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The impact of the mRNA
COVID-19 vaccine on the
Th-like cytokine profile in
individuals with no history
of COVID-19: insights into
autoimmunity targeting
heat shock proteins
Stefan Tukaj*, Magdalena Sitna and Krzysztof Sitko

Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
Although some reports suggest that COVID-19 vaccination may exacerbate

existing autoimmune diseases or trigger new-onset cases, a definitive causal

relationship between the vaccines and these conditions has not been

established. Several potential mechanisms have been proposed to explain this

association, including: (i) molecular mimicry, which refers to a structural similarity

between SARS-CoV-2 and human antigens; (ii) bystander activation, involving

both B and T lymphocytes; and (iii) the effects of adjuvants. In this study, we

investigated whether two doses of the mRNA COVID-19 vaccine influenced

blood cytokine levels associated with major T helper cell populations, which are

known to play a significant role in autoimmunity and revisited the role of the

humoral autoimmune response directed against heat shock proteins (Hsps) in

individuals with no history of COVID-19. While no significant differences were

found in the levels of IFN-g, IL-6, IL-22, IL-4, IL-8, IL-10, and IL-17A, between

vaccinated and unvaccinated people, several positive correlations were observed

between serum cytokine levels and circulating autoantibodies directed against

self-Hsps exclusively in vaccinated individuals. These findings suggest that the

mRNA COVID-19 vaccine does not impact cytokines involved in the

pathogenesis of autoimmune diseases. Further research is required to evaluate

the safety of COVID-19 vaccination in patients with autoimmune conditions,

particularly those in whom anti-Hsps autoantibodies are suspected to contribute

to disease development.
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Introduction

The COVID-19 pandemic, caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in

Wuhan, China, in late 2019 and posed significant challenges to

healthcare systems worldwide. The clinical manifestations of SARS-

CoV-2 infection varied widely, ranging from asymptomatic cases to

severe respiratory failure and high mortality rates, particularly

among elderly individuals with pre-existing conditions. Beyond

respiratory complications, COVID-19 was associated with several

extrapulmonary issues , including cardiovascular and

cerebrovascular diseases (1–3). A key focus of COVID-19

research has been understanding the factors driving the variability

in disease severity and immune responses among individuals.

Considerable efforts have been dedicated to exploring the cellular

mechanisms underpinning SARS-CoV-2-induced immune

responses, with the goal of identifying novel biomarkers,

prognostic tools, and therapeutic targets. Early findings

highlighted the critical role of cytokines in the progression of

COVID-19. Analyzing qualitative, quantitative, and temporal

differences in cytokine expression has become vital to combating

the disease. Cytokines have emerged as central players in the

pathogenesis of COVID-19, acting as prognostic indicators of the

disease severity and outcomes. SARS-CoV-2-induced cytokine

expression has been shown to significantly disrupt immune

regulation, triggering autoinflammation, organ failure, and even

death. Critically ill COVID-19 patients frequently exhibit a cytokine

storm, characterized by elevated levels of cytokines such as IL-6, IL-

8, IL-12, TNFa, IL-17, MCP-1, IP-10, and IL-10. This surge in

cytokine levels contributes to immune imbalance, heightened

inflammatory responses, infiltration of neutrophils and

macrophages, and subsequent lung damage (4–6). Autoimmune

and inflammatory conditions have been broadly associated with

numerous infectious diseases, including COVID-19 (7, 8). Several

hypotheses have been put forward to elucidate the molecular

mechanisms underlying immune dysregulation in COVID-19.

These include molecular mimicry by viral proteins, the systemic

nature and multiorgan impact of COVID-19 linked to the

widespread expression of the ACE2 receptor for SARS-CoV-2,

bystander activation of immune cells, the release of autoantigens

from virus-damaged tissues, superantigen-driven lymphocyte

activation, and epitope spreading (8). Studies comparing the

immune responses in COVID-19 and autoimmune disorders have

concluded that immune-mediated mechanisms are largely

responsible for organ damage in COVID-19, paralleling

autoimmune disease processes . Furthermore, var ious

autoantibodies commonly observed in autoimmune diseases such

as antinuclear antibodies, lupus anticoagulant, cold agglutinins, and

anti-Ro/SSA antibodies, have been detected in COVID-19 patients

(9). It is hypothesized that both viral and bacterial receptors work

together to drive the increased inflammation required for the

development of autoimmune diseases. SARS-CoV-2 primarily

activates innate receptors associated with viruses, including TLR3,

TLR7, TLR8, NLRP3, RIG-1, and MDA-5. However, severe

COVID-19 is marked by the additional activation of receptors
Frontiers in Immunology 02
such as TLR1, TLR2, TLR4, TLR5, TLR6, NOD1, and NOD2,

