types derived from OV
tissues. (B) Heatmap showing expression of each cell markers in each cell

type. (C) Heatmap showing copy number variation of reference cells and

epithelial cells. (D) Heatmap showing copy number variation of reference
cells and malignant epithelial cells. (E) Evolutionary phylogenetic tree of

malignant epithelial cells. (F) UpSet plots revealed the numbers of genes
located on chromosome 5 shared by the subclones with 5q loss gain in OV

malignant cells. (G) UpSet plots revealed the numbers of genes located on
Frontiers in Immunology 17
chromosome 8 shared by the subclones with 8q gain gain in OV malignant

cells. (H)UpSet plots revealed the numbers of genes located on chromosome

20 shared by the subclones with 20q gain gain in OV malignant cells. (I) The
response to immunotherapy in different CSCI group OV patients

in GSE188249.

SUPPLEMENTARY FIGURE 2

OV malignant cell expression programs. (A) Heatmap depicting shared

expression meta-programs across all patients. Module1: GSM5599225_1,

GSM5599226_6 and GSM5599231_4; Module2: GSM5599225_5,
GSM5599228_2; Module3: GSM5599228_3, GSM5599230_1; Module4:

GSM5599226_2 , GSM5599225_4 , GSM5599231_2 ; Modu le5 :
GSM5599229_1, GSM5599226_1, GSM5599228_1, GSM5599225_3,

GSM5599231_1. (B) AUCell score of total intrinsic variation drivers and
cancer stemness associated genes in different cell types. (C) Violin plots

illustrating the expression of EXOSC4 and RAE1 across different malignant cell

subtypes. (D) Box plots comparing the expression of RAD21, EXOSC4, CSE1L,
and RAE1 between immunotherapy response (R) and no-response (NR)

groups in OV patients (GSE188249). (E) GSEA enrichment of VEGF pathway
between GSE1L+ malignant and CSE1L- malignant cells. (F) Box plots

comparing the IC50 of Sorafenib between low- and high- CSE1L groups
in GSE26712.
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