
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Robyn Klein,
University of Western Ontario, Canada

REVIEWED BY

Felix Ngosa Toka,
Ross University School of Veterinary
Medicine, Saint Kitts and Nevis
Abraam Yakoub,
Harvard Medical School, United States

*CORRESPONDENCE

Jun Xu

neurojun@126.com

RECEIVED 23 December 2024

ACCEPTED 21 April 2025
PUBLISHED 12 May 2025

CITATION

Awan MUN, Mahmood F, Peng X-b, Zheng F
and Xu J (2025) Underestimated virus
impaired cognition-more evidence and more
work to do.
Front. Immunol. 16:1550179.
doi: 10.3389/fimmu.2025.1550179

COPYRIGHT

© 2025 Awan, Mahmood, Peng, Zheng and Xu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 12 May 2025

DOI 10.3389/fimmu.2025.1550179
Underestimated virus impaired
cognition-more evidence and
more work to do
Maher Un Nisa Awan1, Faisal Mahmood2, Xiao-bin Peng1,3,
Fenshuang Zheng4 and Jun Xu1,5*

1Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming, China, 2Central
Laboratory, Liver Disease Research Center and Department of Infectious Disease, The Affiliated
Hospital of Yunnan University, Kunming, China, 3School of Medicine, Yunnan University, Kunming,
Yunnan, China, 4Department of Emergency, The Affiliated hospital of Yunnan University,
Kunming, China, 5Department of Neurology, Beijing Tiantan Hospital, Capital Medical University,
Beijing, China
Neurodegenerative disorders (NDs) are chronic neurological diseases that can be

of idiopathic, genetic, or potentially infectious origin. Although the exact cause of

neurodegeneration is unknown, it might be result of a confluence of age, genetic

susceptibility factors, and environmental stresses. The blood-brain barrier shields

the brain from the majority of viral infections, however neurotropic viruses are

able to breach this barrier and infect central nervous system. Growing research

points to a possible connection between viruses and neurodegenerative

diseases, indicating that virus-induced neuroinflammation and disruption of

neuronal protein quality control may play a role in the initial stages of disease

progression. The diagnosis and treatment of NDs are urgent and challenging.

Even though there is limited clinical evidence to support the use of antiviral

medications and their dose regimens within the central nervous system (CNS),

with the exception of acyclovir, they are currently utilized to treat various viral

CNS infections. Understanding the neuropathogenesis of viral CNS infection may

help with targeted diagnosis and treatment plans by focusing on the molecular

mechanisms of the CNS. It may also be helpful in the search for new antiviral

drugs, which are crucial for better managing these neurotropic viral infections.

This review focuses on new findings linking viral infection to NDs and explores

how viral modifications of cellular functions can impact the development of

neurodegeneration and will also explore the therapeutic potential of antiviral

drugs in NDs.
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Introduction

Neurodegenerative diseases (NDs) are chronic degenerative disorders of the central

nervous system (CNS) that are characterized by the chronic and progressive loss of the

structure and function of neurons (1). Millions of people worldwide are impacted by them,

making them the fourth most common cause of mortality in developed nations.
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Furthermore, their influence is growing in developing countries.

With an increasing lifespan, it is expected that the incidence rate

will rise. Even with extensive investigation, most NDs’ basic root

causes are still poorly understood (1, 2). Numerous intracellular

mechanisms, such as apoptosis, inefficient axonal transport,

mitochondrial malfunction, and protein degradation, are linked to

neurodegenerative diseases (3). The etiology of numerous

neurodegenerative illnesses has also been linked to long-term

viral infections, malnutrition, exposure to heavy metals in the

environment, autoimmune reactions, vascular disorders, head

trauma, brain fluid buildup, and alterations in neurotransmitter

concentrations (2, 4, 5). Viral infections can infiltrate the immune

system and other organ systems, resulting in a variety of

symptoms (6).

The majority of NDs have a pathogenic connection to the

accumulation and aggregation of cellular proteins (7, 8). Notably,

dementia with Lewy bodies, multiple systems atrophy (MSA), and

Parkinson’s disease (PD) have all been associated with a-synuclein
(a-syn) aggregates (9). Alzheimer’s disease (AD) patients also have

extracellular amyloid-b (Ab) plaques and intraneuronal tangles of

hyperphosphorylated tau in their brains (10). Like prions, these

pathogenic proteins can aggregate and form pathogenic plaques,

which leads to the eventual development of NDs (11, 12). A

significant contributing component to these processes is an

imbalance in the cellular mechanisms that control the creation of

misfolded proteins and their breakdown, or protein homeostasis

(13). The potential for viral infections to significantly disrupt

protein homeostasis makes cells more vulnerable to protein

misfolding (14). Moreover, maintaining protein homeostasis may

benefit from the release of pro-inflammatory cytokines and

chemokines in response to a virus (15). Up-regulation of pro-

inflammatory cytokines plays a dual role in neurodegeneration and

neuroprotection. Activated microglia can cause harm by releasing

pro-inflammatory cytokines such IL-1b, IL-6, and TNF-a, which
affect surrounding brain tissue.

Therefore, it is believed that viruses, particularly neurotropic

viruses, play a part in the genesis of various NDs. Table 1 lists the

several viruses that are believed to be involved in NDs.
Viruses in neurodegeneration

It is likely that aging, genetic vulnerability, and environmental

stressors all play a part in this process, even if the precise etiological

reasons of NDs are still not entirely understood. There is mounting

evidence that suggests viral infections, especially neurotropic

viruses, may play a factor in the onset and progression of

depressions that are not diagnosed. The progressive loss of

cognitive, motor, and behavioral abilities is a hallmark of

neurodegenerative illnesses like AD, PD, and amyotrophic lateral

sclerosis (ALS) (53) . Despite early assumptions that

neuroinflammation results from neurodegeneration, further

studies have demonstrated that neuroinflammation can both

cause and accelerate the development of NDs. The hypothesis

that neuroinflammation causes neurodegeneration was reinforced
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by genome-wide association studies (GWAS) that identified

immune-related genes, including as CD33 and TREM2, as risk

factors for AD (54). Additionally, it has been suggested that

neuroinflammatory processes are largely influenced by the e4
allele of the apolipoprotein E gene (APOE e4), which is the most

powerful genetic risk factor for AD and accounts for around 10–

20% of the risk of late-onset illness (55). These genetic factors

increase the risk of NDs, but they are not sufficient to cause the

condition on their own. There is increasing evidence that viruses

and neurodegenerative illnesses are associated (56–59). Virus-

induced neuroinflammation and disruption of neuronal protein

quality control may also be involved in the early phases of illness

development (60). Viruses can begin and/or aggravate degenerative

processes because they have the capacity to take over the host cell’s

internal machinery and induce inflammation. Viral infections can

stimulate astrocytes and microglia or allow peripheral immune cells

to invade the central nervous system, which can result in

neuroinflammation (61). Certain viruses can disrupt neuronal

activities, cause neuronal death, or trigger lytic egress from

infected neurons, all of which can lead to neurodegeneration.

Numerous negative outcomes are brought on by CNS viral

infections, such as elevated morbidity and mortality as well as

mild to severe neurological aftereffects, shown in Figure 1. Viral

infections have a wide range of impact on neuronal dysfunction,

including promoting chronic inflammation, inducing cellular

oxidative stress, impairing mitophagy, interfering with

mitochondrial dynamics, enhancing metabolic rewiring, altering

neurotransmitter systems, and inducing misfolded and aggregated

pathological proteins linked to neurodegenerative diseases. These

pathogenetic processes cause a multifaceted brain injury that results

in neuronal and brain dysfunctions. By interfering with the immune

system, it can either directly or indirectly induce encephalitis (62).

