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This study focused on the role of plasma cells in multiple myeloma (MM) and the

associated potential mechanisms. Transcriptomic data of MM and various gene

sets from several public databases were downloaded for subsequent analyses.

Through single-cell sequencing, 10 major cell types were identified and

annotated. The differential gene expression and pathway enrichment between

different plasma cell subtypes as well as cell communication analysis,

transcriptional regulation analysis, and enrichment analysis in conjunction with

the malignant subpopulation were performed. Next, the samples were clustered

into two groups by applying non-negative matrix factorization (NMF). Additional

analysis revealed notable disparities in survival between the two clusters,

correlation with genes involved in classical metabolic pathways and pathway

dysregulation, thus confirming the stability and validity of the clustering.

Subsequently, Weighted Gene Co-expression Network Analysis was performed

and hub genes from the modules most strongly associated with the clustering

groups were extracted. We then constructed a prognostic prediction model

using Least Absolute Shrinkage and Selection Operator and multiCox regression

analysis. The predictive accuracy of the model was evaluated and robustness

were confirmed in a separate validation cohort. The gene and pathway

dysregulation for the two risk groups was analyzed. Ultimately, an investigation

was conducted into the association between the risk model and various

immunological features, in terms of antitumor immunotherapy, the tumor

microenvironment, and immune checkpoints. This study provides an in-depth

investigation into the potential mechanisms underlying MM development and

offers new directions to improve therapeutic approaches and enhance

patient outcomes.
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1 Introduction

Multiple myeloma (MM) is a malignant hematologic cancer

accounting for 1% of all cancers (1) and 10% of all hematologic

cancers (1, 2), making it the second most common hematologic

malignancy worldwide (3). The incidence and mortality rates of

MM vary region-wise, with age-standardized incidence rates being

relatively low in regions, including Asia and Oceania, although the

global trend shows an increasing incidence year by year (4). The

average annual cost per treatment cycle for MM patients in

Australia, the country with the highest incidence rate, is

approximately $25,000 (5). For most individuals, MM remains an

incurable (6), making it crucial to identify its underlying causes.

Several risk factors have been identified, such as advanced age, male

gender, and African American ethnicity (7). Monoclonal

gammopathy of undetermined significance (MGUS) is also

associated with enhanced risk of developing MM or related

malignancies (8). However, many of these risk factors are

uncontrollable. Recent studies suggest a potential correlation of

body mass index with MM risk in adults (9), potentially

representing the only modifiable risk factor for the disease. From

an etiological perspective, studies suggest potentially major role of

skeletal diseases in the onset of MM (1). Most cases of MM arise

from asymptomatic precursor conditions, such as MGUS (1). The

annual rate of transformation from MGUS to MM or other related

malignancies is approximately 1% (8). The precursor stage known

as smoldering multiple myeloma (SMM) can be clinically identified,

exhibiting a tenfold higher conversion rate to MM within the initial

5 years post-diagnosis compared to that of MGUS (10). While

MGUS and SMM are clinically asymptomatic, both conditions may

increase the risks of venous thromboembolism, infections,

osteoporosis, and fractures (11). In contrast, the clinical

symptoms of MM include anemia, bone pain, fatigue, renal

dysfunction, and infections (12). With advances in treatment,

survival prognosis of patients with MM has greatly improved, as

evidenced by the increase in the 5-year survival rate from 32% in

1996 to 54% in 2020 (13). Current treatments include the use of

proteasome inhibitors such as bortezomib, immunomodulatory

agents such as lenalidomide, and monoclonal antibodies such as

daratumumab. The combination treatment of dexamethasone,

lenalidomide, and bortezomib with autologous stem cell

transplantation (ASCT) and subsequent maintenance therapy has

demonstrated good and complete remission rates, with some

studies reporting rates as high as 33% (14). However, the sad

reality is that the greater number of patients with MM will

eventually experience relapse. CAR T-cell therapy, bispecific T-

cell engagers (BiTEs), and BCMA-targeted antibody-drug

conjugates have demonstrated improved survival and remission

rates in relapsed or refractory MM; however, both CAR T-cell

therapy and BiTEs are associated with side effects such as cytokine

release syndrome, immune effector cell-associated neurotoxicity

syndrome, and other specific adverse reactions (15, 16).

Therefore, the molecular mechanisms underlying MM

development need to be studied for identifying key target genes,
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which have significant implications for the diagnosis, treatment,

and prognostic evaluation of MM.

Common metabolic pathways include but are not limited to

lipid metabolism, nucleotide metabolism, amino acid metabolism,

and glucose metabolism. Cancer cells often engage in metabolic

reprogramming to adapt to their specific growth characteristics and

microenvironment. The Warburg effect is one of the most

prominent metabolic alterations in cancer cells. Although the

Warburg effect-induced aerobic glycolysis is inefficient, cancer

cells meet their energy demands by upregulating glucose

transporters (GLUT) and the enzymes required for glycolysis

(17). Oncogenes, such as HIF-a, c-Myc, and Akt promote

glycolysis through the upregulation of GLUT, while tumor

suppressor genes like p53 exert anti-cancer effects through the

inhibition of glucose metabolism (18). In MM, cyclin D1 can

regulate glycolysis and sustain the Warburg effect by binding to

hexokinase 2 (HK2) on the outer mitochondrial membrane and

controlling the transcription of the HK2 gene (19). The

reprogramming of lipid metabolism is a crucial element in the

advancement of various malignancies (20). This phenomenon is

primarily characterized by de novo lipogenesis (21), enhanced fatty

acid uptake (22), and modified fatty acid oxidation pathways (23).

The enzymes regulating these processes are often overexpressed in

tumor cells. In MM, mature adipocytes induce resistance to

chemotherapy in MM cells by secreting adipokines and activating

autophagy (24). MM cells have been shown to promote tumor

progression by reducing the secretion of adiponectin from bone

marrow adipocytes (25). In reprogramming of amino acid

metabolism, cancer cells show an increased dependence on

glutamine, which enters the tricarboxylic acid cycle via glutamate

and a-ketoglutarate to generate energy, making it a key metabolic

pathway for cancer cells (26). MM cells exhibit glutamine

dependency, and the inhibition of the glutamine transporter

(ASCT2) markedly diminishes glutamine uptake, thereby

suppressing the growth of MM cells (27). Consequently, targeting

amino acid metabolism may be a promising therapeutic strategy

(28). In case of low levels of amino acids, it may activate the

eukaryotic initiation factor 2-alpha kinase, general control

nonderepressible 2 (GCN2) (29), which leads to resistance to

proteasome inhibitors (PIs). Combined use of ASCT2 inhibitors

with PIs can enhance the sensitivity of MM cells to PIs by regulating

glutamine levels (30). In nucleotide metabolism, enhanced synthesis

of nucleoside triphosphates (NTPs) and deoxyribonucleoside

triphosphates (dNTPs) is a hallmark of tumor cells, promoting

cell proliferation, metastasis, immune evasion, and drug resistance.

Nucleotide synthesis inhibitors continue to play a major role in the

treatment of various cancers (31).

For subsequent analysis, we downloaded MM transcriptomic

data and various gene sets from multiple public databases. We

investigated the cellular heterogeneity in MM through single-cell

sequencing. The single-cell data were classified into several cell

subpopulations and annotated as 10 major cell types. Among these

cell types, we focused particularly on the plasma cell subpopulation.

We analyzed differences in gene expression and pathway
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enrichment for different plasma cell subtypes and performed cell

communication analysis, transcriptional regulatory analysis, and

enrichment analysis in conjunction with the malignant

subpopulation. Subsequently, the non-negative matrix

factorization (NMF) with the “brunet” method for clustering was

employed, categorizing the samples into two clusters (C1 and C2).

