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Amphiregulin (AREG), a member of the EGF family, exists as a transmembrane

protein anchored to the cell surface. In response to external stimuli, its

extracellular domain is released into the extracellular matrix through paracrine

or autocrine signaling. However, its role in septic macrophage pyroptosis

remains poorly understood. This study aims to investigate the role of

extracellular AREG in septic macrophages, mice, and patients. We found that

high expression of extracellular AREG was regulated by RPLP1 at the translation

level, which increased the expression of IL-6, CCL2, and CCL3 protein, as well as

Caspase 1, IL-1b, and Nlrp3 mRNA expression, resulting in macrophage

pyroptosis. Mechanistically, macrophage pyroptosis was aggravated by

extracellular AREG pretreatment, which was triggered by extracellular AREG

and ATP (adenosine 5′-triphosphate). The AREG-neutralizing antibody reduced

LPS-induced epidermal growth factor receptor (EGFR) activation, TLR4

expression, and pyroptosis. Extracellular AREG-induced macrophage

pyroptosis decreased with EGFR and NF-kB inhibition, as well as TLR4 and

Myd88 knockout. Additionally, DTT-pretreated extracellular AREG suppressed

macrophage pyroptosis. In vivo, extracellular AREG attenuates systemic

inflammation infiltration and delays survival in a septic mouse model.

Furthermore, extracellular AREG mediates sepsis in humans, and genes

involved in the AREG-mediated pyroptosis signaling pathway were highly

expressed in patients with severe sepsis compared with those with general or

moderate sepsis. Overall, LPS-induced extracellular AREG aggravated or

triggered macrophage pyroptosis through the EGFR/TLR4/Myd88/NF-kB
signaling pathway, providing promising treatment strategies for sepsis.
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1 Introduction

Sepsis is a life-threatening pathophysiological response

to infection characterized by excessive inflammation and

immunosuppression (1). Sepsis remains one of the most common

infections in patients who are critically ill, resulting in high

morbidity, mortality, and treatment costs (2). Therefore,

elucidating the cellular and molecular mechanisms underlying

this phenomenon is critical. After invading the body, pathogens

bind to pattern recognition receptors on macrophages, triggering

the secretion of pro-inflammatory cytokines (3). These cytokines

increase the activation of immune cells through autocrine and

paracrine pathways, disrupting immune regulatory networks and

finally initiating cytokine storms (4).

Pyroptosis, also known as inflammatory necrosis of cells, is a

newly discovered programmed cell death different from apoptosis

(5). In the canonical pyroptosis pathway, endogenous and

exogenous stimuli activate the NOD-like receptor family pyrin

domain-containing 3 (NLRP3) inflammasome, which controls the

cleavage and activation of CASPASE1 (6). The activated CASPASE1

further drives the cleavage of gasdermin D (GSDMD), releasing its

N-terminal fragment, which forms membrane pores and promotes

pyroptosis. Meanwhile, activated CASPASE-1 induces the

maturation and secretion of pro-inflammatory cytokines,

including IL-1b and IL-18 (7).

Amphiregulin (AREG) is a member of the EGF-like family and

exists as an inactive, membrane-anchored precursor protein.

Intracellular AREG mainly regulates the cell cycle, proliferation,

and cytokinesis via unknown mechanisms (8). Alternatively,

metalloproteinase-mediated processing releases AREG from the

cell surface into the extracellular matrix or allows it to bind EGFR

on the surface of neighboring cells during inflammation, controlling

the signaling from the EGFR family of receptors (9, 10). Although

type II innate lymphoid cells (ILC2s) serve as the primary source of

AREG through IL-33-mediated potent upregulation, epithelial and

other immune cell types also express AREG during development

and tissue homeostasis (11, 12). For example, AREG is significantly

expressed in M1 classically polarized macrophages and exerts a

protective effect in LPS-induced acute lung injury (13, 14).

Epidermal growth factor receptor (EGFR), a transmembrane

receptor tyrosine kinase, plays a vital role in increasing TLR4 cell

surface expression and signal transduction in LPS-induced

macrophages (15). Another study demonstrated that the EGFR

inhibitor erlotinib protects against LPS-induced endotoxicity

because TLR4 needs EGFR for signaling (16). In addition, a

recent study reports that EGFR promotes pyroptosis in intestinal

ischemia–reperfusion injury (17). However, whether EGFR
Abbreviations: AREG, amphiregulin; ARDS, acute respiratory distress

syndrome; ATP, adenosine triphosphate; BMDM, bone marrow-derived

macrophage; CRP, C-reactive protein; CLP, cecal ligation and puncture; DPBS,

Dulbecco’s phosphate buffered saline; EGFR, epidermal growth factor receptor;

GSDMD, gasdermin D; RCS, restricted cubic splines; RNC, ribosome–nascent

chain complex.
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participates in macrophage pyroptosis through extracellular

ligand binding remains unclear.

Therefore, this study aims to specifically elucidate the role of

extracellular AREG in LPS-induced macrophages. Overall, our

findings indicate that RPLP1 regulated AREG secretion at the

translation level, aggravating or triggering pyroptosis through

autocrine signaling during sepsis development, and extracellular

AREG may exert a protective effect on the body through in vitro

experiments, animal models, and clinical samples. Thus, its

regulation of pyroptosis may emerge as a potential therapeutic

target for sepsis.
2 Materials and methods

2.1 Institutional review board statement

This study was approved by the Ethics Committee of the Third

Affiliated Hospital of Southern Medical University, Guangzhou,

China (No.2023053), and was performed in accordance with the

ethical standards of the responsible committee on human

experimentation. Serum samples were obtained from the septic

patients and healthy donors in the study.
2.2 Cell culture and treatment

RAW264.7 macrophages were obtained from the American

Type Culture Collection (ATCC, Rockville, MD, USA). Male

C57BL/6 mice (8–12 weeks old) were used in all experiments.