Neurotropic viral infections have an impact on a multitude of

factors related to neuronal dysfunction. These include the induction

of misfolded and aggregated pathological proteins linked to

neurodegenerative diseases, the promotion of chronic

inflammation, the induction of cellular oxidative stress, the

impairment of mitophagy, the interaction with mitochondrial

dynamics, the enhancement of metabolic rewiring, the

modification of neurotransmitter systems (63). A complex brain

injury brought on by these pathogenetic mechanisms gives rise to

specific brain and neuronal dysfunction (64). Understanding the

molecular mechanisms behind the neurophathogenesis associated

with viral infection-induced neurodegeneration could lead to the

development of efficient prophylactic, therapeutic, and preventive

measures against CNS virus infections.
Molecular mechanisms associated
with viral infection-related
neurodegeneration

Viruses can directly cause neuronal dysfunction through their

cytolytic effects, and they can also indirectly cause neuronal

degeneration through a variety of mechanisms, including the
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expression of viral genes that disrupt the host’s immune system and

cellular functions, bystander inflammatory responses, or apoptosis

(65). Herpes simplex virus (HSV; family Herpesviridae) and human

immunodeficiency virus (HIV; family Retroviridae) are two

examples of viruses that exhibit oxidative stress and cause latent

or delayed infections. Microglia and brain cells were found to

produce intracellular ROS in response to HSV-1 infection. In

cultured mouse neural cells, HSV-1 infection results in oxidative

stress and triggers the production of bioactive lipid peroxidation

byproducts, MDA/hydroxyalkenals (HAEs), which are essential for

viral replication (66). A number of HIV-1 component proteins,

through various processes, increase the formation of ROS in neural

cells, including neurons, microglial cells, and astrocytes. ROS

generation and substantial DNA damage are induced by the HIV-
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1 transactivator of transcription (Tat) protein (67). Nitroxidative

stress marker proteins, including cytochrome P450-2E1 (CYP2E1),

iNOS, and NADPH oxidase, are found to be elevated in the brains

of HIV-1 transgenic rats. Neuronal cell death in HIV-1 transgenic

rats was linked to markedly increased hippocampal levels of

activated caspase-3 and BCL2 associated X (BAX) in the HIV-1

model. In conjunction with the activation of MAPK pathways

mediated by ERK and JNK and the reduction of B-cell lymphoma

2 (BCL-2) expression, HIV-1 gp120 protein causes death in neurons

and microglial cells (68). In neurons and glial cells, JEV (family

Flaviviridae) infection raises the concentrations of superoxide

anions (O2.-), nitric oxide (NO), and peroxynitrite (OONO-)

(69). Neuronal cells infected with other members of the

Flaviviridae family, such as West Nile virus (WNV) (70) and

dengue virus type 2 (DENV-2), also showed excessive O2.-

production during viral infection (71, 72), which resulted in host

cell apoptosis.

The coronavirus is the largest kind of RNA virus, human

proteins that interact with SARS-CoV-2 proteins have also been

implicated in a number of biological processes linked to aging and

neurodegenerative diseases, including lipid metabolism, responses

to oxidative stress, and problems with protein homeostasis and

mitochondrial function (73). Due to immune-response

dysregulation and the effect of COVID-19-related discomfort on

cognitive performance, people with AD seem to be at a higher risk

of experiencing severe COVID-19 outcomes. COVID-19-induced

systemic inflammation may be a factor in neurodegeneration and

cognitive impairment.PD patients have a higher case fatality rate

during COVID-19 infections, but the underlying mechanisms

remain unclear. Additional research is required to determine

whether the diseases share any pathophysiological pathways or

risk factors. Akinetic-rigid parkinsonism that develops after

severe COVID-19 instances begs the question of how the virus

affects dopamine pathways. Due to respiratory muscle involvement

and heightened vulnerability to respiratory problems during the

pandemic, ALS patients face challenges. In COVID-19 cases, some

genetic variants associated with familial ALS, like C9orf72 repeat

expansions, may affect the severity of the disease (74). A study

revealed that Intranasal infection of C57BL/6J mice with the SARS-

CoV-2 Beta strain causes Ly6Chi monocyte infiltration of the

central nervous system and activation of microglia. SARS-CoV-2,

but not H1N1 influenza virus, raises brain IL-1b levels and causes

IL-1R1-mediated loss of hippocampus neurogenesis, resulting in

post-acute cognitive impairments. Vaccination with a low dosage of

adenoviral-vectored spike protein suppresses hippocampus

synthesis of IL-1b during breakthrough SARS-CoV-2 infection,

resulting in neurogenesis loss and memory impairments (75, 76).

Influenza virus, belonging to Orthomyxoviridae family, which

are negative sense, single-stranded, segmented RNA viruses.

Influenza A virus was found to be present in substantia nigra pars

compacta (SNpc) from postmortem PD brain sections.

Neuroinflammation and the influenza A virus’s function in PD

pathogenesis were convincingly demonstrated by the colocalization

of influenza A and immune cells with caspase-cleaved Beclin-1

within the SNpc. It has been shown that the H5N1 influenza virus
TABLE 1 Viruses in Neurodegeneration.

Neurodegenerative
disorders (NDs)

Virus References

Parkinson’s disease (PD)

Coxsackievirus B3 (CVB3) (16, 17)

Human Immunodeficiency
Virus (HIV)

(18)

Influenza A virus (IAV) (19, 20)

West Nile Virus (WNV) (21, 22)

Western equine
virus (WEV)

(23, 24)

Hepatitis C virus (HCV) (25–28)

Hepatitis B virus (HBV) (28, 29)

Japanese encephalitis
virus (JEV)

(30, 31)

Herpes simplex virus (HSV) (32)

Varicella-Zoster
Virus (VZV)

(33)

Epstein-Barr
virus (EBV)

(34, 35)

Alzheimer’s disease (AD)

Herpes simplex virus (HSV) (36, 37)

Human immunodeficiency
virus (HIV)

(18, 38, 39)

Human Herpesvirus (HHV) (40)

Hepatitis B virus (HBV) (41, 42)

Hepatitis C virus (HCV) (41–44)

Epstein-Barr virus (EBV) (35, 45)

Varicella Zoster
Virus (VZV)

(46, 47)

Amyotrophic lateral
sclerosis (ALS)

Enteroviruses (EVs) (48)

Herpes simplex virus (HSV) (49)

(Multiple sclerosis) MS
Epstein-Barr virus (EBV) (50)

HSV (51)

Vascular dementia VZV (52)
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enhances a-synuclein phosphorylation and aggregation as it moves

from the peripheral nervous system into the central nervous

system (77).

Emerging RNA viruses that target the CNS cause cognitive

consequences in survivors. Studies in people and animals infected

with WNV, a re-emerging RNA virus linked to learning and

memory disorders, demonstrated microglial-mediated synapse

destruction in the hippocampus. Furthermore, CNS-resident

memory T (TRM) cells activate microglia, which limits synapse

regeneration and causes spatial learning deficits in WNV-recovered

animals (78). Innate immune responses to emerging RNA viruses

are becoming recognized as having substantial implications to

neurologic sequelae, including memory impairments. Using a

recovery model of WNV encephalitis it was found that, while

macrophages deliver the antiviral and anti-neurogenic cytokine

IL-1b during acute infection; viral recovery is associated with

continued astrocyte inflammasome-mediated production of

inflammatory levels of IL-1b , which is maintained by

hippocampal astrogenesis via IL-1R1 signaling in neural stem

cells (NSC). As a result, the absence of IL-1 signaling in NSC

prevents abnormal astrogenesis, implying that only freshly

produced astrocytes cause neurotoxicity by blocking synapse

repair and enhancing spatial learning deficits (79, 80). In mice

recovering fromWNV or ZIKV infection, T cell-derived interferon-

g (IFN-g) signaling in microglia causes spatial-learning defects

through virus-target-specific mechanisms. Recovery from WNV

infection resulted in presynaptic termini elimination with no repair,
Frontiers in Immunology 04
while recovery from ZIKV resulted in extensive neuronal apoptosis

with loss of postsynaptic termini (81, 82).
Viral hepatitis B and C neurological
impairment

Systemic parenteral hepatitis is characterized by a wide range of

neurological issues and symptoms caused by several immune

illnesses (6). Pathological processes are caused by viral agents

replicating within and outside of brain. Depending on the degree,

neurological problems brought on by acute or chronic viral hepatitis

may arise from the brain, spinal cord, or peripheral nervous system.