We then analyzed the differences in survival between the two

groups, the correlation of genes related to classical metabolic

pathways, and pathway dysregulation. The stability and

robustness of the clustering were well-validated. We conducted a

Weighted Gene Co-expression Network Analysis (WGCNA),

extracting hub genes from the modules most closely associated

with the clustering, and performed Gene Ontology (GO) analysis to

identify the pathways enriched with these hub genes. We then

constructed a prognostic prediction model using the Least Absolute

Shrinkage and Selection Operator (LASSO) and multiCox

regression analyses. The dataset was classified into high- and low-

risk groups based on the median risk score, and the predictive

performance and the model stability were validated in an

independent validation cohort. Subsequently, gene and pathway

dysregulation in the two risk groups were analyzed. Ultimately, we

examined the correlation between the risk model and

immunological features from several perspectives, in terms of

antitumor immunotherapy, the tumor microenvironment (TME),

and immune checkpoint pathways. This study provides an in-depth

exploration of various potential mechanisms underlying the

development of MM, and offers new avenues for improving MM

treatment strategies and enhancing patient prognosis.
2 Materials and methods

2.1 Data acquisition and preprocessing

The comprehensive transcriptomic dataset for MM, along with

the associated clinical information, were acquired from the public

database Gene Express ion Omnibus (GEO, ht tps : / /

www.ncbi.nlm.nih.gov/geo/) using the “GEOquery” R package.

Two datasets, GSE136324 (n=867) and GSE136337 (n=426), were

downloaded; all samples having a survival time ≤ 0 days were

excluded. Additionally, single-cell RNA sequencing (scRNA-seq)

data for MM, including the datasets GSE117156 and GSE164551,

were obtained from the public Tumor Immune Single-cell Hub 2

(TISCH2, http://tisch.comp-genomics.org/home/) database. In

cases with a gene had multiple entries in the expression matrix,

the data were averaged across the multiple rows. Furthermore, we

employed the “msigdbr” R package to retrieve lists of genes related

to nucleotide metabolism, lipid metabolism, amino acid

metabolism, and glycolysis-related genes from the Molecular

Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/

msigdb/index.jsp). All publicly available open-source databases

employed in this study are freely accessible without the need for

supplementary ethical approval. The data collection as well as

subsequent analyses were carried out in strict adherence to the

applicable regulatory guidelines.
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2.2 Single-cell sequencing analysis

Using the “Single-Cell Pipeline” (SCP, https://github.com/

zhanghao-njmu/SCP) package and the “Seurat” package, we

analyzed the single-cell sequencing datasets GSE117156 and

GSE164551. The accuracy and reliability of subsequent analyses

were ensured by implementing comprehensive quality control

measures alongside data preprocessing. The criteria for quality

control were: nFeature_RNA < 900 and percent.mt < 25. Batch

effects across multiple samples were corrected through the

“harmony” R package. Next, uniform Manifold Approximation

and Projection (UMAP) was employed for reducing the

dimensionality of the single-cell data (resolution = 0.6), allowing

us to identify multiple cell subpopulations. The subpopulations

were annotated utilizing information obtained from the TISCH

database. A UMAP plot was generated to visualize the distribution

of different cell clusters and their major cell types. We also

employed a heatmap to display the expression patterns of top-

specific markers in several major cell types. For further analysis, we

subsequently focused on the plasma cell cluster. Dimensionality

reduction and clustering of plasma cells were performed through t-

Distributed Stochastic Neighbor Embedding (t-SNE), and the

results were visualized accordingly. Differential expression

analysis on the plasma cell subpopulations was performed and

identified through t-SNE, utilizing the RunDEtest function

(fc.threshold = 1, only.pos = FALSE). The differentially expressed

genes (DEGs) were visualized using a volcano plot, and the top 10

genes exhibiting the most significant changes in expression levels

were highlighted. Furthermore, GO enrichment analysis of the

DEGs was conducted through the application of the

RunEnrichment funct ion (db = “GO_BP” , species =

“Homo_sapiens”, DE_threshold = “avg_log2FC > log2(1.5) &

p_val_adj < 0.05”). The top six enriched pathways were presented

in a bar chart.
2.3 Cell communication, transcriptional
regulation, and functional analysis based
on plasma cells

We first utilized the CellChat and NicheNet methods to analyze

the intercellular interactions between plasma cell subpopulations

and malignant cell clusters and visualized the results. We

hypothesized that a greater number and stronger intensity of

communications (indicated by thicker lines) suggest a closer

relationship, and focused on our subsequent analyses of plasma

subpopulations more tightly associated with malignant cells.

Subsequently, receptor-ligand interaction intensities between

plasma cell subpopulations and malignant cells were presented

through bubble plot visualizations, with statistical significance set

at a p-value < 0.01. Subsequently, we employed the “SCENIC” tool

to construct gene regulatory networks and evaluated the differential

activity of 29 regulators across different plasma cell subpopulations

and malignant cell clusters, visualized using heatmaps. We

combined the results from the cell communication analysis, and
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visualized the specific scores of regulators in plasma_0 using scatter

plots, annotating the top four most prominent regulators. The

enrichment of hallmark pathways was performed using the Gene

Set Variation Analysis of the plasma cell subpopulations and

malignant cell clusters, and the results were visualized using

heatmaps. Additionally, the expression levels of functional genes

across various cell populations were presented using heatmaps, and

subsequently, differential expression analysis was performed

between the plasma_0 and plasma_1 subpopulations. The

expression of genes with | log2(fold change plasma_0 vs.

plasma_1) | > 1 were considered upregulated in plasma_0, while

the reverse indicated upregulation in plasma_1. Dysregulated genes

were presented in a volcano plot.
2.4 Non-negative matrix factorization
clustering and survival analysis post-
clustering

Next, the top four regulons and their corresponding targets as

signatures were selected. Hierarchical clustering on GSE136324 was

performed using the NMF method with the “brunet” algorithm.

The number of clusters (K) varied between 2 and 10 to determine

the optimal fit. We evaluated the clustering results based on seven

criteria, including phenotype correlation coefficient, residuals,

dispersion, residual sum of squares (RSS), explained variance,

silhouette coefficient, and sparsity. The variation between these

indicators was demonstrated by visualizing using line plots. The

specific criteria for determining the optimal K value were as follows:

(1) maximizing the phenotype correlation coefficient to enhance

consistency between the clustering results and the original data, (2)

optimizing dispersion and silhouette coefficient to improve the

distinguishability and quality of the clusters, (3) selecting the last

K value before significant reduction in dispersion and RSS to ensure

model fitting, and (4) focusing on significant increases in explained

variance while balancing sparsity to ensure the interpretability of

the clustering results. According to the optimal K value, GSE136324

was divided into clusters C1 and C2, and survival analysis was

performed on both clusters. The survival analysis was visualized

utilizing the “ggsurvplot” function, a feature provided by the

“survminer” package within the R programming environment.
2.5 Differential expression analysis of
metabolism-related genes and gene set
enrichment analysis

A differential expression analysis was performed on genes

associated with key metabolic pathways (nucleotide metabolism,

lipid metabolism, glycolysis, and amino acid metabolism) in clusters

C1 and C2. The results were visualized using boxplots generated

with the “ggplot2” package. Following this, a GSEA was performed

on clusters C1 and C2 employing the “clusterProfiler” package, for

contrasting the pathway enrichments between the two clusters. The

results were further visualized using the “GseaVis” package. A
Frontiers in Immunology 04
positive Normalized Enrichment Score (NES) indicates

significantly upregulated pathway in C2 relative to C1, while a

negative NES indicates significant downregulation in C2.
2.6 Weighted gene co-expression network
analysis

Then, WGCNA was performed to identify the appropriate soft

threshold for constructing a scale-free network. The optimal soft

threshold (b) was determined according to the Scale Independence

and Mean Connectivity. Subsequently, a co-expression network was

constructed using the best soft threshold, and modules were

visualized through a gene clustering dendrogram. Subsequently,

the correlation between modules and clinical traits was computed

and depicted through a heatmap visualization. Values with p < 0.05

were considered statistically significant; blue represented negative

correlations, red indicated positive correlations, and darker colors

reflected stronger associations. For modules with > 200

characteristic genes, GO enrichment analysis was performed. The

top five enriched pathways for each module were visualized through

bar charts. Then, the module most closely associated with the

cluster for hub gene extraction was selected and the hub genes

were identified through the examination of the correlation between

Gene Significance (GS) and Module Membership, employing the

selection criteria of GS > 0.4 and Module Membership > 0.6.