which are mainly responsive to bacterial antigens. The activation

patterns of the innate immune system seen in autoimmune

coagulopathies, myocarditis, Kawasaki disease, and multisystem

inflammatory syndrome in children are like those observed in

severe COVID-19 rather than in SARS-CoV-2 infection alone,

suggesting that autoimmunity may follow a combined viral and

bacterial infection (10). Furthermore, the microbiome appears to

influence the progression of long COVID-associated autoimmunity,

including the severity of illness, recovery rate, and the onset of

autoimmune reactions. While the exact role of the microbiome in

long COVID autoimmunity remains under study, recent research

suggests that interventions targeting the microbiome, such as

probiotics, prebiotics, and dietary modifications, could potentially

reduce autoimmune responses and improve long-term outcomes

for COVID-19 survivors (11).

One of the most significant advancements in combating

COVID-19 has been the development of vaccines that elicit a

specific immune response against SARS-CoV-2. Recent

breakthroughs in mRNA-based technologies have facilitated the

rapid development and deployment of new therapeutics, marking a

new era in medicine. These mRNA-based vaccines enable robust

and transient protein expression without entering the nucleus or

posing a risk of genomic integration, making them versatile tools for

treating or preventing a wide range of conditions, including

infectious diseases, cancer, and genetic disorders (12). Shortly

after the pandemic’s onset, COVID-19 vaccines were introduced

as essential tools for controlling the spread of the virus and

mitigating its impact. Clinical studies and systematic reviews have

largely supported the favorable safety profiles of mRNA vaccines.

However, concerns have emerged regarding potential adverse

events and the long-term safety of these vaccines. Evidence

suggests that COVID-19 vaccination may affect immune

regulation and, in rare cases, lead to autoimmune disorders, such

as autoimmune glomerulonephritis, autoimmune rheumatic

diseases, and autoimmune hepatitis. Severe complications

reported included: thrombotic thrombocytopenia, vaccine-

induced immune thrombotic thrombocytopenia, myocarditis,

pericarditis, Guillain-Barré syndrome, Bell’s palsy, neuromyelitis

optica spectrum disorder, multiple sclerosis, and vitiligo (13–16).

Currently, there is insufficient evidence to determine whether the

rare occurrence or exacerbation of autoimmune bullous diseases

(AIBDs) following infection with SARS-CoV-2 or vaccination

against it represents a specific immunopathology driven by this

virus, or merely a nonspecific immune dysregulation like that seen

with other infectious diseases. Vaccination against COVID-19 in

AIBD patients has been linked to a low incidence of minor disease

flares while providing protection against severe COVID-19 (17, 18).

Additional research is needed to clarify the potential causal link

between COVID-19 vaccines and autoimmune diseases.

Previous research, including our own, has highlighted a

potential role for autoantibodies targeting self-heat shock proteins

(Hsps) in the development of autoimmunity (19) with prior

hypothesis suggesting that circulating anti-SARS-CoV-2 IgG

antibodies generated during vaccination or infection might cross-
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react with human Hsps due to molecular mimicry, potentially

triggering autoimmune responses (20). However, our earlier

findings challenged this assumption, demonstrating that anti-

Hsp60/70/90 autoantibody levels remain unchanged in

individuals with anti-SARS-CoV-2 IgG antibodies induced by

vaccination or infection (21). Nevertheless, SARS-CoV-2 relies on

host molecular chaperones, particularly Hsp90 and Hsp70, to

facilitate the processes of entry and replication. Research has

shown that Hsp90 is overexpressed in the damaged lungs of

COVID-19 patients, and Hsp90 inhibitors have been found to

prevent and repair pulmonary microvascular damage caused by

the SARS-CoV-2 spike protein. Additionally, inhibition of Hsp90

activity has been shown to reduce both SARS-CoV-2 replication

and the expression of pro-inflammatory cytokines in primary

human airway epithelial cells (22). Given the information above,

it is crucial to further investigate the role of immunogenic heat

shock proteins (Hsps), whose involvement in the development of

autoimmune diseases has been well-established (19, 23), in the

activation of the post-vaccination immune response.