From subclinical alterations to neurocritical situations, these

symptoms can occur (83, 84). Viral particles’ direct neurotoxic

effects on brain cells as well as the indirect effects of viruses’

influence on the immune system or from the use of antiviral

medication are the causes of these disorders (85). Identifying the

key neurological symptoms of individuals with viral hepatitis is

critical for neurologists who treat these patients on a regular basis.

This will make it easier to guarantee the quick implementation of

diagnostic and treatment plans (83, 84).

Nevertheless, in the last few years, a growing body of research

has investigated the relationship between the Hepatitis C virus and

dementia (41, 86, 87). The mechanism underlying the emergence of

dementia in viral hepatitis C patients is still unclear (41). Hepatitis

viruses may be able to directly infect endothelial cells and get
FIGURE 1

Molecular mechanisms adapted by viruses in causing Nds.
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through the blood-brain barrier to reach the central nervous system

The component molecules that viruses release during replication

are known as pathogen-associated molecular patterns (PAMP).

When the central nervous system is damaged in inflammatory

infections, inflammatory mediators such TNF-a, IFN-g, IL-1b, IL-
6, IL-18, and chemokines are produced that promote neuronal

death (88).

Parkinson’s disease pathogenesis in viral hepatitis is associated

with the ability of hepatitis viruses to replicate in brain macrophages

and microglial cells as well as their capability to pass the blood-

brain barrier. Pro-inflammatory cytokines and chemokines are

released more frequently as a result, which damages neurons and

eventually results in their death (89, 90). Moreover, recent studies

on rats have shown that the hepatitis virus depletes dopaminergic

neurons in rodents’ brains (90, 91). Numerous studies have

demonstrated that individuals with chronic viral hepatitis are

more likely to develop PD (27, 29). Thus, a major population-

based study conducted in Taiwan with 49,967 individuals who had

viral hepatitis C revealed that this patient group is more prone to

Parkinson’s disease than those who had no history of viral hepatitis

(92). Previous studies have found similar results showing a

considerable increased risk of Parkinson’s disease in individuals

with viral hepatitis; nevertheless, to obtain more reliable data, the

authors recommend doing further large-scale studies (28, 29, 93).

Dementia, particularly Alzheimer’s disease, has been linked to HCV

infection (94). According to a recent study, treating HCV infection

with direct-acting antivirals (e.g., ledipasvir/sofosbuvir, elbasvir/

grazoprevir, and glecaprevir/pibrentasvir) dramatically lowers the

risk of death in individuals with dementia associated with AD (95).

Furthermore, viruses play a significant role in the development of

AD through promoting the accumulation of amyloid-b (Ab)
peptides in the brain (96). Previous research has shown that the

blood-brain barrier permeability, which controls HCV infection

and activity in the central nervous system, is influenced by the ApoE

level, which is also strongly linked to the neuropsychiatric

symptoms experienced by HCV-infected individuals (96, 97).

Although evidence suggests that HCV infection is linked to CNS

impairment, it is unclear if any HCV infection promotes AD

etiology. Observational studies can be difficult to understand as

the results may have been impacted by reverse causality and

confounding factors.
Human immunodeficiency virus type 1

In elderly HIV-1-positive patients receiving highly active

antiretroviral therapy, age-related AD-like illness may be more

likely to occur due to neurocognitive impairments associated with

Ab deposition and hyperphosphorylated Tau (98). HIV multiplies

and contributes to neurodegeneration by affecting brain energetics

at the cellular level, causing changes in overall brain metabolic

homeostasis. Even though immunological dysfunction and

dysregulation are typically attributed to the underlying

pathophysiology of HIV infection, cognitive impairments
Frontiers in Immunology 05
associated with the virus have long been recognized. The

spectrum of progressive neurological effects of infection includes

asymptomatic neurocognitive impairments (ANI), moderate

neurocognitive disorders (MND), and the more severe HIV-

associated dementia (HAD) (99). According to estimates, 20–50%

of HIV-positive individuals suffer from certain cognitive

dysfunctions; these conditions are collectively known as HIV-

associated neurological disorders (HAND). Functional status

assessments and neuropsychological tests are used in the diagnosis

of several disorders (100). HIV infection in the CNS is associated

with activation of microglia and astrocytes, as well as the production

of inflammatory and neurotoxic insults, all of which contribute to

the neurodegeneration and cognitive impairment characteristic of

HAND disease. Macrophages and microglia can release pro-

inflammatory cytokines such as TNFa, IFNa, IL6, IL8, and IL1b,
as well as chemokines such as CCL2, CCL5, and MIP-1b. These
indications point to the presence of cellular reservoirs in the CNS

established within 3 to 5 days of HIV-1 infection, which include

three types of long-lived infected cells: astrocytes, monocyte lineage

cells, and microglial cells (101). HIV enters the brain through

infected CD4+ macrophages and lymphocytes, which permits the

virus to transmigrate to the CNS’s perivascular spaces without being

noticed by the immune system (102). The molecular and cellular

mechanisms underpinning HIV-associated cognitive dysfunctions

(HAND) are poorly understood, despite the prevalence of these

disorders. These pathways are thought to combine the neurotoxic

effects of HIV-associated proteins, indirect host factor involvement,

and direct viral infection of CNS cells (103). Notably, it has been

shown that the HIV viral proteins Tat and gp120 both increase viral

entry into the central nervous system and modify the integrity of the

blood-brain barrier. HIV transactivator of transcription, or Tat, is a

viral regulatory protein that initiates viral transcription and is

among the first HIV proteins to be generated upon infection (104).

Moreover, HIV-RNA in the cerebrospinal fluid (CSF) and viral

replication in the CNS can occur in non-viremic people receiving

combined antiretroviral therapy, a condition that can cause

neurological harm like cognitive decline (105, 106). Despite a

decrease in the occurrence of these disorders throughout the era of

combined antiretroviral medication, the frequency of minor to severe

HAND remains high, even in those who get sufficient treatment (100,

107). Neopterin levels in the CSF in HIV patients with viral

suppression can actually be high (108). Neopterin is associated with

both cognitive decline and phagocyte activity, suggesting a potential

role for CNS phagocytes in neuronal damage and degeneration. CNS

phagocytes express neurodegeneration associated molecules and are

located topographically in inflammatory foci rich in reactive

astrocytes. Neurodegenerative phagocytes appose neurons and

consume synaptic material. Aberrant phagocyte activation may be

responsible for the cognitive abnormalities seen in HAND. A notable

histological characteristic of HAND is synaptic degeneration (109,

110). While persistent chronic inflammation is thought to contribute

to cognitive decline, the molecular basis of CNS immune activation in

the context of HAND remains little known. Because the population of

HIV-positive people is aging, it is imperative to understand the
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processes behind these synaptic alterations in HIV in order to find

new therapy targets to stop cognitive decline in HAND and other

disorders (111).
Influenza virus

Flu and neuropsychiatric disorders include encephalopathy,

delirium, convulsions, and confusion are well-establishedly linked

(112). Influenza infections during pregnancy have also been linked

to a higher chance of schizophrenia or bipolar illness in the child

(113). Numerous studies suggest that the neurological effects of

influenza are caused by neuroinflammatory insult, which is

primarily immune-mediated rather than the result of direct viral

invasion of the CNS (114). Studies on animals have raised the

possibility of a link between influenza and AD. In particular, these

investigations have revealed increased microglial activity in the

mouse hippocampal region, a place critical for the formation of new

memories and an early stage in the pathophysiology of AD due to

loss of neuronal cells (115). A follow-up study on mice was able to

demonstrate a connection between influenza-induced hippocampus

neuroinflammation and cognitive impairment (114).

There has been speculation of an infectious etiology, and some

research has linked certain diseases to PD (116, 117). Whether

influenza and Parkinson’s disease or parkinsonism are related has

been debated for decades (118, 119). Influenza has been implicated in

an outbreak of postencephalitic parkinsonism that happened from

1916 and 1930, right before and after the 1918 influenza pandemic

(120, 121). The connection between influenza and Parkinson’s

disease and parkinsonism has been extensively studied, and some

of the results suggest that infections may be the root cause of some

cases (91, 122). Neurotropic influenza-A virus-infected mice exhibit

activation of microglia, inflammatory responses, and inclusions of a-
Synuclein in dopaminergic neurons in an experimental setting (19).