The results were visualized through a scatter plot, and colored

points represented hub genes. Ultimately, the identified hub

genes were subjected to GO enrichment analysis, and the five

top-most GO terms in Molecular Function (MF), Biological

Process (BP), and Cellular Component (CC) were represented

using bar chart visualizations.
2.7 Construction and validation of the
prognostic model

LASSO regression analysis was performed using the GSE136324

dataset. Initially, the optimal regularization parameter l was

selected through the R package “glmnet.” The best fitting of the

model was considered when the deviance, represented on the y-axis

of the cross-validation curve, corresponding to the optimal log(l)
value was minimized. Based on this optimal l, key genes with

significant contributions to the LASSO regression equation were

identified from the coefficient path distribution plot. Following this,

we performed a multi-Cox proportional hazards regression analysis

on the selected key genes to ascertain their respective coefficients,

which were subsequently presented using a lollipop plot

visualization. Subsequently, a predictive model was prepared,

employing the chosen genes and their corresponding coefficients

as fundamental determinants. Risk scores for each patient were

determined; their subsequent categorization into high and low-risk

groups was based on the median score. These groups were

visualized using a dot plot. Survival and time-dependent Receiver

Operating Characteristic (ROC) curves on the GSE136324 dataset
frontiersin.org
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were analyzed. These analyses compared prognostic disparities

between the low-risk and high-risk groups, and the model’s

accuracy in predicting outcomes was assessed. The model was

subsequently re-applied to the GSE136337 validation dataset to

further evaluate its predictive efficacy and stability.
2.8 Biological differences between high-
risk and low-risk groups

A differential analysis between the high-risk and low-risk

groups was performed utilizing the “limma” package, for

identifying the top 20 dysregulated feature genes that differed

between the two groups. Subsequently, a heatmap was employed

to represent the expression profiles of these 20 genes across both the

high- and low-risk groups. Following this, the expression levels of

nine dysregulated immune checkpoints were analytically assessed.

These were subsequently juxtaposed between the two groupings,

and the differential expression patterns were also depicted through a

heatmap visualization. Next, we conducted GSEA on the high-risk

group using the “clusterProfiler” package. Gene sets were obtained

from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, and the ridge plots for visualizing dysregulated KEGG

pathways were generated using the “GseaVis” package.

Furthermore, the Cancer Hallmark gene sets were acquired from

the MSigDB database and used the “GseaVis” package to generate

ridge plots for visualizing dysregulated Hallmark pathways. In these

visualizations, greater intensity of blue color indicated a more

statistically significant the pathway. Furthermore, when the value

on the x-axis >0.0, indicated upregulated pathway, while values <

0.0 indicate downregulation.
2.9 Association between prognostic
models and immunological features

The correlation between immune therapy pathways, anti-cancer

immune cycle pathways, and risk scores were analyzed, and the

results were visualized using correlation butterfly plots generated by

“ggplot”. A significant negative correlation was indicated by p < 0.05

and Pearson’s r < -0.2, while p < 0.05 and Pearson’s r > 0.2 indicated

a significant positive correlation. Subsequently, the TME analysis

and quantification were performed using the “ESITMATE”

algorithm from the “IOBR” package. This analysis yielded the

ESTIMATE Score, Immune Score, and Stromal Score for the

high-risk and the low-risk groups, respectively, and the results

were visualized via box plots. Additionally, five drugs (Foretinib,

JAK, Fludarabine, Erlotinib, Linsitinib) we selected for drug

sensitivity analysis. The predicted half-maximal inhibitory

concentration (IC50) values of these drugs were estimated and

compared for the two risk groups, with the results were represented

through box plot visualizations. Additionally, the CIBERSORT

algorithm within the “IOBR” package was utilized to evaluate the

correlation between risk scores and the extent of immune cell

infiltration. The correlation of risk scores with six immune cell
Frontiers in Immunology 05
subpopulations were visualized using scatter plots. A p-value < 0.05

and R < 0 indicated a negative correlation; a larger absolute value of

R indicated a stronger correlation. We further examined the

correlation with respect to the 25 model genes and the infiltration

levels of 22 distinct immune cell subpopulations across 10 immune

cell types through Pearson’s correlation coefficients, and the results

were visualized in the form of a correlation heatmap. In the

concluding phase, a comprehensive examination was conducted

to elucidate the relationship of the 25 model genes with 57 immune

checkpoints, and the findings were subsequently depicted through a

correlation heatmap.
2.10 Statistical assessment

Survival analysis was performed using the Kaplan-Meier (KM)

method, and the log-rank test was used to compare the survival

curves of high- and low-risk groups. The area under the ROC curve

(AUC) was calculated, and an AUC > 0.55 was considered to

indicate good test performance. A p-value < 0.05 was considered

statistically significant in all analyses. Data were statistically

analyzed using R software (version 4.3.1), and p < 0.05 was

regarded as statistically significant. (*: p < 0.05; **: p < 0.01; ***: p

< 0.001; ****: p < 0.0001).
3 Results

3.1 Data acquisition and preprocessing

After quality control, data cleaning, and batch-effect correction

of the GSE117156 and GSE164551 single-cell datasets, 56,168 single

cells were obtained. Subsequently, the processed single-cell data

were subjected to dimensionality reduction and clustering via the

implementation of UMAP, leading to the identification of 25

discrete cell clusters (Figure 1a). Based on the TISCH database

annotations, these 56,168 single cells were categorized into 10 major

cell types, including CD8 T cells, B cells, malignant cells, plasma

cells, mono/macrophages, CD4 T conventional (CD4Tconv) cells,

dendritic cells (DC), erythrocytes, natural killer (NK) cells, and

proliferating T cells (Tprolif) (Figure 1b).

Next, analysis of the expression of 47 specific markers across the

10 cell subtypes revealed the most prominently expressed markers

in the B cell subtype, including MS4A1, CD83, LINC00926, IGHD,

and NEIL1. The key markers in the CD4Tconv subtype were LTB,

IL7R, IL32, and SPOCK2. The significant markers for CD8 T cells

were CCL5, NKG7, GZMH, DUSP2, and CD3D. The top markers

in the DC subtype included CLEC10A, FCER1A, CPVL, and AIF1.

The erythrocyte subtype exhibited high expression of HBD, AHSP,

CA1, HBM, and HBA1. The most notable markers in malignant

cells were IGHGP, MTATP6P1, SNORA7A, IGLC2, and IGLC1.

The mono/macrophage subtype was characterized by the

expression of LYZ, S100A9, FCN1, S100A8, and THBS1. NK cells

primarily expressed CCL5, NKG7, GNLY, GZMB, and KLRD1.