In this study, we investigated whether two doses of the mRNA

COVID-19 vaccine influenced blood cytokine levels associated with

major T helper cell populations, which are known to play a

significant role in autoimmunity. We also revisited the role of the

humoral autoimmune response directed against heat shock proteins

(Hsps) in the vaccinated individuals with no history of COVID-19,

as these molecules are suspected to play a significant role in

autoimmune diseases. Our aim was to investigate whether

association patterns between Th-like cytokine levels and anti-HSP

autoantibodies differ between unvaccinated and vaccinated

individuals, and whether the latter group exhibits any similarities

to patients suffering from autoimmune diseases.
Results

The mRNA COVID-19 vaccine does not
influence the Th-like cytokine profile in
individuals with no history of COVID-19

In this study, we examined whether two doses of the mRNA

COVID-19 vaccine affected blood cytokine levels associated with

major T helper cell populations, which are known to play a critical

role in autoimmunity (24), in individuals with no history of

COVID-19. Serum samples were collected from blood donors

between December 2020 and February 2021, comprising either

unvaccinated (n = 20) or vaccinated (n = 20) volunteers. All

participants were screened for the presence of anti-SARS-CoV-2

IgG targeting the S1 domain of the viral spike protein using a

semiquantitative ELISA test. Vaccinated participants were

additionally assessed for circulating anti-SARS-CoV-2 IgG S1

levels using a quantitative ELISA assay within 3–5 weeks of their

final vaccine dose. All vaccinated individuals tested positive for anti-

SARS-CoV-2 IgG against the S1 domain, whereas all unvaccinated

participants were negative for this marker. Using a panel of ELISA

tests, we observed no significant differences in the levels of IFN-g,
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IL-6, IL-22, IL-4, IL-8, IL-10, and IL-17A between vaccinated and

unvaccinated people. However, a trend (p = 0.0788) toward

increased levels of the anti-inflammatory cytokine IL-10 was

observed in vaccinated participants compared to their

unvaccinated counterparts (Figure 1).
Th-like cytokine profile correlates with
circulating autoantibodies directed to Hsps
exclusively in mRNA COVID-19 vaccinated
people with no history of COVID-19

In this study, we revisited the role of the humoral autoimmune

response targeting autologous Hsps in mRNA COVID-19-

vaccinated individuals with no history of COVID-19. Specifically,

we investigated its associationswith various cytokines (i.e., IFN-g, IL-
6, IL-22, IL-4, IL-8, IL-10, and IL-17A) in both vaccinated and

unvaccinated people. A multivariable non-parametric Spearman

rank correlation analysis identified several positive associations

between serum cytokine levels (i.e., IL-6, IL-22, IL-4, and IL-17A)

and circulating autoantibodies against self-Hsp60/70/90 IgG,

exclusively in vaccinated individuals (Figure 2). While a set of

positive mutual correlations among the analyzed cytokines and

anti-Hsps autoantibodies was observed regardless of anti-SARS-

CoV-2 IgG antibody positivity (Figure 2), no significant

correlations were identified between anti-Hsp60/70/90 IgG

autoantibody or cytokine levels and circulating anti-SARS-CoV-2

IgG antibody levels in vaccinated individuals (Figure 2). All scatter

plots and correlation analyses are provided in Supplementary Data 1.
Discussion

The COVID-19 pandemic has posed a significant global

challenge in recent years, marked by high rates of illness and

death. While vaccination has played a crucial role in controlling

the spread of the virus and mitigating the impact of the disease,

concerns about its safety and potential side effects have emerged.