WT C57BL/6 mice were purchased from the Laboratory Animal

Center, Southern Medical University. RAGE knockout mice were

obtained from Kanazawa University (Kanazawa, Japan) (18),

whereas TLR4, Trif, and Myd88 knockout mice were provided by

Professor T.R. Billiar (University of Pittsburgh) (19). RAW264.7 or

bone marrow-derived macrophages (BMDMs) were cultured in the

DMEM culture medium containing 10% fetal bovine serum at 37°C

in an incubator with 5% CO2. These macrophages were seeded in 6-

well or 12-well culture plates. RAW264.7 was treated with

extracellular AREG for varying durations.

To determine the effects of extracellular AREG on LPS (Sigma-

Aldrich, #L2630)-induced pyroptosis, BMDMs were isolated,

matured in culture, and assigned to the following experimental

groups: (1) Control group: BMDMs were stimulated with EGFP

(100 ng/mL) for 30 min; (2) AREG group: BMDMs were stimulated

with extracellular AREG (100 ng/mL) for 30 min; (3) EGFP+LPS

+ATP (Sigma-aldrich,#A6419) group: BMDMs were stimulated

with EGFP (100 ng/mL) for 30 min, followed by LPS (1 mg/mL)

for 2 h and ATP (5 mM) for 30 min; and (4) AREG+LPS+ATP

group: BMDMs were stimulated with extracellular AREG (100 ng/

mL) for 30 min, followed by LPS (1 mg/mL) for 2 h and ATP (5

mM) for 30 min.

Additionally, BMDMs were divided into five groups: (1) Ctrl

group: no stimulation, (2) LPS group: LPS (1 mg/mL) stimulation

for 12 h, (3) Anti-AREG+LPS group: neutralizing antibody of
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AREG (300 ng/mL, R&D, #AF989) stimulated BMDMs for 1 h,

followed by LPS (1 mg/mL) stimulation for 12 h, (4) LPS+ATP

group: stimulated with LPS (1 mg/mL) for 2 h, followed by ATP (5

mM) for 30 min, and (5) Anti-AREG+LPS+ATP group:

neutralizing antibody of AREG (300 ng/mL) stimulated BMDMs

for 1 h, followed by LPS (1 mg/mL) stimulation for 2 h and ATP (5

mM) stimulation for 30 min.

To determine the effect of extracellular AREG on macrophage

pyroptosis, BMDMs were divided into six additional groups: (1)

Control group: EGFP (100 ng/mL) stimulated BMDMs for 30 min,

(2) AREG group: extracellular AREG (100 ng/mL) stimulated

BMDMs for 30 min, (3) LPS group: stimulated with LPS (1 mg/
mL) for 2 h, (4) EGFP+ATP: stimulated with EGFP (100 ng/mL)

for 2.5 h, followed by ATP (5 mM) for 30 min, (5) AREG+ATP

group: extracellular AREG (100 ng/mL) stimulated BMDMs for

2.5 h, followed by ATP (5 mM) stimulation for 30 min, and (6)

LPS+ATP: LPS (1 mg/mL) stimulated BMDMs for 2 h, followed by

ATP (5 mM) stimulation for 30 min. The EGFR inhibitor

(Cetuximab) was obtained from Selleck (#A2000), and the

NFkB inhibitor (JSH-23) was obtained from MedChemExpress

(#HY-13982).
2.3 Western blot

BMDMs were washed with Dulbecco’s phosphate-buffered

saline (DPBS) and lysed on ice for 30 min using RIPA buffer

(Thermo Scientific, #89901). Total protein was extracted, and its

concentration was determined using a bicinchoninic acid (BCA)

assay (Thermo Scientific, #23227). Proteins (20 mg per sample) were

separated via sodium dodecyl sulfate–polyacrylamide gel

electrophoresis (SDS-PAGE) and then transferred onto

polyvinylidene fluoride membranes (Millipore,#IEVH85R). After

blocking, membranes were incubated overnight at 4°C with primary

antibodies against rabbit monoclonal anti-EGFR (ABclonal,

#A2069), rabbit monoclonal anti-p-EGFR (ABclonal, #A23381),

rabbit polyclonal anti-TLR4 (Immunoway, #YT0744), rabbit

monoclonal anti-p-IkB (CST, #2859), IkB (CST, #4812), p-P65

(CST, #3033), P65 (CST, #8242), NLRP3 (CST, #15101), GAPDH

(CST, #2118), rabbit monoclonal anti-CASPASE1 (AdipoGen,

#AG-20B-0042-C100), and rabbit monoclonal anti-GSDMD

(Abcam, #ab209845). After incubation with a secondary antibody

anti-mouse IgG (Proteintech, #SA00001) or anti-rabbit IgG (CST,

#7074s), the protein bands on the membrane were subsequently

visualized with an enhanced ECL chemiluminescent substrate

(Biosharp, #BL523A).
2.4 Cell immunofluorescence

BMDMs were fixed with 4% paraformaldehyde (Beyotime,

#P0099), permeabilized with 0.2% Triton X-100 (Beyotime,

#P0096), and blocked with 3% BSA (Beyotime, #ST023) at room
Frontiers in Immunology 03
temperature. After the reaction, cells were incubated with primary

antibodies against EGFR (ABclonal, #A23381), TLR4 (Immunoway,

#YT0744), or ASC (CST, #67824). Secondary antibody incubation

was performed in the dark for 1 h using Alexa Fluor 488-conjugated

anti-mouse IgG (Thermo Scientific, #A11029) or Alexa Fluor 594-

conjugated anti-rabbit IgG (Thermo Scientific, #11012). The

nucleus was counterstained with 4′,6-diamidino-2-phenylindole

(Beyotime, #C1006). Immunofluorescence images were captured

using LSM 880 with Airyscan.
2.5 qRT-PCR analysis

Total RNA was extracted from RAW264.7 using TRIzol reagent

(Thermo Scientific, #15596018CN). RNA quantification using

NanoDrop (Thermo Scientific), cDNA was synthesized using a

ReverTra Ace qPCR RT Kit (Toyobo, #FSQ-201). The qRT-PCR

was performed on a 7500 Real-Time PCR System (Applied

Biosystems, USA) employing a SYBR Green PCR reagent kit

(Dongsheng Biotech).The specific mouse primer sequences were

as follows: Areg 5′-GCAGATACATCGAGAACCTGGAG-3′
and5′-CCTTGTCATCCTCGCTGTGAGT-3′; Nlrp3 5′-TCACAA
CTCGCCCAAGGAGGAA-3′and5′-AAGAGACCACGGCAG