Plasma cells showed enhanced expression of IGHA2, IGHA1,
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IGKC, MZB1, and ITM2C. Finally, in the Tprolif subtype, high

expression of STMN1, TYMS, PCLAF, HELLS, and MK167 was

noted (Figure 1c). This study focused on the plasma cell

subpopulation. Therefore, we selected the plasma cell subtype

(n=9888) for t-SNE dimensionality reduction and clustering, and

found two distinct plasma cell subclusters, plasma_0 and plasma_1.
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The majority of the plasma cell population consisted of plasma_0

cells (Figure 1d). We then calculated the changes in the gene

expression level between the two subclusters and annotated the

top 10 dysregulated genes. In plasma_0, the most significantly

upregulated genes relative to plasma_1 were IGKC, SNORA31,

IGHG2, IGLC1, and EEF1A1P5. In contrast, the genes most
FIGURE 1

Single-cell RNA sequencing (scRNA-seq) analysis unravels the heterogeneity of plasma cells in MM. (a) The integrated scRNA-seq dataset revealed
25 clusters were identified in. (b) 10 major cell types were annotated. (c) Heatmap showing the top cell-type specific markers. (d) uniform Manifold
Approximation and Projection visualization of the 9888 of plasma cells. (e) Volcano plots of the top ten dysregulated genes of each plasma subtype.
(f) Top five enriched GO_BP terms of each plasma cell subset.
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significantly downregulated in plasma_0 relative to plasma_1 were

RPS26, RPSA, CCND1, RPL39, and NEAT1 (Figure 1e). In the final

step, GO enrichment analysis on the two plasma-cell subclusters

revealed the top six enriched pathways in the GO_BP category. As

shown in the bar chart, the most significantly enriched pathway in

plasma_0 was the Endoplasmic Reticulum-Associated Degradation

pathway, whereas the most enriched pathway in plasma_1 was

Cytoplasmic Translation (Figure 1f).
3.2 Cell communication, transcriptional
regulation, and functional analysis based
on plasma cells

Cell communication analysis on the two plasma cell subtypes

and the malignant cell subtype identified through dimensionality

reduction clustering revealed the number and strength of

interactions between the malignant and plasma subgroups. The

comparison presented in the figure reveals that plasma_0 exhibits

more numbers of and stronger interactions with the malignant

subtype, whereas the interaction strength from plasma_1 to

malignant cells is weaker (Figure 2a). Therefore, for further

exploration we selected plasma_0, showing closer interactions

with malignant cells,. Next, we analyzed the signaling intensity of

receptor-ligand interactions across different cell subtypes. PPIA-

BSG exhibited lower signaling strength in the interaction between

plasma_1 and malignant cells, whereas higher signaling intensity

was observed in MIF-(CD74+CXCR4) in the interaction from

plasma_0 to malignant cells. The signaling strength from

malignant to plasma_0 was 0.609, suggesting a potential role of

this interaction in the communication between malignant and

plasma_0 cells (p < 0.01, Figure 2b). The activity of 29 regulatory

factors across the different cell subtypes was then evaluated and the

heatmap analysis revealed a similar trend of the activity of

regulators in the plasma_0 and malignant cell populations, in

contrast to plasma_1. Most regulatory factors showed upregulated

activity in plasma_0 and malignant cells (Figure 2c). The specificity

scores of regulatory factors in plasma_0 were calculated and

ranked in descending order. The top six factors included TCF4

(+), FOSL1 (+), TAL1 (+), and RARG (+) (Figure 2d). Following

this, GSVA on the three cell populations revealed that in the

malignant cells, the expression of six hallmarks related to cell

proliferation, migration, differentiation, and environmental

adaptation, including E2F_TARGETS, HEDGEHOG_SIGNALING,

ESTROGEN_RESPONSE_EARLY, ESTROGEN_RESPONSE_LATE,

and APICAL_SURFACE, was more active. In contrast, plasma_0

cells showed upregulated activity in GLYCOLYSIS and

PROTEIN_SECRETION; in contrast, the expression of other

hallmarks was relatively low in both malignant and plasma_0 cells.

In plasma_1, an opposite trend was noted in the expression of 50

hallmarks, with most of them being highly active in this subtype

(Figure 2e). The eight immune-related cell pathways included naive

markers, Treg markers, Resident, INF-induced pathways, Inhibitory

receptors, Cytokines and effector molecules, Co-stimulatory molecules,

and Transcription factors. Most functional genes showed more active
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expression in plasma_1, while an opposite trends was observed in in

malignant and plasma_0 cells (Figure 2f). In the final step, a

comparative analysis of differential gene expression was carried out

to compare the gene profiles between plasma_0 and plasma_1. The

volcano plot indicated that 11 genes, including SNORA31, EEF1A1P5,

IGLC1, SNORA70, and SNORD100, were significantly upregulated in

plasma_0, relative to plasma_1 (Figure 2g).
3.3 Non-negative matrix factorization
clustering and post-clustering survival
analysis

NMF on the GSE136324 dataset and a comprehensive analysis

using seven indicators revealed phenotype correlation coefficient,

residuals, dispersion, RSS, explained variance, silhouette coefficient,

and sparsity. The optimal K-value was determined to be 2

(Figure 3a). Based on this, we classified the GSE136324 dataset

into two clusters, C1 and C2, and conducted survival analysis on

both clusters, and found that over time, the overall survival (OS)

rate of cluster C2 was significantly lower than that of C1, and the

two groups exhibited notable prognostic difference (p <

0.0001, Figure 3b).
3.4 Differential expression analysis of
metabolism-related genes and gene set
enrichment analysis

An analysis of DEGs related to metabolism was carried out to

examine their expression patterns between C1 and C2. Among the

16 genes involved in lipid metabolism, 11 genes, including

AKR1C3, ALOX5AP, CYP4F3, GPAT3, LPGAT1, PLA2G7,

PLBD1, PRKAR2B, SLC27A2, and TSPO, were highly expressed

in C2, whereas five genes, LPIN1, OSBPL10, PRKD2, STARD5, and

UGT8, showed higher expression in C1 (p < 0.0001, Figure 4a).

Among the 15 genes involved in nucleotide metabolism, 10 genes,

including CDA, CHIT1, DCK, GMPR, HK3, NUDT1, PNP, RRM2,

TK1, and TYMS, were highly expressed in C2, while five genes,

AMPD1, GFPT1, PGM3, SRM, and UAP1, were more highly

expressed in C1 (p < 0.0001, Figure 4b). For the 18 genes related

to amino acid metabolism, eight genes, including ALDH1A1,

ARG1, GCLM, GLUL, HAL, C25A21, SLC6A8, and TST, were

highly expressed in C2, whereas 10 genes, including AGA, ASNS,

ASS1, AUH, GLS, MTRR, PHGDH, PPM1K, PSAT1, and SRM,

were more highly expressed in C1 (p < 0.0001, Figure 4c). Among

the 18 glucose metabolism-associated genes, 11 genes, including

AURKA, BPGM, CDK1, GPAT3, HK3, HMMR, IRS2, KIF20A,

PYGL, SLC2A3, and SLC4A1, were highly expressed in C2, while

seven genes, DDIT4, GFPT1, ISG20, SDC1, ELENOS, SPAG4, and

ZBTB20, showed higher expression in C1 (p < 0.0001, Figure 4d). In

summary, compared to C, the classical metabolic pathways were

more active in C2. Further GSEA in both C1 and C2 indicated

upregulation immune response-related pathways, such as

Phagosome, Chemokine signaling pathway, and Neutrophil
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extracellular trap formation, as well as cell cycle-related processes,

including Mismatch repair, Cell cycle, and DNA replication, in C2

relative to C1 (p < 0.05, NES > 0, Figure 4e). On the other hand,

pathways related to protein synthesis, modification, and secretion,

such as N-Glycan biosynthesis, various types of N-glycan

biosynthesis, Protein export, Ribosome biogenesis in eukaryotes,

and other types of O-glycan biosynthesis, along with cell signaling

pathways such as the Hippo signaling pathway and ECM-receptor

interaction, were downregulated in C2 relative to C1 (p < 0.05, NES

< 0, Figure 4f).
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3.5 Weighted gene co-expression network
analysis