Among the most widely administered vaccines were Pfizer-

BioNTech, followed by AstraZeneca and Sinovac. Over three-

quarters of participants reported experiencing side effects after the

first dose, with the majority being mild and localized, such as pain

and redness at the injection site (25). In this study, we investigated

whether two doses of the mRNA COVID-19 vaccine influenced

blood cytokine levels associated with major T helper cell

populations. These cells are a heterogeneous group of immune

cells that play central roles in nearly all aspects of immune

responses. T helper cells are activated through peptide-MHC class

II complexes on antigen-presenting cells (APCs), costimulatory

signals, and cytokine signaling, differentiating into various subsets

characterized by distinct surface molecules, cytokines, and key

CD4+ markers. These subsets include Th1, Th2, Treg, follicular

helper T cells, Th17, Th9, Th22, and CD4+ cytotoxic T lymphocytes

(17). Specifically, we compared the levels of IFN-g, IL-6, IL-22, IL-4,
IL-8, IL-10, and IL-17A between anti-SARS-CoV-2 IgG-positive
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and seronegative individuals, all without a history of COVID-19.

We found no significant differences in the analyzed cytokine levels

between vaccinated and unvaccinated individuals. However, a trend

toward increased levels of the anti-inflammatory cytokine IL-10 was

observed in vaccinated participants compared to unvaccinated ones.

This trend is particularly beneficial, as recent studies have linked IL-

10 to the severity and mortality of patients with acute or post-acute

SARS-CoV-2 infection. IL-10 acts as an endogenous “danger

signal,” released in response to the peak of circulating pro-

inflammatory cytokines, helping to protect the body from damage

caused by a harmful hyperinflammatory state (26). Furthermore,

numerous studies in autoimmune diseases have shown altered IL-

10 serum levels, suggesting a potential connection between IL-10

and disease progression. Research in mice further indicates that IL-

10 production may play a protective role in organ-specific

autoimmune diseases by regulating the balance between

pathogenic Th1 cells and protective, anti-inflammatory Th2 cells

(26). The findings of this study challenge the initial hypothesis

concerning the impact of mRNA COVID-19 vaccination on the

development of autoimmune diseases via mechanisms involving

pro-inflammatory cytokines, which are characteristic of T helper

cells pivotal to the progression of pathological conditions. On the

other hand, our study shows partial alignment with prior research,

which demonstrated that, both initially and during recovery from
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symptomatic COVID-19, fully vaccinated individuals had lower

levels of inflammatory markers i.e., IL-2RA, IL-7, IL-8, IL-15, IL-29,

IP-10, monocyte chemoattractant protein-1, and TNF-a compared

to unvaccinated participants. This suggests that vaccination may be

linked to both short-term and long-term reductions in

inflammation, which could help explain the decreased severity of

the disease and lower mortality rates in vaccinated individuals (27).

Another study explored the cytokine and chemokine responses to

the first and second doses of the BNT162b2 mRNA vaccine (Pfizer/

BioNTech) both in antigen-naive individual and those previously

infected with SARS-CoV-2. The researchers found increased levels

of IL-15 and IFN-g shortly after the booster dose, which were

correlated with Spike antibody concentrations. A distinct systemic

pattern emerged, showing rises in IL-15, IFN-g, and IP-10/CXCL10

following the first dose, which were further enhanced by TNF-a and

IL-6 after the second dose. In individuals with prior COVID-19, a

single dose of the vaccine triggered cytokine levels and antibody

responses similar to those observed after the booster dose in

individuals without previous antigen exposure (28). Another

study highlights the coordinated immune responses to the

BNT162b2 mRNA vaccine and underscores the critical role of a

network of innate immune responses, particularly IL-15, in shaping

the adaptive immune response following vaccination (29). While

the authors also observed increased levels of cytokines such as TNF-
FIGURE 1

Comparison of Th-like cytokine levels between vaccinated and unvaccinated individuals. No significant differences were observed in the serum
levels of IFN-g, IL-6, IL-22, IL-4, IL-8, IL-10, and IL-17A between anti-SARS-CoV-2 IgG-positive (Vaccinated, n = 20) and anti-SARS-CoV-2 IgG-
negative (Unvaccinated, n = 20) individuals, as measured by ELISA. Squares/dots represent individual values, while bars indicate the mean (± SEM) for
each group.
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a, IFN-g, IL-6, and IL-10 in response to the mRNA vaccine for anti-

COVID-19 (29), in our study, the levels of these cytokines (except

for IL-10) did not change significantly. This discrepancy may

largely be attributed to the fact that, unlike in our analysis, the

cytokine analysis in the aforementioned study was conducted 24

hours after the second vaccine dose.