The primary protein component of Lewy bodies and Lewy neurites,

a-syn, was in fact produced by dopaminergic cells expressing the

H1N1 influenza virus, but not tau or Transactive response DNA

binding protein 43 kDa (TDP-43) (123).
SARS-CoV-2

Multiple sclerosis (MS), AD, and PD are neurodegenerative

illnesses that are increasingly thought to be comorbidities in SARS-

CoV-2-infected patients (124). Age dependence and co-morbidities

like obesity, diabetes, and cardiovascular problems are among the

many parallels between COVID-19 and PD. Furthermore, it is

possible that COVID-19 will influence PD patient treatment

practices and vice versa (125). Other common COVID-19 traits,

such as fever, tension, and anxiety, may also negatively impact

tremor, gait, and dyskinesias in PD, in addition to impairing the

efficiency of L-Dopa (124). The functional relationship between AD

and COVID-19 is becoming more and more evident. Like other

neurodegenerative diseases, AD is considered a co-morbidity with

COVID-19, meaning that having one condition usually makes the
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other worse (126). Neurodegeneration and neurocognitive

impairment are associated with both situations with the buildup

of amyloid precursor protein (APP) and activation of N-methyl-D-

aspartate (NMDA)receptors. Furthermore, because these disorders

share proinflammatory signaling cascades, neuronal cell death and

dysfunction in both circumstances have been linked to microglial-

mediated responses (127).

One of the largest RNA viruses is the SARS-CoV-2 virus. With

the help of a complex array of accessory and nonstructural proteins,

the virus is able to elude the innate immune system and replicate,

translate, and exocytose as a fully functional virion. The single-

stranded RNA that encodes 29 proteins includes the spike protein,

which has the essential domains needed for binding to Angiotensin-

converting enzyme 2 (ACE2). Furthermore, the possibility that

these proteins have a role in the metabolic and molecular pathways

of neurodegeneration is starting to gain more attention. Viruses or

necessary protein components can be transported by extracellular

vesicles to neurons in the substantia nigra, human cortical

astrocytes, and microglia in addition to being directly absorbed by

brain endothelium. This facilitates the faster formation of

pathogenic fibrils (128). Liquid condensate can be produced by

the intrinsically disordered SARS-CoV-2 nucleocapsid protein,

which can even create harmful heteropolymers with RNA-binding

proteins associated with neurodegenerative disease, such as TDP-

43, fused-in sarcoma (FUS), and heterogeneous nuclear

ribonucleoprotein A1 (hnRNP1A). More transmissible but less

severe than the initial strain, the SARS-CoV-2 virus is continually

evolving in response to the immune pressure imposed by very

efficient vaccinations. Its potential long-term impacts on the brain

system may therefore be a legacy of a global health crisis far more

grave than acute disease (129). More severe SARS-CoV-2 and IAV

infections are significantly correlated with aging-related

proteostasis degradation in older people. A growing body of

research indicates that the SARS-CoV-2 infection affects cognitive

function over the long term and may eventually result in

neurodegenerative diseases like AD (129–131). A number of

pathways have been suggested, which are not mutually exclusive,

while research to identify the exact mechanism(s) by which SARS-

CoV-2 attacks the neurological system, both acutely and

chronically, is underway (132, 133).
Herpes simplex virus-1

Lifelong latent infections in sensory neurons are brought on by

neurotropic herpesviruses. HSV-1 is a periodically reactivating

virus that can enter the brain and cause encephalitis or create

CNS latency. Many studies link AD and HSV-1. In fact, HSV-1

seropositivity appears to increase the risk of AD (134), and HSV-1

DNA can be detected in Ab plaques (135). In animals and cellular

models, reactivation of repeated HSV-1 infections results in the

accumulation of hyperphosphorylated Tau and the AD biomarkers

Ab over time (136).

The e4 genotype of APOE is a known risk factor for AD. In

animal models, apoE e4 appears to allow HSV1 latency in the brain
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much more and is more effective than apoE e3 in promoting viral

colonization of the brain following acute HSV1 infection (137). It

was demonstrated that apoE e4 was more common in the brains of

AD patients who were HSV1-positive than HSV1-negative, and in

those who had recurrent cold sores than in those who did not (138).

These findings suggest that individuals with the apoE e4 allele may

be more susceptible to HSV’s effects on the brain.
Human herpesvirus 6

HHV6 belongs to the b herpesvirus subfamily, which consists of

two distinct species. It damages nerve cells and has been connected

to a number of neurological disorders. The olfactory route allows

HHV6 to enter the brain (139). In addition to AD, HHV6 is

frequently seen in older, healthy brains. The HHV6 IgG

antibodies reactivity of AD patients were significantly lower than

that of normal controls. Although HHV6 might be linked to the

genesis of AD, these findings might potentially point to a causal

relationship or an opportunistic participant in neurodegeneration

(140). A multiscale network analysis that includes late-onset AD-

associated viromes and integrated genomic, transcriptomic,

proteomic, and histological data from four distinct brain regions

in human post-mortem tissue was used to demonstrate that AD

patients had greater levels of HHV6A and human herpesvirus 7

than controls (141). There are regulatory relationships between

viral abundance and APP metabolism modulators, including HHV-

6A’s activation of APBB2, APPBP2, BIN1, BACE1, CLU, PICALM,

and PSEN1. This suggests that specific virus species can cause

neuropathology and Alzheimer’s disease (142).
Other viruses involved in
neurodegeneration

Recent research has unequivocally shown that a history of

Epstein-Barr virus (EBV) infection is associated with a higher risk

of developing multiple sclerosis (MS) (143). A motor neuron

disease called ALS damages brain and spinal cord nerves. A

build-up of RNA-binding proteins such as FUS or TDP-43, along

with cytoplasmic mislocalization, are indicative of both

frontotemporal dementia and ALS. An underlying viral infection

that is ordinarily epigenetically repressed and incapable of

replication is up-regulated in individuals with ALS (144).

Enteroviruses in the brains and cerebrospinal fluid of individuals

with ALS are a topic of discussion (48). However, mice infected with

two enteroviruses developed an accumulation of TDP-43 and

persistent inflammation (145). Mice infected with Theiler’s

murine encephalitis virus (TMEV) developed an ALS-like

phenotype with TDP-43 and FUS inclusions in their cytoplasm,

which affected their motor neurons and glial cells (146). The

Japanese encephalitis virus (JEV) can infect humans and cause

Japanese encephalitis, which has a high death rate in severe cases

and leaves 30 to 50 percent of survivors with severe, permanent

neurological or mental repercussions (147). Increased production of
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reactive oxygen species (ROS) from JEV infection intensifies the

death of neurons brought on by both mature and replication-

incompetent viruses (148). Increased ROS production and

decreased membrane fluidity in JEV-infected neuronal cells lead

to serious cytopathic effects, which ultimately cause neuronal cell

death (149). Neuronal cells infected with other members of the

Flaviviridae family, such as West Nile virus (WNV) (70) and

dengue virus type 2 (DENV-2) (150), also showed excessive O2.-

production during viral infection, which resulted in host cell

apoptosis. Different viruses adapt different routes to enter the

CNS and causes neurodegeneration explained in Figure 2.

The Venezuelan equine encephalitis virus (VEEV) causes

serious neurological abnormalities in 4–14% of patients, and fatal

encephalitis in 1% of cases (151). Upon infection with VEEV,

astrocytoma U87MG cells exhibit an abrupt rise in ROS levels

(152). Deadly rabies virus (RABV) attacks the central nervous

system (CNS), leading to encephalitis and ultimately mammalian

death. Research has shown that RABV infection results in increased

ROS production in mouse neuroblastoma cells (153). Inducing

oxidative stress is a crucial role of the RABV viral component

(154). Infection with the deadly RABV causes changes in cellular

gene expression. RABV, like other neurodegenerative diseases, may

be involved in neuronal death due to an imbalance in Ca2+

homeostasis. Due to the role of calcium homeostasis in

dysregulation in neurodegenerative diseases and other

pathophysiology, there is reason to assume that neurons that

contain certain intracellular calcium-binding proteins have a

greater capacity to buffer calcium, and therefore would be more

resistant to degeneration (155). Oxidative stress is a major factor in

the pathogenesis of neurodegeneration in viral infections of the

central nervous system, as evidenced by elevated levels of free

radicals and lipid peroxidation caused by neurotrophic viruses.