WCGNA was performed by combining the scale-free topology fit

index and the average connectivity plot, and the optimal soft

threshold was identified as 7 (Figure 5a). A co-expression network

was constructed based on the optimal soft threshold that we

determined; the gene clustering dendrogram revealed a total of

eight co-expression modules (Figure 5b). Subsequently, the

correlations and significance between the modules and clinical
FIGURE 2

Intercellular communications between plasma and malignant cells. (a) The intercellular interactions between plasma and malignant cell subsets.
(b) The ligand-receptor pairs between plasma and malignant cells. (c) Heatmap demonstrating the activity of each regulon in plasma and malignant
cells. (d) The top four activated positive regulons of plasma subtype 0. (e) The enrichment properties of hallmarks of plasma and malignant cells.
(f) Heatmap demonstrating the expression levels of functional genes of plasma and malignant cells. (g) Volcano plot showing the genes upregulated
in plasma subtype 0.
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features were analyzed to identify the strongest correlation between

Module_blue and Cluster (p < 0.0001, R = 0.57, Figure 5c). Except for

Module_grey, GO enrichment analysis was performed on the

remaining seven modules, and the top five enriched pathways in

each were identified. The most significantly enriched pathway in

Module_brown was “Response to Endoplasmic Reticulum Stress,”

while that in in Module_blue was “Chromosome Segregation”. In

Module_skyblue, “Ncrna Processing” was the most prominent,

whereas “Intracellular Lipid Transport” was most enriched in

Module_darkorange. The most significantly enriched pathway in

Module_turquoise was “Adenylate Cyclase-Modulating G Protein-

Coupled,” followed by “Regulation of Ossification” in Module_cyan,

and “Renal System Development” in Module_lightyellow. These

pathways cover a range of critical biological processes, including

cellular stress responses, cell cycle regulation, RNA processing, lipid

metabolism, signal transduction, bone metabolism, and renal

development (Figure 5d). Next, focusing on Module_blue, we

analyzed the correlation between Module Membership and GS and

identified the hub genes within the module (Figure 5e). The most

significantly enriched GO_BP pathway was “Chromosome

Segregation,” the most enriched GO_MF pathway was “Tubulin

Binding,” and the most enriched GO_CC term was “Spindle.”

These three pathways play essential roles in pivotal functions,
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including cell division, cytoskeletal organization, and genomic

stability, all of which being crucial steps in the cell division process.

Particularly, the enrichment of genes in the GO_BP pathway was

relatively more significant (Figure 5f).
3.6 Development and confirmation of a
prognostic model

LASSO regression analysis performed on the GSE136324 dataset

revealed that the mean squared error was minimum when l = 0.04

(Figure 6a). Subsequently, based on the l value, 25 model genes were

selected from the coefficient path distribution plot (Figure 6b) and these

25 genes were subjected to multivariate Cox regression analysis, which

yielded coefficients for each model gene, thereby enabling the

formulation of the prognostic model. Among them, seven genes—

TAL1, ADD2, GATA1, NPRL3, MYBL2, TRAK2, andMARCH3—had

positive coefficients, while the remaining 18 genes had negative

coefficients (Figure 6c). Next, using the model, we calculated the risk

scores of patients in the GSE136324 dataset and divided them into high-

and low-risk groups based on the median score (Figure 6d).

Subsequently, survival analysis and time-dependent ROC analysis,

were performed. KM curve results indicated that although the OS
FIGURE 3

Nucleotide metabolism subclusters and prognosis in The Cancer Genome Atlas-Ovarian carcinoma. (a) Cophenetic distributions, residual sum of
squares, and dispersion indices for ranks 2–10. (b) Overall Kaplan-Meier survival curves for both subclusters.
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declined over time in high- as well as low-risk groups, the OS of the low-

risk group was higher than that in the high-risk group. Analysis

conducted using the ROC methodology revealed that the AUCs

corresponding to the 3- and 5-year survival rates were 0.66 and 0.74,

respectively, thereby indicating a robust capacity of the model for

efficacy in the prediction of survival outcomes. (Figure 6e). Finally,

the model in the independent validation set, GSE136337, using survival

analysis and time-dependent ROC analysis. The survival curves of the

high- and low-risk groups in GSE136337 and GSE136324 were similar.

For the 1-, 3-, and 5-year survival rates, the AUC values obtained were
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0.68, 0.70, and 0.69, respectively, strongly validating the model’s

robustness and predictive performance (Figure 6f).
3.7 Biological differences between high
and low-risk groups

A differential analysis was performed to compare the high and low-

risk groups utilizing the ‘limma’ package, identifying the top 20

dysregulated genes and their expression levels in each sample
FIGURE 4

Crosstalk between nucleotide metabolism subclusters and key metabolic pathways. Differences between subclusters (a) in terms of lipid
metabolism-related genes, (b) in terms of nucleotide metabolism-related genes, (c) in amino acid metabolism-related genes, (d) in glycolysis-related
genes, and (B) in amino acid metabolism-related genes. Gene set enrichment analysis (GSEA) reveals (e) pathways upregulated in subtype C2 relative
to C1 and (f) pathways downregulated in subtype C2 relative to C1. ****: p < 0.0001.
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(Figure 7a). Subsequently, an in-depth analysis of the expression profiles

pertaining to nine immune checkpoints across the two distinct groups

were found to be dysregulated, namely LGALS9, BTN2A2, BTLA,

SIRPA, PDCD1, LAG3, CD276, HAVCR2, and TDO2 (Figure 7b).

Next, GSEA was conducted on the high-risk group, initially referencing

the KEGG pathways. This revealed that five pathways—N GLYCAN

BIOSYNTHESIS, PROTEIN EXPORT, HEDGEHOG SIGNALING

PATHWAY, CIRCADIAN RHYTHM MAMMAL, and CELL

ADHESION MOLECULES—were enriched in the high-risk group,

with N GLYCAN BIOSYNTHESIS showing the most pronounced
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upregulation. These pathways are involved in various biological

processes, including cell development, signaling, interactions, and

environmental adaptation, all being essential for maintaining normal

cellular and organismal functions (p < 0.05, Figure 7c).We subsequently

consulted the HALLMARK gene set and discovered that the pathways

upregulated in the high-risk cohort, specifically the ANDROGEN

RESPONSE and the UNFOLDED PROTEIN RESPONSE, were

implicated in the proliferation and survival of tumor cells, with a

particularly notable upregulation in the UNFOLDED PROTEIN

RESPONSE (p < 0.01, Figure 7d).
FIGURE 5

Identification oof key module related to clusters through Weighted Gene Co-expression Network Analysis (WGCNA). (a) Analysis of network
topology for different soft-threshold power. The left panel showing the impact of soft-threshold power (power = 7) on the scale-free topology fit
index; the right panel shows the impact of soft-threshold power on the mean connectivity. (b) Cluster dendrogram of the co-expression modules.
Each color indicates a co-expression module. (c) Module-trait heatmap presenting the correlation between module eigengenes and clinical traits. (d)
Top five enriched Gene Ontology terms of module genes in each module except for the grey module. (e) Correlation between module membership
and gene significance is presented in the blue module. Colored dots were regarded as the hub genes of the corresponding module (MM > 0.6 & GS
> 0.4). (f) Enrichment analysis of the hub genes.
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3.8 Association between prognostic
models and immunological features

The association of 18 immune therapeutic pathways with risk

scores was analyzed. The butterfly plot indicated a negative

relationship with respect to the majority of immune therapeutic

pathways and the risk score, while there exists a positive association

between APM_signal and the risk score (p < 0.05, Figure 8a).