AAGCTAG-3′; Caspase1 5′-CTGGGACCCTCAAGTTTTGC-3′
and 5′-GGCAGGCAGCAAATTCTTTC-3′; Il-1b 5′-CCCAAG
CAATACCCAAAGAA-3′ and 5′-GCTTGTGCTCTGCTTGTG
AG-3′. The specific human primer sequences were as follows:

Areg 5′-GCACCTGGAAGCAGTAACATGC-3′ and 5′-GGCAGC
TATGGCTGCTAATGCA-3′; Egfr 5′-AACACCCTGGTCT

GGAAGTACG-3′ and 5′-TCGTTGGACAGCCTTCAAGACC-3′;
Il-1b 5′-CCACAGACCTTCCAGGAGAATG-3′ and 5′-GTGC
AGTTCAGTGATCGTACAGG-3′; Il-18 5′-GATAGCCAGCCTA
GAGGTATGG-3′ and 5′-CCTTGATGTTATCAGGAGGATTCA-
3 ′ . 18S 5 ′-AGTCCCTGCCCTTTGTACACA-3 ′ and 5 ′-
CGATCCGAGGGCCTCACTA-3′. The expression of these genes

was normalized with 18S ribosomal RNA via the relative CT value.
2.6 Isolation of RNC mRNA

Cycloheximide (Sigma, #C7698) was added to the culture

medium at a final concentration of 100 mg/mL 15 min before cell

collection. Cells were lysed on ice using a ribosome-specific lysis

buffer. The lysate was centrifuged at 13,200 rpm for 10 min at 4°C to

remove cellular debris, and the supernatant was transferred to

prechilled ultracentrifuge tubes (Beckman, #344059) balanced

with 30% sucrose solution. Ultracentrifugation was performed at

185,000 ×g for 5 h at 4°C to pellet ribosome–nascent chain

complexes (RNCs). After discarding the sucrose solution, the

RNC pellet was resuspended in ribosome buffer and sonicated on

ice to ensure total dissolution of complexes. RNC-derived mRNA

was extracted using TRIzol reagent and prepared for subsequent

qRT-PCR analysis.
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2.7 ELISA

AREG secretion in the cellular supernatant, as well as in the

serum of mice or patients with sepsis, was quantified using an

ELISA kit from R&D Systems (#989-AR). TNFa (#EMC102), IL-6

(#EMC004), CCL2 (#EMC113), and CCL3 (#EMC010) in the

cellular supernatant were quantified using ELISA kits from

QuantiCyto. IL-1b (#E-EL-M0037) and IL-18 (#E-EL-M0730)

were quantified with ELISA kits from Elabscience. These levels of

cytokines were measured according to the protocols of the

manufacturer. The concentration of cytokines was calculated

based on the standard curve.
2.8 Purification of extracellular AREG

In brief, the extracellular segment of AREG, excluding the signal

peptide, transmembrane, and intracellular regions, was cloned into

a His-tagged pET14b vector using the subcloning method. The

recombinant pET14b-AREG was transformed into competent E.

coli BL21 cells to obtain extracellular AREG protein, which was

purified with Ni-NTA Sepharose chromatography (Macherey-

Nagel, #2403-001). EGFP protein was purified as a control for

AREG. The obtained recombinant protein AREG was then

identified using SDS-PAGE, and the endotoxin removal was

performed using endotoxin removal gel (Thermo Scientific,

#20340). An endotoxin assay kit (Thermo Scientific, #Q32891)

was used to detect endotoxin levels in recombinant AREG and

EGFP proteins.
2.9 Coimmunoprecipitation

RAW264.7 cells were treated with His-AREG (100 ng/mL) for

3 h. Then, cells were lysed and collected with lysis buffer (Thermo

Scientific, #87787), and protein concentration was quantified with a

BCA kit. Total IP protein (1 mg) was incubated overnight at 4°C

with A/G magnetic beads (Thermo Scientific, #80003) and either an

anti-His Tag Monoclonal Antibody (Thermo Scientific, #MA1-

21315) or a Mouse IgG Isotype Control (MCE, #HY-P80757).

After washing the magnetic beads with DPBS, the samples were

dissolved in SDS-PAGE loading buffer and subjected to Western

blot analysis with the anti-His, TLR4 (ABclonal, #A11226), or

EGFR (ABclonal, #A2069) antibodies.
2.10 Electron microscopy image

The BMDMs were collected into a centrifuge tube, and after

discarding the supernatant, they were fixed in 2.5% glutaraldehyde

while avoiding resuspension and agitation. The samples were

incubated at room temperature for 1 h, after which

glutaraldehyde was discarded, and DPBS was added. Electron

microscopy imaging was conducted at the Central Laboratory of

Southern Medical University.
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2.11 Isolation of monocytes in patients with
sepsis

Monocytes were isolated from healthy individuals, as well as

patients with general and severe sepsis, using a specific isolation kit

(TBD Science, #TBD2011H). Criteria for the classification of

patients with sepsis were based on a previously published

study (20).
2.12 Statistical analysis

Data were presented as mean ± standard deviation. Statistical

analyses were performed using GraphPad Prism (GraphPad

Software, version 9), with experiments repeated at least three

times. An unpaired two-tailed t-test was used for comparisons

between the two groups. One-way analysis of variance followed by

the Bonferroni post-hoc test was used for multiple group

comparisons. Statistical significance was defined as p < 0.05.