Table 2 lists the numerous population-based investigations that

were carried out to determine the role of viruses in

neurodegenerative diseases.
Possible mechanism of viral
pathogenesis, inflammation and
neurodegeneration

Neurotropic viruses are a type of newly and re-emerging

infections that specifically target and damage the integrity of the

CNS (159, 160). There are several distinctive ways in which they can

enter the CNS, leading to a range of neurological symptoms (161).

Viruses have a particular method in which they first enter the

peripheral nervous system before migrating into the CNS via axon

fibers (162). Neurotropic viruses employ a variety of techniques in

addition to exploiting the peripheral nervous system to bypass host

barrier defenses and directly infiltrate the central nervous system.

For instance, immune cells like macrophages, monocytes, and

dendritic cells can become infected by the Zika virus (ZIKV),

human cytomegalovirus (HCMV), and human immunodeficiency

virus (HIV), which then function as carriers to move the virus into

the CNS (161, 163, 164). Moreover, it has been shown that viral
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infections stimulate the production of chemokines and pro-

inflammatory chemicals like TNF-a, CCL2, CCL5, IL-6, and IL-8,

which can trigger a cytokine storm. The systemic pro-inflammatory

state impairs the blood-brain barrier, allowing more pro-

inflammatory cytokines and viruses to enter the CNS. The

cytokine storm at the nervous system level can cause neuronal

death, activation of microglia, synaptic plasticity impairment, and

neurotransmission dysfunction (161, 165). Viruses have the ability

to activate astrocytes and microglia (166, 167), cause

neuroinflammation (167), oxidative stress (168), immunological

responses (159), protein aggregation (169), and upset the balance of

microbes in the gut (170) after they have entered the central nervous

system. Accumulating data has revealed a bidirectional relationship

between the gut microbiome and CNS, known as the “microbiota-

gut-brain axis.” Early microbiome changes were observed in

preclinical Alzheimer’s disease (AD) and prodromal Parkinson’s

disease (PD) patients (171, 172). These processes have the capacity

to both initiate and exacerbate NDs.

Risk factors were recently analyzed with publicly available

datasets from two large-scale population-based studies, UK

Biobank and FinnGen. The UK Biobank contained twenty-two of

the forty-five significant correlations between viral infections and

NDs that were discovered in FinnGen. It’s interesting to see that the

strongest hazard ratio was associated with viral encephalitis and AD

(57). Additionally, utilizing virome analysis, nine viruses were

shown to be present in various CNS brain tissues in patients with

PD, with PD patients showing greater positive frequencies of viruses

than patients in the control group (173). Remarkably, evidence

from recent studies provide credence to the hypothesis that persons

with viral illnesses may be less likely to develop NDs if they receive

immunizations or antiviral drugs (123, 174). When considered
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collectively, these results provide credibility to the theory that

viral infections raise the chances of NDs.

Viruses have evolved unique defense methods to evade host

defense reactions. These mechanisms include autophagy disruption

and additional interference with host antiviral signaling triggered by

viral infection (175). In Table 3 various mechanisms are

summarized through which viruses cause neurodegeneration in

AD and PD. Although some illnesses interfere with specific

signaling pathways to prevent autophagosomes from fusing with

lysosomes or lysosomal breakdown, autophagosomes can also serve

as reproduction sites for viruses as they infect a host (202–204).

Activation of autophagy by various viruses, including flaviviruses

and enteroviruses, can promote virus spread by assembling and

releasing infectious particles through autophagic vacuoles. In

certain viral infection cases, such as poliovirus and coronavirus

infection, autophagy induction by infected cells promotes the

generation of double-membrane vesicles to enhance viral

replication (205).
Antiviral therapies in ND’s

Antivirals could be interesting alternative drug options for

treating NDs. In cell culture, antivirals were able to decrease

HSV-1-induced production of Ab and phosphorylated Tau (206)

Acyclovir, penciclovir, and foscarnet are anti-HSV1 antiviral

medications that decreased Ab and P-tau accumulation along

with HSV1. The antiviral-induced decrease in Ab is attributable

to the reduced number of new viruses, and hence the reduction in

viral spread. Since antiviral agents reduce greatly Ab and P-tau

accumulation in HSV1-infected cells, they would be suitable for
FIGURE 2

Entry routes of different viruses to infiltrate the CNS and induces neurodegeneration.
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TABLE 3 Mechanisms adopted by viruses causing neurodegeneration in PD and AD.

Neurodegenerative
disorder

Virus Pathogenesis Markers References

PD

CVB3 cause neurons to develop a-syn-
associated inclusion bodies, which may
serve as a PD trigger

Elevated a-syn expression
a-syn fibrils in damaged mitochondria

(16)

HBV/HCV Invade the central nervous system
Dopaminergic neuron death

Elevated levels of TNF-a, IL-6, and IL-1b,
IL-8, IL-29, IL-22

(176, 177)

IAV Increased mRNA levels of CD36, CD68,
C1QA, and C3, together with a changed
expression pattern of major
histocompatibility complex classes I and
II, CD80, and F4/80, indicating evolving
synaptic pruning

Increased levels of IL-6 and IFN-g, TNF (114)

West Nile
virus (WNV)

Abnormalities in the basal ganglia,
thalamus, and pons, mostly bilaterally,
evident in T2 and DWI sequences

Damage to the substantia nigra
Secretion of a-syn

(178–180)

HIV Dopaminergic basal ganglia damage
Neuroinvasion

Tumor necrosis factor (TNF)-a,
interleukin (IL)-6, and IL-1b production

(181, 182)

JEV Profound gliosis in the substantia nigra
pars compacta (SNpc), similar to that
seen in PD
lower dopamine and norepinephrine
levels in JEV-infected rats
Dopaminergic and norepinephrinergic
system impairment

Lower CSF concentrations of dopamine,
norepinephrine and homovanillic acid

(30, 183, 184)

IAV H5N1 Blocking protein degradation pathways
Blocking of autophagosome formation
and inhibition of autophagic flux

a-syn phosphorylation and aggregation (19, 123)

AD

HHV-6A
HHV-6B

Dysregulation of autophagy in neurons
astrocytoma cells
Neuroinflammation

Ab deposition
Increasing beta-amyloid and tau

(14, 134,
185–188)

HIV, Synaptic deficits
Trojan horse mechanism

Ab1–42 dysregulated
Amyloid plaques in the CSF and blood

(189, 190)

HCMV Neuroinvasion Ab production
Astrocyte reactivity

(191, 192)

HHV-6/7 Neuroinflammation Elevated tau, ApoE, and Ab1–42
protein expression

(186, 193, 194)

HSV-1 Accelerated Ab deposition
Gliosis
Cognitive dysfunction

triggers the phosphorylation of Tau by
activating protein kinase A (PKA) and
glycogen synthase kinase 3b (GSK3b)

(195–197)

(Continued)
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TABLE 2 Prospective cohort studies for involvement of viruses in NDs.

Virus ND Source Year References

HCV PD Taiwan National Health Insurance Research Database 2016 (92)

HCV/HBV PD Community-based integrated screening program in Taiwan 2015 (156)

Cytomegalovirus PD UK Biobank 2024 (157)

HBV/HCV Dementia Korean National Health Insurance Service 2021 (41)

HSV AD/Dementia Vasculature in Uppsala Seniors (PIVUS) cohort 2024 (37)

HSV/VZV Dementia Korean National Health Insurance Service 2017 (47)

HCV Multiple sclerosis (MS) Neurology department at Ain Shams University Hospital, Egypt 2023 (158)
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treating AD with great advantage unlike current AD therapies, only

the virus, not the host cell, would be targeted (206). Ribavirin is a

low-molecular-weight nucleoside analogue and inhibitor of inosine

monophosphate dehydrogenase that functions as a broad-spectrum

antiviral drug against a variety of DNA and RNA viruses. Ribavirin

is approved in the United States for the treatment of RSV infections

and, when combined with interferon, for hepatitis C virus infections

(207). However, studies have shown that, as compared to a placebo,

oral ribavirin formulations do not improve virologic response or the

treatment of chronic hepatitis C. As a result, ribavirin is not

permitted for use as a monotherapy for hepatitis C (208).