Furthermore, the correlation among the seven sequential stages of

the anti-cancer immune cycle, as well as the correlation with the

assigned risk scores were assessed. We found positive correlation of

steps 3 and 6 with risk scores, while steps 4 and 7 were negatively

correlated with risk scores (p < 0.001, Figure 8b). Subsequently,

comparison of the TME scores between the high- and low-risk

groups revealed that within the high-risk cohort, the indices for

immune score, stromal score, and ESTIMATE score were reduced

compared to the low-risk cohort, suggesting a diminished presence

of immune and stromal cell infiltration in the high-risk group

(Figure 8c). We also calculated the IC50 values of five drugs for the
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high- and low-risk groups. The insights garnered from the boxplot

results demonstrated enhanced sensitivity of the low-risk cohort to

Foretinib, JAK inhibitors, Fludarabine, and Erlotinib, whereas the

high-risk cohort demonstrated a greater responsiveness to

Linsitinib (Figure 8d).The relationship between the risk score and

the abundance of immune cell infiltration was analyzed using a

correlation scatter plot. We observed that six immune cell types—

B_cells_naive, Neutrophils, NK_cells_activated, T_cells_CD8,

Monocytes, and Mast_cells_resting—were negatively correlated in

terms of the risk score, with the strongest correlation being for

Monocytes (p < 0.05, Figure 9a). Next, we examined the correlation

of 25 model genes and the infiltration levels of 22 immune cell

subtypes and found that among the immune cell subtypes,

Plasma_cells, B_cells_memory, and Dendritic_cells_activated were

negatively correlated with all 25 model genes, and the strongest

negative correlation was observed for Plasma_cells. In contrast,

Neutrophils, Monocytes, Mast_cells_resting, and B_cells_naive

were positively correlated with all 25 model genes, and

Monocytes showed the strongest positive correlation (p < 0.05,
FIGURE 6

Plasma-related prognostic signature construction and validation. (a, b) The selection of prognostic hub genes based on the optimal parameter l
obtained through the Least Absolute Shrinkage and Selection Operator regression analysis. (c) A lollipop chart of the coefficients of signature genes
determined by the multiCox regression analysis. (d) The dotplot demonstrating the risk score of each patient. Survival differences between (e) two
groups and time-dependent ROC analysis of the model in the GSE136324 and (f) two groups and time-dependent ROC analysis of the model in
the GSE136337.
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Figure 9b). In the final step, heatmap of the analysis of the

correlation between 57 immune checkpoints and 25 model genes

revealed that most members of the tumor necrosis factor (TNF)

superfamily (TNFSF18, TNFSF14, TNFRSF9, TNFRSF4,

TNFRSF18, TNFRSF14) were negatively correlated with the

model genes; in contrast, TNFSF14 exhibited a strong positive

correlation with all 25 model genes. In the programmed cell

death protein (PD-1) and its ligand pathway, PDCD1 and

PDCD1LG2 showed positive correlation with the model genes,

whi l e CD274 was nega t ive ly corre la ted . The Ki l l e r

Immunoglobulin-like Receptors (KIRs) family (KIR3DL2,

KIR3DL1, KIR2DS4, KIR2DL4) and the BTN family (BTNL9,

BTN3A1, BTN2A2, BTN2A1) showed negative correlation with

the model genes. Among the HLA molecules, HLA-A, HLA-B,

HLA-C, HLA-DOB, HLA-E, HLA-F, and HLA-G showed positive

correlations with the model genes, while HLA-DRB1, HLA-DRA,

HLA-DQB1, HLA-DQA1, HLA-DPB1, HLA-DPA1, HLA-DOA,

and HLA-DMB were negatively correlated with the model genes.

Among the 57 immune checkpoints, HLA-DOB, CD40, BTN3A1,
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and BTLA showed the strongest negative correlations with the 25

model genes; in contrast, TNFSF14, SIRPA, LGALS9, CEACAM1,

and CD226 exhibited the strongest positive correlations. Among the

25 model genes, C11orf21 demonstrated the strongest positive

correlation with the immune checkpoints CEACAM1, TNFSF14,

and SIRPA (Figure 9c).
4 Discussion

MM, the second most common hematologic cancer, has seen an

increasing rate of incidence over the years, with high treatment

costs. In Australia, with the highest incidence, the average annual

treatment cost per patient may reach USD 25,000. Although the

direct cause of the disease remain yet to be identified, several risk

factors, including advanced age, male gender, African American

ethnicity, and MGUS, have been established, most of which are not

modifiable. The only potentially changeable risk factor is adult body

mass index, although its correlation with MM requires further
FIGURE 7

Biological differences among the risk groups. Heatmap showing (a) the top 20 dysregulated features between two groups and (b) the dysregulated
immune checkpoints between two groups. Ridge plots of the (c) upregulated Kyoto Encyclopedia of Genes and Genomes pathways in the high-risk
group and (d) upregulated hallmarks in the high-risk group.
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investigation. Typically, MM progresses from MGUS to SMM,

which, despite being asymptomatic, increases the risk of

complications such as venous thromboembolism, infections,

osteoporosis, and fractures. Patients suffering from MM often

experience symptoms such as anemia, bone pain, and fatigue,

which severely impact their quality of life. While advancements in

treatment have improved the prognosis for patients with MM,
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relapse remains an inevitable challenge. Emerging therapies have

extended survival in patients with relapsed or refractory MM, but

their side effects, including cytokine release syndrome and immune

effector cell-associated neurotoxicity syndrome, are significant.

Furthermore, the effectiveness of approaches like chimeric antigen

receptor-T cell therapy and BiTEs is limited by factors such as

comorbidities, cytogenetic characteristics, and treatment
FIGURE 8

The association between the risk score and immunological features. The correlation between (a) the risk score and the immunotherapeutic
pathways and (b) the risk score and the anti-cancer immunity cycles, (c) The TME immune scores determined by the ESTIMATE method between
two risk groups and (d) The predicted drug sensitivities between two risk groups. * p < 0.05, ** p < 0.01, *** p < 0.001. These significance levels are
commonly used in scientific literature to denote the strength of statistical evidence, with more asterisks indicating stronger statistical significance.
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responsiveness. Therefore, it is essential to study the molecular

mechanisms of MM to identify key target genes, enhance disease

detection, improve treatment efficacy, and ultimately extend

patient survival.

We first performed batch correction and dimensionality

reduction clustering on the scRNA-seq data obtained from the

TISCH2 database and after clustering and annotation, identified 10

distinct cell subtypes. Focusing on the plasma cell cluster and

further dimensionality reduction clustering resulted in two

subpopulations, plasma_0 and plasma_1. The plasma_1 subgroup

represented a minority of the total population. DEG analysis

revealed the top 10 genes with the most significant changes in

expression between the two subpopulations. Specifically, IGKC,

SNORA31, IGHG2, IGLC1, and EEF1A1P5 were highly expressed

in plasma_0, whereas RPS26, RPSA, CCND1, RPL39, and NEAT1
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were significantly highly expressed in plasma_1. Subsequently, GO

enrichment analysis for the two subpopulations revealed

upregulated endoplasmic reticulum-associated protein synthesis

and degradation pathways (including the ERAD pathway,

Endoplasmic Reticulum to Cytosol Transport, Retrograde Protein

Transport, ER to Cytosol, Response to Endoplasmic Reticulum

Stress, Protein Exit from Endoplasmic Reticulum, and Ubiquitin-

dependent ERAD Pathway) in plasma_0. In contrast, processes

related to ribosome-associated protein synthesis and assembly were

upregulated in plasma_1 (including Cytoplasmic Translation,

Ribosome Biogenesis, Ribosome Assembly, Ribosomal Small

Subunit Assembly, Ribosomal Small Subunit Biogenesis, and

Ribonucleoprotein Complex Biogenesis). These findings suggest

active involvement of plasma cells in protein synthesis, with

notable heterogeneity within the plasma cell population.
FIGURE 9

The association among signature genes and immunological features. The correlation (a) between risk scores and immune cell infiltration abundances, as
estimated by CIBERSORT, (b) between signature genes and infiltration levels of 28 immune cell subsets, and (c) between signature genes and immune
checkpoints. The symbol * indicates statistical significance at the p < 0.05 level. This is the standard threshold for statistical significance in biomedical
research, indicating that the observed result would occur by chance less than 5% of the time if there were no actual effect.
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A cellular communication analysis was conducted between