Restricted cubic splines (RCS) and segmented linear regression

analyses were performed using R software (version 4.2.2) and

MSTATA software (www.mstata.com).
3 Results

3.1 Dynamic expression of AREG in sepsis

To evaluate the AREG expression in LPS-induced RAW264.7

macrophages, we detected AREG mRNA expression at 1, 3, 6, 12, and

24 h after LPS stimulation. AREG expression rapidly peaked at 6 h and

subsequently declined (Figure 1A). To verify these findings, we

compared AREG protein expression in the culture supernatant of

RAW264.7. The AREG gene and protein levels almost peaked at 6 h

post-LPS stimulation (Figure 1B). In addition, exposure to higher

concentrations of LPS resulted in greater AREG protein release

(Figure 1C). The significantly high expression of AREG protein was

also detected in the serum of septic mice and BMDMs (Figures 1D, E).
3.2 RPLP1 regulates LPS-induced AREG
expression at the translational level

AREG, a secreted transmembrane protein, is synthesized by

endoplasmic reticulum-bound ribosomes and then transported to

its final destination via the secretory pathway. During translation,

its N-terminal signal peptide, emerging from the ribosome, is

recognized (21). A study reports that AREG is a translational

target of RNA helicase DDX3, showing the presence of 29

ribosomal proteins interacting with DDX3 (22). Therefore, we

hypothesized that specific ribosomal proteins may regulate AREG

translation in LPS-induced macrophages. Under inflammatory

cytokine stimulation (e.g., IFNg and TNFa), ribosomal protein

RPLP1 selectively enhances the translation of mRNAs encoding

secretory or transmembrane proteins, including HLA, TAP1, and
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TAP2 (23). To investigate whether RPLP1 regulates AREG

translation, we first performed a knockdown assay in RAW264.7

macrophages. We designed three siRNA sequences targeting

RPLP1. The siRPLP1-196 significantly suppressed RPLP1

expression at the protein and mRNA levels in LPS-induced

RAW264.7 macrophages. Thus, siRPLP1-196 was selected for

subsequent experiments (Figures 2A, B). We further knocked

down RPLP1 by applying the 196 probes to detect the expression

of AREG in LPS-induced macrophages. RPLLP1 knockdown

significantly reduced AREG expression in intracellular and

culture supernatant fractions of LPS-stimulated RAW264.7

macrophages and BMDMs (Figures 2C–H). To analyze

translation-level changes in AREG expression following RPLP1

knockdown, RNC-mRNA was separated from other cellular

components using sucrose density gradient centrifugation.

Knocking down RPLP1 significantly inhibited the LPS-induced

AREG translation (Figure 2I). Collectively, these findings indicate

that ribosomal protein RPLP1 mediates the translational regulation

of AREG expression in LPS-induced macrophages.
Frontiers in Immunology 05
3.3 Extracellular AREG induces NFkB
activation through the EGFR/TLR4
signaling pathway in macrophages

EGF family members, including EGF and TGFa, are known to

activate NFkB (24, 25). Whether AREG also contributes to NFkB
activation remains unclear. To elucidate the critical role of AREG in

LPS-induced macrophages, we subcloned a soluble extracellular AREG

without the signal peptide, transmembrane, and intracellular segments

(Figures 3A, B). Figures 3C–E shows that extracellular AREG induced

significant expressions of TLR4 and phosphorylated EGFR, IkB, and
P65 in BMDMs. These effects were attenuated EGFR kinase inhibition.

Consistent with previous findings, the TLR4 knockout inhibited the

extracellular AREG-induced phosphorylation of IkB and P65

(Figures 3G, H). We further confirmed by coimmunoprecipitation

that the extracellular AREG specifically binds to EGFR but not to TLR4

in macrophages (Figure 3F). Another potential mechanism for

extracellular AREG-induced NFkB activation involves an alternative

membrane receptor. Ligand-activated RAGE increases inflammation
FIGURE 1

Dynamic expression of AREG in sepsis. RAW264.7 cells were stimulated with LPS (100 ng/mL or 1 mg/mL) for 1, 3, 6, 12, and 24 h. AREG mRNA and protein
expressions were detected using RT-PCR and ELISA (A-C). WT C57BL/6 mice were intraperitoneally injected with LPS (20 mg/kg) and constructed with the
CLP model, whereas AREG protein expression in serum was detected via ELISA (D). BMDM was stimulated with LPS (100 ng/mL or 1 mg/mL) for 12 h, and
AREG protein expression was detected via Immunofluorescence (E). Data presented as mean ± SEM (n ≥ 3). *P < 0.05, **P < 0.01, ***P < 0.001 vs. Control.
AREG, amphiregulin; WT, wild type; BMDM, bone marrow-derived macrophages; CLP, cecal ligation and puncture.
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by binding and activating EGFR (26). However, extracellular AREG-

induced phosphorylation of IkB and P65 remained unaffected by

RAGE knockout (Figures 3G, H). These findings suggest that EGFR/

TLR4 is vital for extracellular AREG-induced NFkB activation

in BMDMs.

3.4 Extracellular AREG aggravated
inflammatory response and LPS-induced
pyroptosis in macrophages

The activation of NFkB induces the expression of multiple genes

and promotes the production of multiple cytokines involved in the
Frontiers in Immunology 06
inflammatory response (27). We first observed that extracellular AREG