Moreover, despite divergent opinions in the literature, ribavirin

has been shown to be efficient against HSV both on its own and in

combination with acyclovir, where it has been shown to augment

the effects of acyclovir (209). Activity of ribavirin against EV has

been demonstrated in vitro (210). Hepatitis C, RSV, and HSV are

among the infectious diseases that ribavirin effectively treats; AD

has been connected to several of these infections (87, 209). In a

clinical trial, the Apovir group’s CSF biomarker levels showed a

decrease in Ab42 over the duration of treatment (86).

The main antiviral drug used to treat HSV1 infections is called

acyclovir (ACV); as expected, ACV dramatically reduces the

number of HSV1 and the levels of Ab and P-tau in HSV1-

infected cells in culture (206). P-tau production is reliant on

HSV1 replication and eventually drops to zero. Antibody

formation is significantly decreased, but it depends, at least

partially, on a previous phase of the cycle. Lower viral DNA

replication is probably the cause of this decrease in viral

dissemination. These results suggest that ACV might be helpful

in the management of AD (211). Individuals who test positive for

HSV have a higher likelihood of cognitive impairment, and antiviral

drugs have a potent anti-HSV infection impact. Recent studies

employing databases incorporating electronic health information

have shown that HSV infections increase the risk of dementia, but

antiviral medication treatment lowers this risk. In a trial including

schizophrenia, the generic antiviral drug valacyclovir showed better

memory improvement than a placebo (212). It has also been shown
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that acyclovir administration prevents HSV-1-induced neuronal

death (213). When dexamethasone and acyclovir were given

together, the impairments in spatial cognition were lessened.

Together with microglia activation, this combination also

decreased the levels of neuroinflammation markers as TNF-a and

IL-6 (214). However, these effects happen only when acyclovir and

dexamethasone are administered simultaneously.

Antiviral medication significantly reduces the risk of

Parkinson’s disease in patients with viral hepatitis (25, 215). In

vitro models showed that the anti-influenza drug oseltamivir

phosphate inhibited the aggregation of a-synuclein caused by

H1N1 (123). Antiviral medication has demonstrated promise in

reducing the likelihood of HCV infection, which is a risk factor for

PD. In patients, the incidence of PD with persistent HCV infection

appeared to be lower when treated with interferon-based antiviral

therapy (216). Anti-HIV drug maraviroc specifically inhibited

CCR5, ameliorating tauopathies and Huntington’s disease (HD)

in model mice (217).

Ever since the initial appearance of the acute respiratory

coronavirus SARS-CoV-2, scientists have been searching for novel

antiviral medications and repurposing those that have demonstrated

efficacy against other coronaviruses. antiviral medication that could

be applied in case of COVID-19 outbreak. PD, AD, and fatigue

associated with multiple sclerosis have been shown to benefit from

amantanes such as amantadine, rimantadine, and memantine. These

conditions are all known comorbidities associated with COVID-19.

Additionally, basic pharmacological studies conducted in vitro and in

vivo have shown that amantadine can inhibit SARS-CoV-2 by down-

regulating host-cell proteases, which impairs the release of the viral

genome into the host cell, and by acting as an NMDA receptor

antagonist, which prevents the acute lung injury and respiratory

distress that are hallmarks of COVID-19 (124). Antiviral drugs like

oseltamivir, which are frequently prescribed to treat influenza, have

been demonstrated to significantly enhance parkinsonism and

increase dyskinesia (218).

Antiviral drugs are now being tested for the treatment of ALS.

Combination antiretroviral therapy lowers transcript levels of the
TABLE 3 Continued

Neurodegenerative
disorder

Virus Pathogenesis Markers References

Initiate the translation of b-site amyloid
precursor protein cleaving enzyme 1
(BACE1) and the buildup of Ab by
activating RNA-activated protein
kinase (PKR).

Hepatitis viruses
(HBV, HCV)

Infect endothelial cells directly and enter
the central nervous system across the
blood-brain barrier

Elevated levels of TNF-a, IFN-., IL-1ß,
IL-6, IL-18, IL-10, IL-12
Elevated tau and amyloid beta-
peptide levels

(41, 88)

HHV-6A
HHV-6B

Dysregulation of autophagy in neurons
astrocytoma cells
Neuroinflammation

Ab deposition
Increasing beta-amyloid and tau

(14, 185, 186)

PD/AD
SARS-CoV-2 Viral invasion

Immune-mediated inflammation
Endothelial dysfunction

Aggregation of Aß, a-syn, tau, and
TDP-43

(198–201)
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HERV-K subtype HML-2, that has been demonstrated to be

elevated in ALS (219). A Phase IIa clinical trial including ALS

patients found that antiretroviral medication (effective against

HERV-K HML-2) indicates a trend toward delayed disease

progression in patients with virological response to the treatment

(220). Even though the results were encouraging, more randomized

controlled trials (RCTs) are now required to assess any potential

advantages for NDs.

Additionally, the potential antiviral properties of bioflavonoids

produced from Ginkgo biloba leaves, such as ginkgetin,

isoginkgetin, and ginkgolic acid, were investigated. These

substances have a well-established antiviral profile from earlier

research (221). Ginkgetin has been shown to effectively block the

synthesis of viral proteins and impede the replication of HSV-1,

HSV-2, and the human cytomegalovirus (222). The important

significance that traditional Chinese medicine plays in treating

COVID-19 aftereffects has been acknowledged. Research has

demonstrated that chalcones and flavonoids can prevent

neurodegeneration, prolonged COVID-19 illness, and SARS-CoV-

2 infection (223). The bioactive constituents of Ginkgo biloba

extract, ginkgolides and bilobalide (BB), have demonstrated

neuroprotective effects in AD via pathways including anti-

excitotoxicity, anti-inflammatory, and anti-oxidative properties.

Furthermore, by blocking the major protease of SARS-CoV-2,

ginkgolides and BB may also have antiviral effects against

COVID-19. But whether pure ginkgolides or BB are given over an

extended period of time at potentially therapeutic doses is actually

beneficial or harmful for treating COVID-19 and AD is still up for

debate (223).

Different medications have demonstrated promise in alleviating

the long-term cl in ica l symptoms of COVID-19 and

neurodegenerative disorders, despite the fact that there is

presently no standardized treatment for COVID-19. One way to

lessen the harmful impact on nerve cells is to either preserve

internal Ca2+ homeostasis or prevent the long-term inflow of

Ca2+ ions. By inhibiting the extrasynaptic N-methyl-D-aspartate

receptors, N-methyl-D-aspartate antagonists such as amantadine

and memantine can do this by reducing the long-term Ca2+ ion

influx that contributes to neuronal excitotoxicity. Amantadine is an

antiviral medication that has been demonstrated to help patients

with PD with their altered motor behavior. It may also help with

persistent fatigue. However, memantine might aid in the

improvement of cognitive deficiencies. Overlooking these issues may

result in neuronal death and the associated functional deficits (224).

To ascertain the effectiveness and comprehend the molecular

underpinnings of these drugs’ anti-coronavirus activity or inhibitory

potential, more in vitro and in vivo research are required. Different

antiviral drugs are in trials for neurodegenerative disorders explained

in Table 4.
AAV gene therapy

In recent years, adeno-associated virus (AAV) has become the

main vector for CNS gene therapy. AAV has already shown
Frontiers in Immunology 11
promising results in the clinic for a range of CNS ailments,

including neuromuscular diseases, lysosomal storage disorders,

and illnesses that are intractable with medicine. Gene therapy

uses DNA or RNA as a pharmacological agent to produce gene

products that permanently mute, repair, or modify endogenous

genes. One “one-and-done” treatment method that can cross the

blood-brain barrier is gene therapy (227) help prevent the long-

term progression of neurological diseases (6). In recent years, gene

therapies—like AAV-based therapy—have progressed from being

the exclusive focus of preclinical research to being an effective form

of treatment (228). AAV has the advantages of immunological

privilege, high delivery efficiency, and specialized tissue or cell

tropism in the CNS.