Based on these observations, it can be concluded that a key factor

in cytokine induction in individuals receiving the COVID-19 vaccine

is the time interval between the vaccine dose and serological analysis,

the number of doses administered, and whether the analysis was
Frontiers in Immunology 05
performed in individuals with a history of COVID-19. It is worth to

note, that the cytokine signature associated with an effective anti-

COVID-19 response may differ in immunocompromised individuals.

For example, in patientswithhematologicalmalignancieswho failed to

produce anti-SARS-CoV antibodies, the innate systemic response was

primarily characterized by IL-8 and MIP-1a, with a significant

reduction in the IFN-g, IL-15, and IP-10/CXCL10 response (30).

According to our analyses, we can infer that the administration

of two doses of the mRNA COVID-19 vaccine does not have a

lasting impact on the production of pro-inflammatory cytokines
FIGURE 2

Positive correlations between serum cytokines and circulating autoantibodies against self-Hsps were observed exclusively in vaccinated individuals.
Heatmap matrix displaying Spearman’s rank correlation coefficients for the relationships between serum levels of IL-6, IL-22, IL-4, IL-8, IL-10, IL-
17A, IFN-g and circulating anti-Hsp IgGs or anti-SARS-CoV-2 IgG S1. Comparisons were conducted within the groups: (A) anti-SARS-CoV-2 IgG-
negative (Unvaccinated) and (B) anti-SARS-CoV-2 IgG-positive (Vaccinated). Correlation coefficients (r values) are shown within the heatmap boxes,
with statistically significant correlations highlighted in red frames and marked with asterisks (*P < 0.05).
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typically associated with T helper cell populations. However,

additional follow-up studies at various time intervals should be

conducted using a larger cohort of participants.

Several studies have suggested that molecular mimicry between

immunogenic proteins of SARS-CoV-2 and human molecules may

contribute to the development of autoimmunity (31, 32). Marino

Gammazza et al. (2020) proposed that SARS-CoV-2 could

potentially trigger an autoimmune response due to molecular

mimicry between human heat shock proteins (Hsps) and

immunogenic viral proteins (20). Both bacterial and autologous

extracellular Hsps are known to interact with innate and adaptive

immune cells, potentially initiating a humoral (auto)immune

response and the production of anti-Hsp (auto)antibodies. Based

on the assumption that circulating anti-SARS-CoV-2 IgG,

generated during vaccination or infection, might cross-react with

human Hsps, we hypothesized that volunteers who received the

COVID-19 vaccine or had recovered from COVID-19 would show

higher titers of anti-Hsp antibodies in their serum. However, our

previous research contradicted this hypothesis, demonstrating that

levels of anti-Hsp90/70/60 autoantibodies did not change in

individuals with anti-SARS-CoV-2 IgG antibodies induced by

either vaccination or infection (21). Nevertheless, the potential

role of circulating anti-Hsp autoantibodies in modulating

cytokine profiles in vaccinated individuals with autoimmune

conditions warrants further investigation, given the crucial role of

proinflammatory cytokines in these diseases. In addition, higher

levels of anti-Hsp autoantibodies are found in patients suffering

from numerous inflammatory and autoimmune diseases, including

rheumatoid arthritis, juvenile idiopathic arthritis, autoimmune

myasthenia gravis, dermatitis herpetiformis, psoriasis, systemic

lupus erythematosus, epidermolysis bullosa acquisita, celiac

disease, atopic dermatitis and other (auto)inflammatory diseases

(19). In this study, we revisited the role of the humoral autoimmune

response targeting autologous Hsps in individuals vaccinated with

mRNA COVID-19 vaccines who had no prior history of the disease.

We identified several positive correlations between serum cytokine

levels-such as IL-6, IL-22, IL-4, and IL-17A (but not IL-8, IL-10 or

IFN-g)-and circulating autoantibodies against self-Hsp60/70/90

IgG, observed exclusively in vaccinated individuals.