rapidly induced the secretion of IL-6, CCL2, and CCL3 in RAW264.7

macrophages (Figure 4A) but did not affect TNFa secretion (Not

shown). Another EGF family member, TGFa, inhibits microglial

pyroptosis in demyelinating diseases through the NFkB pathway (27,

28). Therefore, determining whether extracellular AREG is involved in

pyroptosis is essential. Extracellular AREG stimulation significantly

upregulated the expression of Nlrp3, Caspase1, and IL-1b mRNA in

RAW264.7 macrophages (Figure 4B). Since macrophage pyroptosis is

often studied using an LPS and ATP co-stimulation model (29, 30), we

examined the effect of extracellular AREG on pyroptosis in LPS+ATP-

stimulated BMDMs. Pyroptosis can be mediated by the effector
FIGURE 2

RPLP1 regulates LPS-induced AREG expression at the translational level. RAW264.7 macrophages were transfected with three different siRNAs (196, 236,
and 134) targeting Rplp1, and the protein expression of RPLP1 was detected via Western blot (A). RPLP1 mRNA expression was detected via RT-PCR
following LPS stimulation (100 ng/mL) for 12 h (B). AREG expression in whole-cell lysates (C-F) and culture supernatant (G, H) of LPS-stimulated RAW264.7
and BMDM was detected after RPLP1 knockdown with interference probe 196 assessed by Western blot and ELISA. AREG expression in the ribosome
nascent chain complex of LPS-stimulated RAW264.7 was detected after RPLP1 was knocked down with interference probe 196 via RT-PCR (I). Data are
presented as mean ± SEM (n ≥ 3). *P < 0.05, **P < 0.01, ***P < 0.001 vs. Control. AREG, amphiregulin; BMDM, bone marrow-derived macrophages.
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molecule GSDMD, which is cleaved by CASPASE1 (31). Figures 4C, D

show that LPS and ATP co-stimulation significantly increased the

expression of p-P65 and GSDMD-Nwhile promoting IkB degradation.

Extracellular AREG pretreatment further upregulated the expression of
Frontiers in Immunology 07
p-P65 and GSDMD-N but did not affect IkB degradation. These

findings confirm that extracellular AREG directly induces an

inflammatory response and may accelerate macrophage pyroptosis

via NFkB activation.
FIGURE 3

EGFR inhibition and TLR4 silencing impair extracellular AREG-induced IkB phosphorylation and NFkB activation in BMDMs. Structural features of the
AREG protein were analyzed using DOG2.0 software (A). Purification of extracellular AREG was performed via Coomassie Blue staining (B). EGFR and
TLR4 expression was detected in extracellular AREG-stimulated BMDM via Immunofluorescence (C). p-EGFR, TLR4, p-P65, and p-IkB expression
levels were detected in inhibitor of EGFR (1 mM) pretreating BMDM for 4 h through Western blot (D, E). RAW264.7 were collected for lysis after
treatment with His-AREG for 3 h. Immunoprecipitation was performed with a specific antibody against the His tag, EGFR, and TLR4 to assess the
interaction between extracellular AREG and EGFR (F). p-P65 and p-Ikb expression levels were detected in TLR4−/−BMDM and RAGE−/−BMDM using
Western blot (G, H). Data are presented as mean ± SEM (n ≥ 3). *P < 0.05, **P < 0.01, ***P < 0.001 vs. Control. AREG, amphiregulin; BMDM, bone
marrow-derived macrophages; EGFR, epidermal growth factor receptor.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1549749
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2025.1549749
3.5 EGFR inhibiting and TLR4 silencing
inhibit extracellular AREG-induced
macrophages pyroptosis

Based on the above findings, we hypothesized that extracellular

AREG combined with ATP induces macrophage pyroptosis via the

EGFR/TLR4 signaling module. To confirm this hypothesis, we

stimulated BMDMs with extracellular AREG and ATP.

Cotreatment with extracellular AREG and ATP upregulated p-

P65 expression and promoted IkB degradation BMDMs.

Furthermore, extracellular AREG and ATP cotreatment

significantly promoted the expression of NLRP3, GSDMD-N, and

CASPASE1-p20. However, extracellular AREG alone did not

increase the expression of CASPASE1-p20 or GSDMD-N

(Figures 5A–C). The adaptor protein ASC facilitates caspse-1

activation by forming a multi-protein complex to activate with its

precursor (31, 32). Consistent with these findings, extracellular

AREG +ATP and LPS +ATP also induced ASC oligomerization

in BMDMs (Figures 5D, E). This suggests that extracellular AREG

can induce macrophage pyroptosis by activating NFkB.
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To investigate the role of the EGFR/TLR4/Myd88/NFkB pathway

in the extracellular AREG-induced pyroptosis (Figure 5F), we first

pretreated extracellular AREG-induced pyroptosis with the EGFR

kinase inhibitor. Figures 5G, J show that the EGFR kinase inhibition

decreased the expression of GSDMD-N and CASPASE1-p20 in

extracellular AREG-induced pyroptosis. However, no significant

difference was observed in the expression of NLRP3 after EGFR

kinase inhibition. TLR4 depletion diminished extracellular AREG-

induced expression p-P65, NLRP3, GSDMD-N, and CASPASE-1-p20,

as well as IkB degradation in BMDMs (Figures 5H, K). Additionally,

TLR4 depletion in extracellular AREG-induced pyroptosis

significantly reduced the secretion of IL-1b and IL-18 (Figure 5I).
3.6 Neutralizing extracellular AREG
decreases LPS-induced TLR4 expression
and pyroptosis in macrophages

Next, we examined whether extracellular AREG contributes to

LPS-mediated activation of EGFR tyrosine kinase activity and TLR4
FIGURE 4

Extracellular AREG aggravates the inflammatory response and LPS-induced pyroptosis in macrophages. RAW264.7 cells were stimulated with AREG
(100 ng/mL) for 15 min, 30 min, 1 h, 2 h, and 3 h, and the expression of supernatant IL-6, CCL2, and CCL3 was detected via ELISA (A). RAW264.7
cells were stimulated with AREG (100 ng/mL) for 1 h, and the expression of Nlrp3, Caspase1, and IL1b mRNA was detected via RT-PCR (B). LPS-
stimulated BMDM was pretreated with AREG, and expression of NLRP3, p-P65, and GSDMD-N was detected via Western blot (C, D). ns, no
significant; AREG, amphiregulin; GSDMD, gasdermin D.
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FIGURE 5