Regarding AAV-based gene therapy, the most clinically studied

CNS condition is PD. PD is currently being studied using three

different methods: glutamate decarboxylase (GAD)-inhibited

glutamine synthesis as a neurotransmitter; aromatic amino acid

decarboxylase, AADC-induced dopamine production; and glial cell

line-derived neurotrophic factor (GDNF) in the substantia nigra to

protect nigral neurons. However, the majority of AAV-based

treatments are unable to treat pathologically complex diseases

(229). To treat PD, AAV-based gene therapy vectors can increase

dopamine levels in target cells (230). In PD primate model,

intrastriatal infusion of an AAV vector containing the human

aromatic l-amino acid decarboxylase (hAADC) gene results in

robust gene expression (231). Alternatively, an AAV-based a-
synuclein expression vector (AAV-PHP.B-GBA1) can be injected

intravenously (IV) into the target neural parenchyma as an

alternative to the more common injection of the mouse forebrain

in PD gene therapy. Because of this, the vector was able to enter the

brain parenchyma and propagate throughout it. This allowed the

vector to target the central and peripheral nervous systems globally

and restored animal behavior by reducing synucleinopathy (232).

More than one hundred clinical trials have involved

Alzheimer’s patients. Other than immunotherapy, there is

currently no medication that can impede the progression of

Alzheimer’s disease in those with cognitive impairments.

However, AAV-based gene therapy continues to be ineffective.

The only experiment that was successfully completed used

AAV2-driven nerve growth factor to reverse basal cholinergic

neuronal dysfunction. Ten patients with mild-to-moderate AD

were treated in a Phase I clinical trial with bilateral stereotactic

injections of AAV2-nerve growth factor into the Meynert nucleus

basalis without the use of immunosuppressive drugs (233). This

medicine worked effectively, was safe, and was well tolerated. No

side effects were reported. Another trial, a Phase II trial, used a

higher dose, although the treatment and placebo groups’ outcomes

in terms of brain metabolic or cognitive performance did not vary

statistically (234). The autopsy results of the three cases showed that

stereotactically injected AAV2 did not reach the nucleus basalis of

Meynert due to restricted AAV2 diffusion; hence, no reliable

conclusions could be drawn (235). Three other therapeutic

modalities are the subject of clinical investigation, the results of

which have not yet been made public: Intravenous or intrathecal

telomerase (hTERT) delivery to lengthen telomeres; brain-derived
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1550179
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Awan et al. 10.3389/fimmu.2025.1550179
neurotrophic factor administered via parenchymal delivery to

minimize neuronal loss and promote synaptic reconstruction; and

intra-CSF delivery of apolipoprotein E2 to restore protein

expression in patients homozygous for apolipoprotein E4 (235).

Numerous novel issues highlight the need for further research,

especially in the areas of safe delivery methods, well-understood

immunological systems, cost-effective production procedures,

targeted vectors, and further immune system suppression

strategies. To extend AAV-based gene therapy from monogenic

disorders to other diseases, we need to understand the whole

phenotypic range of each disease and find objective biomarkers to

capture the essential features of the condition. Ongoing research on

the imaging of viral vectors is necessary to monitor the

pharmacokinetics of viruses.
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Conclusion

CNS infection diagnosis and therapy are difficult but essential.

There are either none or very few antiviral medications on the market

now for treating viral infections of the central nervous system. A viral

infection causes an imbalance between free radicals and antioxidants,

which increases oxidative stress within cells and causes neuronal cells

to undergo programmed death through apoptosis. In order to

interfere with mitophagy and mitochondrial dynamics in their

hosts, viruses work with the recycling machinery of the cell.

Viral disturbance of mitochondrial homeostasis alters neuronal

metabolism and consequently affects brain function. When

neurotropic viruses enter the brain, specific brain functions are

harmed, neurotransmitter systems are changed, and pathological
TABLE 4 Clinical trials of antiviral drugs against NDs.

ND Virus Anti-viral Drugs Clinical
trial

References

AD Pleconaril (active on
enteroviruses)
ribavirin (active on
several viruses)

Apovir Phase IIa (86)

AD HSV Valacyclovir Phase II https://clinicaltrials.gov/
study/
NCT03282916

PD Influenza Amantadine completed https://clinicaltrials.gov/
study/
NCT00632762

AD HSV-1 Penciclovir (206)

PD HCV Interferon-a (216)

PD HCV Interferon-free direct-acting antiviral (DAA) therapy with ledipasvir
(LDV) plus sofosbuvir (SOF)

(225)

ALS HIV/AIDS Combination Antiretroviral Therapy (Triumeq) Phase IIa https://clinicaltrials.gov/
study/
NCT02868580

Schizophrenia HSV-1 Valaciclovir
(pro-drug of acyclovir)

Phase II (226), https://
clinicaltrials.gov/study/
NCT02008773

AD HSV-1 Acyclovir (214)

AD HBV/HIV Lamivudine/3TC Phase I
Phase II

https://clinicaltrials.gov/
study/
NCT04552795

Mild
Cognitive Impairment

HBV/HIV Lamivudine/3TC Phase II https://clinicaltrials.gov/
study/
NCT06519357

Amyotrophic Lateral
Sclerosis (ALS)

HIV Antiretroviral regimen approved to treat HIV Phase I https://clinicaltrials.gov/
study/
NCT02437110

Multiple Seclerosis (MS) Epstein-Barr
virus (EBV)

Famciclovir Phase II https://clinicaltrials.gov/
study/
NCT05283551

PD HBV/HIV Tenofovir Disoproxil Fumarate Phase I https://clinicaltrials.gov/
study/
NCT06356662
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signs of NDs appear. An understanding of the neuropathogenesis of

viral CNS infection may help in the creation of more efficient

diagnosis and treatment plans by focusing on the molecular

mechanisms underlying CNS infection. It might also be helpful in

the search for new antiviral drugs, which are necessary to treat these

neurotropic viral infections in an efficient manner.
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D, Fernández-Pereira C, et al. Microglia: the real foe in HIV-1-associated
neurocognit ive disorders? Biomedicines . (2021) 9:925. doi : 10.3390/
BIOMEDICINES9080925

102. Gras G, Kaul M. Molecular mechanisms of neuroinvasion by monocytes-
macrophages in HIV-1 infection. Retrovirology. (2010) 7:1–11. doi: 10.1186/1742-4690-
7-30/FIGURES/1

103. Smith LK, Kuhn TB, Chen J, Bamburg JR. HIV associated neurodegenerative
disorders: A new perspective on the role of lipid rafts in gp120-mediated neurotoxicity.
Curr HIV Res. (2018) 16:258. doi: 10.2174/1570162X16666181003144740

104. Das AT, Harwig A, Berkhout B. The HIV-1 tat protein has a versatile role in
activating viral transcription. J Virol. (2011) 85:9506. doi: 10.1128/JVI.00650-11

105. Fois AF, Brew BJ. The potential of the CNS as a reservoir for HIV-1 infection:
implications for HIV eradication. Curr HIV/AIDS Rep. (2015) 12:299–303.
doi: 10.1007/S11904-015-0257-9

106. Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG,
et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients
with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin
Infect Dis. (2010) 50:773–8. doi: 10.1086/650538

107. Simioni S, Cavassini M, Annoni JM, Rimbault Abraham A, Bourquin I, Schiffer
V, et al. Cognitive dysfunction in HIV patients despite long-standing suppression of
viremia. AIDS. (2010) 24:1243–50. doi: 10.1097/QAD.0B013E3283354A7B

108. Motta I, Allice T, Romito A, Ferrara M, Ecclesia S, Imperiale D, et al.
Cerebrospinal fluid viral load and neopterin in HIV-positive patients with
undetectable viraemia. Antivir Ther. (2017) 22:539–43. doi: 10.3851/IMP3140