plasma and malignant cells, identifying three distinct cell

populations (plasma_0, plasma_1, and malignant) and

quantifying the interactions between them. We observed

particularly strong interaction between plasma_0 and malignant

cells, suggesting that the plasma_0 subset may participate in MM

initiation and progression. We then examined the receptor-ligand

pairs involved in signaling between the three cell populations, and

hypothesized that plasma_0 may influence malignant cells through

the MIF-CD74+CXCR4 axis, potentially impacting the progression

of MM and potentially serving as a target for disease diagnosis and

treatment. Further activity analysis of 29 regulatory factors across

the three cell subsets revealed similar activity patterns of most of

these regulators in plasma_0 and malignant cells. In addition, the

close communication between plasma_0 and malignant cells led us

to determine the specificity scores of regulatory factors in plasma_0.

Four positive regulators, ranking among the top six in terms of

activity, were identified: TCF4(+), FOSL1(+), TAL1(+), and RARG

(+). These factors likely play significant regulatory roles in the

biological behavior of plasma_0 cells. We assessed the enrichment

of 50 pathways using GSVA based on hallmark pathways in the

three cell subsets. Notably, six hallmark pathways related to cell

proliferation, migration, differentiation, and environmental

adaptation—E2F_TARGETS, HEDGEHOG_SIGNALING,

ESTROGEN_RESPONSE_EARLY, ESTROGEN_RESPONSE_LATE,

and APICAL_SURFACE—were significantly enriched in malignant

cells, possibly contributing to tumor progression. In contrast, plasma_0

exhibited enrichment of glycolysis and protein secretion pathways. We

hypothesize that plasma_0 cells may influence tumor proliferation,

metastasis, immune evasion, and remodeling of TME through the

regulation of glycolytic and protein secretion processes. The gene

expression signatures of the three cell subsets were then analyzed

and 30 genes associated with cancer progression were identified,

including TCF7, LEF1, CCR7, LAG3, TIGIT, PDCD1, HAVCR2,

CTLA4, ENTPD1, IL2, GZMA, GNLY, PRF1, GZMB, GZMK,

IFNG, CD28, TNFRSF14, ICOS, TNFRSF9, ZEB2, HIF1A, ID2,

TOX, IKZF2, CCR5, ITGAE, ISG15, TOP2A, and MKI67. Other six

genes, including HOPX, TBX21, EOMES, FOXP3, ZNF683, and CD69,

were identified as potential tumor suppressors. Our findings suggest

that most genes expressing at high levels in the malignant cell

population promote cancer progression, whereas the expression of

tumor suppressor genes is relatively lower. In plasma_0, both pro-

cancer and anti-cancer genes are expressed at lower levels, while in

plasma_1, both types of genes are highly expressed. Finally, analysis of

DEG analysis between plasma_0 and plasma_1 identified several genes

significantly upregulated in plasma_0, potentially serving as potential

new biological indicators or drug intervention targets for improving the

prognosis of multiple myeloma.

In terms of the top four regulons in plasma_0, we used their

corresponding targets as a signature and performed NMF on the

training set GSE136324. There two optimal number of clusters,

which led to the classification of GSE136324 into clusters C1 and

C2. Survival analysis for C1 and C2 Revealed that overall, the

prognosis of C1 was better than that of C2. Subsequently,

differential expression analysis of metabolism-related genes was
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carried out for C1 and C2, which focused on genes involved in lipid

metabolism, nucleotide metabolism, amino acid metabolism, and

glycolysis. Compared to C2, most genes in the amino acid

metabolism pathway were expressed at higher levels in C1, while

the other three pathways showed higher activation in C2. We

speculate that the activation of classic metabolic pathways

provides strong support for tumor progression, contributing to

poorer prognosis. GSEA was performed on C1 and C2; compared to

C1, immune response-related pathways (such as Phagosome,

Chemokine signaling pathway, Neutrophil extracellular trap

formation) and cell cycle-related processes (such as Mismatch

repair, Cell cycle, DNA replication) were upregulated in C2.

Meanwhile, pathways related to protein synthesis, modification,

and secretion (including N-Glycan biosynthesis, various types of N-

glycan biosynthesis, Protein export, Ribosome biogenesis in

eukaryotes, other types of O-glycan biosynthesis) and cell

signaling pathways (such as the Hippo signaling pathway and

ECM-receptor interaction) were downregulated in C2. While

some immune responses were enhanced in C2, tumor cells may

escape immune surveillance through immune evasion mechanisms,

and disbalanced cell cycle may result in more aggressive tumor

behavior. Furthermore, the downregulation of protein synthesis,

modification, secretion-related pathways, and cell signaling

pathways could impair the survival and environmental

adaptability of the cell. We suggest that these factors may

collectively contribute to the poor prognosis of the C2 group.

Subsequently, WGCNA was conducted to construct a co-

expression network based on the optimal soft threshold. We

found the strongest positive correlation of the Module_blue with

the Cluster, and therefore, hub genes were extracted from this

module. Subsequently, a GO enrichment analysis on the hub genes

Revealed that the most significantly enriched terms were those

associated with cell division, such as chromosome segregation,

tubulin binding, and spindle formation. This finding suggests

potential involvement of the hub genes in regulating tumor cell

proliferation and migration, potentially linking them to the

malignancy and prognosis of the tumor.

Subsequently, a prognostic model was established empoying

multiCox regression analyses and LASSO. A l value of 25 was

selected, allowing us to identify 25 genes (TAL1, ADD2, GATA1,

NPRL3, MYBL2, TRAK2, MARCH3, CHAF1A, FZD5, NMNAT3,

C11orf21, MAFG, FUT1, TTC25, SMIM1, ATP1B2, ACOT7,

CDC25A, MTURN, TFR2, BCL7A, SNX22, LINCO1133, OSBP2,

TMCC2). TAL1 (also known as SCL), a basic helix-loop-helix

(bHLH) transcription factor, plays a critical role in hematopoiesis

(32), expressed predominantly in the adult vascular and

hematopoietic systems, especially in hematopoietic stem cells,

erythroblasts, megakaryocytes, and mast cell progenitors (33).