EGFR inhibition and TLR4 silencing impair AREG-induced macrophage pyroptosis. BMDM was stimulated with AREG+ATP or LPS+ATP, and the expression of
NLRP3, p-P65, p-IkB, CASPASE-1-p20, and GSDMD-N was detected via Western blot (A-C). BMDM was stimulated with AREG+ATP or LPS+ATP, and
oligomerization of ASC was detected using immunofluorescence (D, E). Experimental diagram of AREG-induced macrophage pyroptosis. For the priming
step, BMDM was treated with AREG for 2.5 as the first signal and the ATP as the second signal (F). NLRP3, CASPASE-1-p20, and GSDMD-N expressions were
detected in the EGFR inhibitor (1 mM) pretreating AREG +ATP-induced BMDM for 4 h through Western blot (G, J). NLRP3, CASPASE-1-p20, and GSDMD-N
expressions were detected in AREG +ATP-induced TLR4−/−BMDM via Western blot (H, K). The expression of IL-1b and IL-18 was detected in the supernatant
of AREG +ATP-induced TLR4−/−BMDM via ELISA (I). Data are presented as mean ± SEM (n ≥ 3). *P < 0.05, **P < 0.01, ***P < 0.001 vs. Control. ns, no
significant; AREG, amphiregulin; BMDM, bone marrow-derived macrophages; EGFR, epidermal growth factor receptor; GSDMD, gasdermin D; ATP,
adenosine triphosphate.
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expression. We found that AREG neutralization reduced the

expression of p-EGFR and TLR4 (Figures 6A–D), suggesting that

AREG depletion contributes, at least in part, to the reduction in

EGFR tyrosine kinase activity and TLR4 expression in LPS-induced

macrophages. Therefore, we investigated whether extracellular

AREG influences LPS-induced macrophage pyroptosis. AREG

neutralization significantly reduced the expression of GSDMD-N

(Figures 6E, F), oligomerization of ASC (Figures 6G, H), and

formation of pyroptosome in LPS-induced macrophage

pyroptosis (Figure 6I). These findings indicate that extracellular

AREG links the TLR4 pathway to EGFR activation in

macrophage pyroptosis.
3.7 MyD88 silencing and NFkB inhibiting
restrain extracellular AREG-induced
macrophage pyroptosis

TLR4 signaling activates the translocation of NFkB into the

nucleus through MyD88-dependent and TRIF-dependent pathways

(33). We further investigated the effects of TLR4 downstream

signaling in extracellular AREG-induced macrophage pyroptosis,

and the results showed that MyD88 knockout, but not TRIF,

significantly decreased the expression of NLRP3, GSDMD-N, and

CASPASE-1-p20 in extracellular AREG-induced BMDM

pyroptosis (Figures 7A, B). Additionally, NFkB inhibition

downregulated the expression of NLRP3, GSDMD-N, and

CASPASE-1-p20 in extracellular AREG-induced and LPS-induced

BMDM pyroptosis (Figures 7C, D).
3.8 DTT-pretreated extracellular AREG
restrains macrophage pyroptosis

The inner ring structure of the disulfide bond within the EGF

family member domain serves as the receptor-binding region

necessary for biological activity. Extracellular AREG is initially

synthesized as a membrane-bound precursor, which undergoes

proteolytic cleavage to release a soluble EGF domain containing a

disulfide bond, enabling its extracellular function (33, 34).

Therefore, we pretreated extracellular AREG or LPS with either a

reducing agent (DTT) or oxidizing agent (H2O2) before stimulating

BMDMs, followed by ATP reduction. LPS pretreated with DTT

significantly increased expression of GSDMD-N and CASPASE1-

p20, whereas LPS pretreated with H2O2 significantly inhibited

macrophage pyroptosis (Figures 8A, B). Furthermore,

extracellular AREG pretreated with DTT or H2O2 downregulated

the expression of GSDMD-N and CASPASE1-p20 in macrophage

pyroptosis (Figures 8C, D). In addition, neither DTT nor H2O2

treatment affected the expression of NLRP3 in AREG-treated or

LPS-treated macrophages. These findings suggest that DTT may

specifically reduce the disulfide bond in the extracellular domain

of AREG, thereby inhibiting extracellular AREG-induced

macrophage pyroptosis.
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3.9 Extracellular AREG mediates sepsis in
mice and humans

To evaluate the significance of serum AREG in patients with

sepsis, we first examined its expression in LPS-stimulated THP1

and in patients with sepsis. AREG was highly expressed in the

culture supernatant of LPS-stimulated THP1 cells and the serum of

patients with sepsis (Figure 9A). The cecal ligation and puncture

(CLP) model is the most widely utilized and well-established sepsis

model, closely resembling human sepsis and suitable for

investigating potential mechanisms and therapeutic strategies. A

study shows that AREG can alleviate LPS-induced acute lung injury

(12). Based on this, we explored the effect of extracellular AREG on

sepsis progression. Pretreatment with extracellular AREG lowered

CLP-induced mortality (Figure 9B). Besides, we conducted a clinical

study involving 54 patients diagnosed with general sepsis, severe

sepsis, or septic shock. Using RCS, we analyzed the association

between serum AREG levels, serum C-reactive protein (CRP)

concentration, disease severity, and sepsis-related mortality.

The analysis of RCS revealed a significant overall correlation

between serum AREG levels, sepsis severity, and mortality. The risk

of sepsis exacerbation alleviated as AREG concentrations increased

(Figure 9C). When AREG concentrations were <113 pg/mL, CRP

levels decreased with increasing AREG concentrations. However,

when AREG concentrations exceeded 113 pg/mL, CRP levels

showed no significant change (Figures 9D, E). In addition, when

AREG concentrations were below 64 pg/mL, the risk of death

rapidly decreased with increasing AREG concentrations, but no

significant change was observed beyond this threshold

(Figures 9F, G).

Furthermore, histopathological analysis of the lungs, kidneys, and

liver revealed that extracellular AREG administration suppressed

inflammatory cell infiltration (Figures 9H, I). We further explored

whether extracellular AREG promotes tissue restoration and survival

in sepsis through macrophage pyroptosis. We found that Areg, Egfr,

Il1b, and Il18 were highly expressed in monocytes of patients with

severe sepsis compared with those in patients with general sepsis or

healthy controls (Figure 9J). These findings support the role of

extracellular AREG in sepsis pathogenesis.
4 Discussion

Growing evidence indicates the employment of LPS as an

endotoxin model to explore the mechanisms of inflammatory

response in various diseases, such as acute liver (35) or lung

injury (36), angiocardiopathy (37, 38), and intestinal damage (39,

40). Liang et al. report that LPS-primed BMDM could facilitate

inflammation and oxidative stress, accelerating acute lung injury

(41). In addition, LPS-primed BMDM serves as an in vitro cell

model for inducing lung inflammation and injury (42).