Notably, we observed a positive correlation (or a strong

tendency) between anti-Hsp60/70/90 IgG autoantibodies and IL-

4, a key Th2 cytokine involved in initiating and expanding humoral

immunity (33). The antagonistic effect of IL-4 on Th1 polarization

(a population characterized by IFN-g production) suggests its

potential as a therapeutic agent for autoimmune diseases (33). In

contrast, the positive correlations between anti-Hsp60 IgG and IL-6

or IL-22, as well as between anti-Hsp70 IgG and IL-22 or IL-17A,

may indicate a proinflammatory activity. The discrepancies in

intraindividual correlations between anti-Hsps and cytokines in

vaccinated individuals could be attributed to the distinct immune

roles of extracellular Hsps. While both intra- and extracellular

Hsp90 are typically regarded as initiators of proinflammatory

responses, the extracellular forms of Hsp60 or Hsp70 can exhibit

either pro- or anti-inflammatory effects. These effects depend on
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factors such as the source (bacterial or self-derived Hsps), the mode

of Hsp secretion (whether via necrosis or active liberation), and the

specific immune mechanisms involved in different autoimmune

diseases (23, 34). These findings are particularly significant,

considering that diverse correlations between cytokines and anti-

Hsp antibodies have been previously reported in autoimmune

diseases. For instance, significant positive correlations have been

documented in patients with rheumatoid arthritis (RA), including

those between anti-Hsp90 IgG levels and IFN-g (35). Moreover, we

recently demonstrated the pathological role of extracellular Hsp70

in epidermolysis bullosa acquisita (EBA), an autoimmune blistering

disorder driven by autoantibodies targeting type VII collagen,

classified within the group of pemphigoid disease entities (36).

Subsequently, we investigated anti-Hsp70 autoantibodies in EBA

and found that circulating anti-Hsp70 IgG levels were significantly

elevated in EBA patients compared to healthy individuals and

positively correlated with serum IFN-g levels. The pathological

significance of anti-Hsp70 IgG antibodies was further confirmed

in a mouse model of antibody transfer-induced EBA. In this model,

elevated anti-Hsp70 IgG levels were detected, and animals treated

with these antibodies exhibited more severe clinical and histological

disease manifestations (37). It appears that the relationships

observed between the analyzed cytokines and anti-Hsp antibodies

in vaccinated individuals differ from those reported in patients with

RA and EBA. Thus, it seems that the mRNA vaccine, aside from not

altering cytokine levels characteristic of T-helper lymphocyte

populations and showing no changes in the levels of anti-Hsp

antibodies (21) often associated with the development of

autoimmune diseases (19), exhibits correlations between cytokines

and anti-Hsp autoantibodies that are atypical for autoimmune

conditions such as RA or EBA. Additionally, we have previously

found that circulating anti-SARS-CoV-2 antibodies did not cross-

react with autoantigens commonly associated with pemphigus or

pemphigoid, which are typically targeted by pathogenic

autoantibodies in autoimmune blistering diseases (38). Our

findings are consistent with the broader consensus on the safety

of mRNA-based COVID-19 vaccines concerning autoimmunity.

Notably, among COVID-19 patients, completing a two-dose

regimen of the vaccine is associated with a reduced risk of

conditions such as pemphigoid, Graves’ disease, antiphospholipid

antibody syndrome, immune-mediated thrombocytopenia,

systemic lupus erythematosus, and other forms of autoimmune

arthritis (8).

It is important to note that although blood samples for analysis

were collected 3 to 5 weeks after the second vaccine dose, ensuring

that the analysis reflects the appropriate phase of the post-

vaccination immune response and antibody production, cytokine

levels during this period may decrease as the immune response

contracts. This could explain why no significant changes were

observed between the two analyzed groups. On the other hand, if

3 to 5 weeks is sufficient for cytokine levels to stabilize in vaccinated

individuals, we can propose that long-term cytokine disruption

does not occur and is unlikely to affect chronic immune activation,

which could potentially lead to autoimmune reactions.
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Conclusions

Our findings emphasize the safety of the mRNA COVID-19

vaccine, as it does not affect the secretion of cytokines associated

with major T helper cell subpopulations, including Th1, Th2, Th17,

and Th22, which are commonly involved in the pathogenesis of

autoimmune diseases. Moreover, the relationships observed

between the analyzed cytokines and anti-Hsp autoantibodies in

vaccinated individuals appear to differ from those seen in patients

with RA and EBA. However, further research is needed to assess the

safety of COVID-19 vaccination in patients with autoimmune

conditions, particularly those in which anti-Hsp autoantibodies

are suspected to contribute to disease development.