The Adducin protein family, comprising a, b, and g subtypes,

includes ADD2, which encodes the Adducin b protein and is

expressed mainly in the hematopoietic system and brain tissues

(34). GATA1, a GATA transcription factor family member, is

predominantly expressed in erythrocytes, megakaryocytes,

eosinophils, mast cells, and DCs (35). This protein can recognize

GATA sequences and promote the differentiation of erythrocytes
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and megakaryocytes by regulating target genes (36). Nitrogen

permease regulator-like 3 (NPRL3), together with NPRL2 and

pleckstrin domain-containing 5, forms a GTPase-activating

protein (GAP) complex known as GATOR1 (37), which regulates

mTORC1 signaling and subsequently influences cortical

development. NPRL3 mutations have been associated with

familial and sporadic focal cortical dysplasia type IIa (38). The

MYBL2 gene, also called B-MYB, a member of the transcription

factor family, is involved in myeloproliferative disorders, playing a

key role in the proliferation, differentiation, and cell cycle regulation

of proliferating cells. MYBL2 overexpression has been observed in

various cancers, including acute myeloid leukemia, hepatocellular

carcinoma, and breast cancer; overexpression in colorectal cancer is

thought to correlate with poor prognosis (39). Trafficking protein,

kinesin binding 2 (TRAK2), a member of the TRAK family of

proteins, acts as a motility linker protein by binding to Miro1/2,

thus anchoring mitochondria to motor proteins (40, 41). E3

ubiquitin ligases are the membrane-associated RING-CH-type

finger (MARCH) proteins. The MARCH family comprises four

subgroups: MARCH1 and MARCH8, MARCH2 and MARCH3,

MARCH7 and MARCH10, and MARCH4, MARCH9, and

MARCH11 (42). Among these, MARCH3 regulates the

interleukin (IL)-3-induced inflammatory response in the opposite

direction by mediating K48-linked polyubiquitination and the

degradation of IL-3 receptor alpha (IL-3Ra), thereby carrying out

its corresponding immune function (43). The transmembrane and

coiled-coil domain containing 2 (TMCC2) possibly has a role in

maintaining erythropoiesis in mice (44), and may be associated with

the risk of Alzheimer’s disease (45). Oxysterol-binding protein 2

(OSBP2), an OSBP family member (46), is specifically expressed in

the retina, pineal gland, testes, and fetal liver. Studies suggest that

OSBP2 is possibly involved in regulating apoptosis during

development (47). LINC01133, a long non-coding RNA, has been

shown to contribute to poor prognosis in lung squamous cell

carcinoma and osteosarcoma (48), though its role in MM remains

unclear. The function of SNX22 remains largely unstudied. A

member of the BCL7 family, B-cell lymphoma 7 protein family

member A (BCL7A), is believed to exert a tumor-suppressive effect

in gliomas, colorectal cancer, and ovarian cancer, and acts as a

biomarker (49), though its role in MM has been rarely investigated.

Transferrin receptor 2 (TFR2) is mainly expressed in the liver and

erythrocytes; although its precise role in iron metabolism is not fully

understood, it is potentially crucial for maintaining iron

homeostasis (50). To date, no studies have been published on the

MTURN gene. CDC25A, a member of the cell division cycle 25

(CDC25) phosphatase family, activates cyclin-dependent kinases

through the dephosphorylation of threonine and tyrosine residues,

thus regulating the cell cycle (51). CDC25A overexpression in

tumors has been associated with poor prognosis (52). Acyl-CoA

thioesterases (Acots), including types I and II, play roles in lipid

metabolism and other cellular processes dependent on this pathway

by catalyzing the hydrolysis of fatty acyl-CoA ester molecules (53).

ACOT7, the most widely studied type II Acot, is highly expressed in

brain tissues and has neuroprotective effects (54). ATP1B2, a

plasma membrane pump, is broadly expressed in brain tissues
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and may be associated with Parkinson’s disease (PD) (55).

Nonetheless, research on most of these genes in the context of

MM is still insufficient. Subsequently, we performed multiCox

regression analysis and calculated the coefficients for these 25

genes. Employing the median risk score, we stratified the samples

in the GSE136324 dataset into high- and low-risk cohorts. Survival

analysis revealed better prognosis for the low-risk group than the

high-risk group, and the model demonstrated good predictive

performance based on the ROC analysis. Further validation of the

model’s efficacy in the GSE136337 dataset confirmed its

strong generalizability.

A differential analysis between high- and low-risk groups

identified the 20 genes with the highest differential expression, and

the differential expression of 9 immune checkpoint-related genes was

also investigated. A GSEA on the high-risk group revealed four

significantly upregulated KEGG pathways, including protein

modification and secretion-related pathways (N-Glycan

Biosynthesis, Protein Export), the developmental signaling pathway

(Hedgehog Signaling Pathway), and the cell adhesion and migration-

related pathway (Cell Adhesion Molecules). The Hedgehog signaling

pathway is a critical cellular signaling pathway that participates in

various biological processes, including cell proliferation,

differentiation, and stem cell maintenance. We hypothesize that the

model genes possibly enhance tumor proliferation, migration, and

survival by upregulating these pathways, thereby leading to poor

prognosis, suggesting potential intervention points for targeted

therapy. We identified two significantly upregulated Hallmark

pathways in the high-risk group: Hallmark Unfolded Protein

Response and Hallmark Androgen Response. Activation of these

pathways can promote tumor cell proliferation and survival, and

contribute to the poor prognosis in MM.

We then assessed the correlation between risk scores and 18

immune therapy pathways, and found that most of the effective

immune therapy pathways were associated with lower risk scores,

suggesting the sensitivity of MM to these treatments. Next, we

examined the relationship between the seven steps of the anti-

cancer immune cycle and risk scores and found a significantly

negative correlation of Step 4 Trafficking of immune cells to

tumors and Step 7 Killing of cancer cells with the risk score,

indicating that these two steps contribute to better treatment

outcomes for MM. Conversely, Step 3 Priming and activation, as

well as Step 6 Recognition of cancer cells by T cells were positively

correlated with the risk score, suggesting that adjustments to these

steps may be required to improve treatment efficacy. Subsequently,

the TME scores for high- and low-risk groups revealed that the

proportion of immune and stromal cells was higher in the low-risk

group compared to that in the high-risk group. This observation

suggests that the high-risk group may be in a relatively immune-

suppressive state, potentially facilitating immune evasion by tumor

cells and promoting tumor progression. In contrast, the immune

response in the low-risk group appeared to be more active, conferring

a stronger anti-tumor property. We then compared the IC50 values

of five drugs—Foretinib, JAK inhibitors, Fludarabine, Linsitinib, and

Erlotinib—in the high- and low-risk groups, and found that the drug

sensitivity in the high-risk group was significantly lower than that in
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1549742
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qu et al. 10.3389/fimmu.2025.1549742
the low-risk group. Specifically, the low-risk group exhibited greater

sensitivity to Foretinib, JAK inhibitors, Fludarabine, and Erlotinib,

while, the high-risk cohort demonstrated enhanced sensitivity to

Linsitinib. Subsequently, examination of the relationship between risk

scores and the infiltration levels of six distinct immune cell types,

revealed a consistent negative correlation across all cell types. This

suggests that a higher degree of immune cell infiltration may help in

inhibiting the progression of MM. Among the related immune

reactions, B cells naive, monocytes, activated NK cells, CD8+ T

cells, neutrophils, and resting mast cells exhibited critical roles in

combating MM. Additionally, assessment of the correlation between

25 model genes and the distribution of 22 immune cell subsets within

the tissue Showed a negative correlation in association with the 25

model genes and plasma cells, memory B cells, as well as activated

dendritic cells, while neutrophils, monocytes, resting mast cells, and

naive B cells were positively correlated with these genes.

Finally, we examined the correlation between 57 immune

checkpoints and the 25 model genes, and found that TNFSF14

was being highly correlated with the model genes for MM

prognosis. This suggests that TNFSF14 may play a key role in

MM pathogenesis and progression and could potentially serve as a

target for the treatment of MM.
5 Conclusion

Single-cell sequencing analysis was conducted with a focus on

the role of plasma cells in MM and their potential underlying

mechanisms. Gene expression profiles and pathway enrichment

differences among different plasma cell subtypes were compared,

while also integrating malignant subpopulations for analyzing cell

communication and transcriptional regulation. Subsequently, NMF

was applied for clustering and inter-group survival differences, and

gene variations related to metabolic pathways were analyzed. Next,

hub genes were extracted through WCGNA and a prognostic

prediction model using LASSO and multi-variable Cox regression

was constructed. Finally, the correlation was explored between the

risk model and tumor immune therapy, the TME, as well as

immune checkpoints. These findings offer new research directions

for improved treatment strategies and patient prognosis in MM.
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