Pyroptosis is a gasdermin-mediated form of programmed cell

death (42). Although its crucial role in the innate immune defense is

well established, the regulation effects and molecular mechanisms of
frontiersin.or
g

https://doi.org/10.3389/fimmu.2025.1549749
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2025.1549749
extracellular AREG in pyroptosis remain unclear. In this study, in

vitro LPS or extracellular AREG-stimulated BMDMs were

employed to explore the regulatory mechanism of extracellular

AREG in macrophage pyroptosis. Our findings indicate that
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extracellular AREG exacerbates pyroptosis in LPS-treated

macrophages. We found that extracellular AREG, combined with

ATP, induces macrophage pyroptosis via the EGFR/TLR4/NFkB
signaling pathway.
FIGURE 6

Neutralizing extracellular AREG decreases LPS-induced TLR4 expression and pyroptosis in macrophages. LPS-induced BMDM was pretreated with a
neutralizing antibody of AREG. p-EGFR, TLR4, and GSDMD-N expression levels were detected via Western blot and immunofluorescence (A-C, E, F),
TLR4 expression and ASC oligomerization was detected through immunofluorescence (D, G, H). Formation of pyrosomes (red arrows) was detected
using electron microscopy, scale bars, 2 mm (I). Data are presented as mean ± SEM (n ≥ 3).*P < 0.05, **P < 0.01, ***P < 0.001 vs. Control.
AREG, amphiregulin.
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FIGURE 7

MyD88 silencing and NFkB inhibition restrain extracellular AREG-induced macrophage pyroptosis. NLRP3, CASPASE1-p20, and GSDMD-N expression
levels were detected in extracellular AREG-induced Myd88−/− and Trif−/−BMDM via Western blot (A, B). NLRP3, CASPASE1-p20, and GSDMD-N
expression levels were detected in the inhibitor of NFkB (P65) (20 mM) pretreating extracellular AREG-induced BMDM for 2 h via Western blot (C, D).
Data are presented as mean ± SEM (n ≥ 3). *P < 0.05, **P < 0.01, ***P < 0.001 vs. Control. ns, no significient; AREG, amphiregulin; BMDM, bone
marrow-derived macrophages; EGFR, epidermal growth factor receptor; GSDMD, gasdermin D.
FIGURE 8

DTT-pretreated extracellular AREG restrains macrophage pyroptosis. NLRP3, CASPASE1-p20, and GSDMD-N expressions were detected in LPS-
induced BMDM after DTT (1 mM) or H2O2 (100 mM) pretreating LPS for 1 h (A, B). NLRP3, Caspase1-p20, and GSDMD-N expression were detected in
AREG-induced BMDM after DTT (1 mM) or H2O2 (100 mM) pretreating AREG for 1 h (C, D). Data are presented as mean ± SEM (n ≥ 3).*P < 0.05, **P <
0.01, ***P < 0.001 vs. Control. ns, no significient; AREG, amphiregulin; BMDM, bone marrow-derived macrophages; EGFR, epidermal growth factor
receptor; GSDMD, gasdermin D.
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FIGURE 9

Serum AREG levels correlate with sepsis severity and mortality. Thp1 was stimulated with LPS (100 ng/mL) for 6 h, and supernatant AREG expression
was detected via ELISA. Serum AREG in patients with sepsis was detected using ELISA (A). Administration of extracellular AREG (5 mg per mouse, tail
vein injection) 30 min before severe CLP-induced septic mice, n = 15 mice/group (B). The association of concentration of serum AREG among CRP
level, severity, and mortality rates in patients with sepsis was represented with the RCS function, where the beta on the Y-axis represents the relative
strength and direction of influence of independent variable on a dependent variable (C, D, F). Segmented linear association analysis was performed
between the standardized serum AREG and CRP levels, as well as between the standardized serum AREG and mortality rates in patients with sepsis
(E, G). Representative H&E staining of lung, kidney, and liver at 12 h after extracellular AREG pretreated-CLP septic mice. The inflammatory cell
infiltrate score reflects tissue injury in CLP mice (H, I). RT-PCR was used to detect the expression of genes of the Areg-mediated pyroptosis signaling
pathway in patients with sepsis (J). Data are presented as mean ± SEM (n ≥ 3). *P < 0.05, **P < 0.01, ***P < 0.001. AREG, amphiregulin; CLP, cecal
ligation and puncture; RCS, restricted cubic splines.
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AREG is initially described as an epithelial cell-derived factor

and mainly regulates cell proliferation, differentiation, apoptosis,

and autophagy in several diseases (43, 44). In addition, AREG is also

expressed on the surface of alveolar and peritoneal macrophages as

a type I transmembrane protein precursor (proAREG) (45–47).

When the body is stimulated by inflammatory mediators,

extracellular AREG is released into the extracellular matrix or

binds to EGFR on the surface of neighboring cells, activating the

EGFR signaling pathway (48).

As a critical intracellular nuclear transcription factor, NFkB
mainly regulates inflammation, immune response, cell death, and so

on (49, 50). NFkB is activated by the EGF/EGFR pathway,

contributing to inflammation and cancer progression (51–53).

Therefore, understanding the causes of NFkB activation in sepsis

is crucial. Here, we found that AREG, a member of the EGF family,

was increased in LPS-stimulated RAW264.7 cells. Extracellular

AREG then induced IkB phosphorylation, leading to NFkB
activation in BMDM. This study further showed that inhibiting

EGFR phosphorylation and knockout of TLR4 impairs extracellular

AREG-induced NFkB activation in BMDM. Additionally, the

inhibition of EGFR phosphorylation also downregulates TLR4

expression. We observed a close connection between TLR4 and

EGFR in extracellular AREG-induced NFkB activation in BMDMs.