Limitations

Our research hypothesis has some limitations. For instance,

large-scale follow-up studies are required to validate the

immunological effects of COVID-19 vaccination on the onset of

autoimmune diseases in a broader population.
Materials and methods

Human blood samples and anti-SARS-
CoV-2 IgG monitoring

This study included antigen-naive vaccinated individuals (n = 20)

who received two doses of the mRNA COVID-19 vaccine encoding

the viral spike protein (Pfizer-BioNTech) and age- and sex-matched

antigen-naive unvaccinated individuals (anti-SARS-CoV-2 IgG-

negative, n = 20) (Table 1). The average time interval between the

two doses of the mRNA COVID-19 vaccine was 3 weeks, according

to Pfizer-BioNTech’s recommendations. Serum samples were

collected from blood donors between December 2020 and February

2021, comprising either unvaccinated or vaccinated volunteers with

no history of COVID-19. All participants were screened for the

presence of anti-SARS-CoV-2 IgG targeting the S1 domain of the

viral spike protein using a semiquantitative ELISA test

(EUROIMMUN, EI2606-9601-2 G, sensitivity: 94.4%, specificity:
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99.6%). In addition, vaccinated participants were assessed for

circulating anti-SARS-CoV-2 IgG S1 levels using a quantitative

ELISA (Human Anti-SARS-CoV-2 (S) IgG ELISA Kit, A303150)

within 3–5 weeks of receiving their second vaccine dose, alongside the

analysis of serum cytokines and circulating autoantibodies to Hsps.

All serological analyses were performed at a single time point. All

vaccinated individuals tested positive for anti-SARS-CoV-2 IgG

against the S1 domain, whereas all unvaccinated participants were

negative for this marker. The use of human biological material was

approved by a bioethics committee at the regional medical chamber

in Gdańsk (Poland) and written informed consents were obtained in

accordance with the Declaration of Helsinki.
Detection of cytokines

Serum levels of various cytokines i.e., IFN-g, IL-6, IL-22, IL-4,
IL-8, IL-10, and IL-17A were measured by commercially available

ELISA kits (BioLegend) according to the manufacturer’s protocol.
Detection of circulating anti-heat
shock proteins

Levels of IgG against human Hsp60, Hsp70, and Hsp90 were

evaluated in the serum samples by a home-made enzyme-linked

immunosorbent assay (ELISA), as described previously (21). In brief,

medium-binding 96-well plates were coated overnight at 4°C with full-

length recombinant Hsp60 (ab78792, Abcam), Hsp90 (ADI-SPP-770,

Enzo Life Science), or previously purified recombinant Hsp70 at a

concentration of 0.5 mg/ml in 0.05 M bicarbonate buffer. Following the

coating step, the wells were washed and blocked for 90minutes at room

temperature (RT) using 1% bovine serum albumin (BSA) in

phosphate-buffered saline (PBS). After washing, the serum samples

were diluted in PBS containing 0.1% BSA (05482-100G, Sigma) and

added to the wells. Incubation occurred at RT for 90 minutes. Plates

were then incubated with horseradish peroxidase (HRP)-conjugated

anti-human IgG (096M-4809V, Sigma) secondary antibodies diluted in

PBS containing 0.1% BSA, for 60 minutes at RT. The enzymatic

reaction was visualized using TMB substrate solution (ab171523,

Abcam), and the reaction was halted by the addition of H2SO4.

Optical density (OD) measurements were taken at 450 nm using an

ELISA plate reader (VICTOR Multilabel Plate Reader, PerkinElmer).

Serum reactivity with the respective Hsps was considered positive if the

OD values exceeded the mean BSA reactivity (negative control).
Statistical analyses

Statistical calculations were carried out using GraphPad Prism 9

(San Diego, CA, USA). To verify whether the data had normal

distribution, the Shapiro-Wilk test was used. Data was analyzed by

Mann–Whitney U test, Spearman’s rank correlation test The ROUT

test was used for outlier identification. P-values less than 0.05 were

considered significant.
TABLE 1 Demographic characteristics of the participants.

Characteristic
Unvaccinated

N = 201
Vaccinated
N = 201

Sex

Female 13 (65%) 16 (80%)

Male 7 (35%) 4 (20%)

Age2

Age 36.55 (±13.22) 39.50 (±10.39)

Ethnicity

Central European 20 (100%) 20 (100%)
1n (%); 2Mean (SD).
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