To our knowledge, this is the first report showing extracellular

AREG-induced NFkB activation through EGFR/TLR4 signaling.
Frontiers in Immunology 14
Inhibiting EGFR phosphorylation and knockout of EGFR

significantly decreased LPS-induced TLR4 phosphorylation at

Y674A and Y680A (54). Tyrosine phosphorylation of TLR4 is

essential for downstream signaling, and TLR4 mutants at Y674A

and Y680A of the TIR domain suppress LPS-dependent activation

of NFkB (55). Therefore, further investigation is needed to

determine whether extracellular AREG promotes TLR4 tyrosine

phosphorylation through EGFR interaction.

In the process of determining the underlying effect of

extracellular AREG on macrophage pyroptosis, we found that

extracellular AREG pretreatment remarkably enhanced LPS

+ATP-induced NFkB activation and pyroptosis. This indicates

that extracellular AREG promotes macrophage pyroptosis, most

likely through NFkB activation. The function of extracellular AREG

in pyroptosis differs from other EGFR ligands, possibly because

EGFR exerts different cellular responses through direct binding of

its ligand, depending on its specific ligand, cell type, or pathological

condition (56). Compared with other EGFR ligands, AREG has a

low affinity for EGFR, allowing sustained downstream signaling

instead of triggering receptor internalization, degradation, and

negative feedback loops (57). Thus, we speculated that

extracellular AREG persistently activates NFkB signaling,

exacerbating macrophage pyroptosis.

The effects of AREG on cytokine production have been studied

progressively. Neither exogenous recombinant AREG nor blocking
FIGURE 10

Schematic diagram illustrating how AREG triggers macrophage pyroptosis through the EGFR/TLR4 signaling pathway during inflammatory responses.
Schematic diagram was created in https://BioRender.com. Mechanistically, extracellular AREG expression is regulated by the translational regulation
of RPLP1. When extracellular AREG and ATP jointly stimulate macrophages, AREG promotes TLR4 expression by binding to EGFR. Expression of TLR4
recruits the adaptor protein Myd88 and further activates downstream IkB and NFkB, which promotes the NLRP3 inflammasome and subsequent
pyroptosis. AREG, amphiregulin; EGFR, epidermal growth factor receptor; ATP, adenosine triphosphate.
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endogenously secreted AREG affects TNF-a, IL-6, and GM-CSF

expression in classically activated macrophages (58). Conversely,

some studies report that AREG plays a pro-inflammatory role by

mediating cytokine production, including IL-6, IL-8, and GM-CSF

in epithelial cells (59, 60). In this study, extracellular AREG alone

activated the initiation step, including the transcription of Nlrp3,

Caspase1, and IL-1b. The addition of ATP as a second signal further

promotes NLRP3 inflammasome assembly, resulting in CASPASE-

1 activation and GSDMD cleavage. Overall, AREG is a potential

target for regulating macrophage pyroptosis.

AREG signaling, determined via protein processing and

trafficking, can be triggered through autocrine, juxtacrine, and

paracrine pathways, as well as intracellular nuclear translocation

and exosome inclusion (61–63). Extracellular AREG exerts its

biological effects through EGFR-mediated intracellular signaling

pathways, including Ras/MAPK, PI3K/AKT, mTOR, STAT, and

PLCg. These pathways regulate gene expression and drive multiple

cellular responses such as survival, proliferation, angiogenesis,

motility, and invasiveness (64–66). AREG plays an important role

in LPS-induced macrophage activation (37). However, the effect

and mechanism of AREG in LPS-induced macrophage pyroptosis

remain unclear. Overall, our findings suggest that extracellular

AREG induced macrophage pyroptosis through the EGFR/TLR4/

Myd88/NFkB axis. Our study showed an association between

serum AREG levels, CRP levels, and the mortality and severity of

patients with sepsis. These findings align with that of a previous

study, showing that the expression of serum AREG correlates with

disease severity in patients with pulmonary fibrosis (67). Most

patients with severe COVID-19 (78%) met the sepsis 3.0 criteria,

with sepsis-induced acute respiratory distress syndrome (ARDS)

being the most common organ dysfunction (88%) (68). Peripheral

blood monocyte pyroptosis increases in patients with sepsis and

correlates with mortality (69). Monocytes, bone marrow-derived

phagocytes, are recruited and differentiate into macrophages in

response to bacterial or viral detection. This aids pathogen clearance

and inflammation resolution (70). Single-cell transcriptome

analysis of monocytes from patients with COVID-19 revealed a

subset with high expression of Areg and IL-18 related to pyroptosis

and enriched EGFR signaling pathway, specifically present in severe

sepsis cases (71). In addition, single-cell transcriptome analysis of

antigen-presenting cells (including monocytes and a few dendritic

cells) from patients with COVID-19 also revealed elevated Areg and

IL1b expression, associated with pyroptosis in patients with severe

sepsis compared with those with mild or moderate sepsis (72).

These studies further support our finding that genes of the Areg-

mediated pyroptosis signaling pathway were highly expressed in

patients with severe sepsis compared with those with mild or

moderate sepsis. Although this cohort study is limited to a

relatively small patient sample (n = 54) and cannot draw robust

conclusions about the role of AREG in sepsis severity and mortality,

it holds scientific value and clinical significance.

Our study is the first to show that the molecular mechanisms of

extracellular AREG trigger macrophage pyroptosis through the

EGFR/TLR4/Myd88/NFkB signaling pathway (Figure 10).

Additionally, it underscores the potential role of sustained AREG/
Frontiers in Immunology 15
EGFR signaling in promoting tissue restoration and survival in

sepsis. This process may involve the release of inflammatory

molecules and metabolites during AREG-induced macrophage

pyroptosis, offering a potential treatment strategy for patients

with sepsis and ARDS while providing new insights into the

pathogenesis of sepsis combined with ARDS.
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