109. Levine AJ, Soontornniyomkij V, Achim CL, Masliah E, Gelman BB, Sinsheimer
JS, et al. Multilevel analysis of neuropathogenesis of neurocognitive impairment in
HIV. J Neurovirol. (2016) 22:431. doi: 10.1007/S13365-015-0410-7
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147. Unni SK, Růžek D, Chhatbar C, Mishra R, Johri MK, Singh SK. Japanese
encephalitis virus: from genome to infectome. Microbes Infect. (2011) 13:312–21.
doi: 10.1016/J.MICINF.2011.01.002
Frontiers in Immunology 16
148. Lin RJ, Liao CL, Lin YL. Replication-incompetent virions of Japanese
encephalitis virus trigger neuronal cell death by oxidative stress in a culture system. J
Gen Virol. (2004) 85:521–33. doi: 10.1099/VIR.0.19496-0

149. Mishra MK, Ghosh D, Duseja R, Basu A. Antioxidant potential of Minocycline
in Japanese Encephalitis Virus infection in murine neuroblastoma cells: correlation
with membrane fluidity and cell death. Neurochem Int. (2009) 54:464–70. doi: 10.1016/
J.NEUINT.2009.01.022

150. Jan J-T, Chen B-H, Ma S-H, Liu C-I, Tsai H-P, Wu H-C, et al. Potential dengue
virus-triggered apoptotic pathway in human neuroblastoma cells: arachidonic acid,
superoxide anion, and NF-kB are sequentially involved. J Virol. (2000) 74:8680–91.
doi: 10.1128/JVI.74.18.8680-8691.2000/ASSET/EE619D90-E640-447C-8F71-
BBD3E36FA736/ASSETS/GRAPHIC/JV1800201009.JPEG

151. Ronca SE, Dineley KT, Paessler S. Neurological sequelae resulting from
encephalitic alphavirus infection. Front Microbiol. (2016) 7:959/PDF. doi: 10.3389/
FMICB.2016.00959/PDF

152. Keck F, Brooks-Faulconer T, Lark T, Ravishankar P, Bailey C, Salvador-Morales
C, et al. Altered mitochondrial dynamics as a consequence of Venezuelan Equine
encephalitis virus infection. Virulence. (2017) 8:1849–66. doi: 10.1080/
21505594.2016.1276690

153. Kammouni W,Wood H, Saleh A, Appolinario CM, Fernyhough P, Jackson AC.
Rabies virus phosphoprotein interacts with mitochondrial Complex I and induces
mitochondrial dysfunction and oxidative stress. J Neurovirol. (2015) 21:370–82.
doi: 10.1007/S13365-015-0320-8

154. Kammouni W, Wood H, Jackson AC. Serine residues at positions 162 and
166 of the rabies virus phosphoprotein are critical for the induction of oxidative
stress in rabies virus infection. J Neurovirol. (2017) 23:358–68. doi: 10.1007/S13365-
016-0506-8

155. Kanu B, Kia GSN, Aimola IA, Korie GC, Tekki IS. Rabies virus infection is
associated with alterations in the expression of parvalbumin and secretagogin in mice
brain. Metab Brain Dis. (2021) 36:1267. doi: 10.1007/S11011-021-00717-4

156. Wu WYY, Kang KH, Chen SLS, Chiu SYH, Yen AMF, Fann JCY, et al.
Hepatitis C virus infection: a risk factor for Parkinson’s disease. J Viral Hepat. (2015)
22:784–91. doi: 10.1111/JVH.12392

157. Ma X, Liao Z, Tan H, Wang K, Feng C, Xing P, et al. The association between
cytomegalovirus infection and neurodegenerative diseases: a prospective cohort using
UK Biobank data. EClinicalMedicine. (2024) 74. doi: 10.1016/j.eclinm.2024.102757

158. Khater SS, Elnaser AA, Abdallah D, Zamzam D, Elaziz DA. Is hepatitis C virus
incriminated in pathogenesis of multiple sclerosis? Mult Scler Relat Disord. (2023)
80:105220. doi: 10.1016/J.MSARD.2023.105220

159. Vazquez C, Jurado KA. Neurotropic RNA virus modulation of immune
responses within the central nervous system. Int J Mol Sci. (2022) 23(7):4018.
doi: 10.3390/IJMS23074018

160. McMillan RE, Wang E, Carlin AF, Coufal NG. Human microglial models to
study host-virus interactions. Exp Neurol. (2023) 363:114375. doi: 10.1016/
J.EXPNEUROL.2023.114375

161. Tan LY, Komarasamy TV, James W, Balasubramaniam VRMT. Host molecules
regulating neural invasion of zika virus and drug repurposing strategy. Front Microbiol.
(2022) 13:743147/PDF. doi: 10.3389/FMICB.2022.743147/PDF

162. McGavern DB, Kang SS. Illuminating viral infections in the nervous system.
Nat Rev Immunol. (2011) 11:318–29. doi: 10.1038/NRI2971

163. Ene L. Human immunodeficiency virus in the brain-culprit or facilitator? Infect
Dis. (2018) 11:117863371775268. doi: 10.1177/1178633717752687

164. Haspot F, Lavault A, Sinzger C, Sampaio KL, Stierhof YD, Pilet P, et al. Human
cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway
in a pH-independent and cholesterol-dependent manner. PloS One. (2012) 7(4):e34795.
doi: 10.1371/JOURNAL.PONE.0034795

165. Yuan S, Jiang SC, Zhang ZW, Fu YF, Hu J, Li ZL. Quantification of cytokine
storms during virus infections. Front Immunol. (2021) 12:659419/PDF. doi: 10.3389/
FIMMU.2021.659419/PDF

166. Quincozes-Santos A, Bobermin LD, Costa NLF, Thomaz NK, Almeida RR de S,
Beys-da-SilvaWO, et al. The role of glial cells in Zika virus-induced neurodegeneration.
Glia. (2023) 71:1791–803. doi: 10.1002/GLIA.24353

167. Patrycy M, Chodkowski M, Krzyzowska M. Role of microglia in herpesvirus-
related neuroinflammation and neurodegeneration. Pathogens. (2022) 11(7):809.
doi: 10.3390/PATHOGENS11070809
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Glossary

AAV Adeno-Associated Virus
Frontiers in Immunol
ACE2 Angiotensin-Converting Enzyme 2
ACV Acyclovir
AD Alzheimer’s disease
ALS Amyotrophic Lateral Sclerosis
ALS Amyotrophic Lateral Sclerosis
ANI Asymptomatic Neurocognitive Impairments
ApoE Apolipoprotein E
APOE e4 Apolipoprotein E e4 allele
APP Amyloid Precursor Protein
Ab Amyloid-b
BACE1 b-Site Amyloid Precursor Protein Cleaving Enzyme 1
CNS Central Nervous System
CSF Cerebrospinal Fluid
CVB3 Coxsackievirus B3
DAA Direct-Acting Antiviral
DENV-2 Dengue Virus Type 2
EBV Epstein-Barr virus
EBV Epstein-Barr Virus
EVs Enteroviruses
GAD Glutamate Decarboxylase
GDNF Glial Cell Line-Derived Neurotrophic Factor
GSK3b Glycogen Synthase Kinase 3b
GWAS Genome-Wide Association Studies
HAD HIV-Associated Dementia
HAND HIV-Associated Neurological Disorders
HBV Hepatitis B virus
HCMV Human Cytomegalovirus
HCV Hepatitis C virus
HHV Human Herpesvirus
ogy 19
HHV6 Human Herpesvirus 6
HIV Human Immunodeficiency Virus
HSV Herpes simplex virus
HSV-1 Herpes Simplex Virus-1
IAV Influenza A virus
IV Intravenously
JEV Japanese encephalitis virus
JEV Japanese Encephalitis Virus’
LDV Ledipasvir
MND Moderate Neurocognitive Disorders
MS Multiple sclerosis
MSA Multiple Systems Atrophy
NDs Neurodegenerative diseases
NMDA N-methyl-D-aspartate
PD Parkinson’s disease
PKA Protein Kinase A
PKR RNA-Activated Protein Kinase
RABV Rabies Virus
ROS Reactive Oxygen Species
SNpc Substantia Nigra Pars Compacta
SOF Sofosbuvir
TMEV Theiler’s Murine Encephalitis Virus
VEEV Venezuelan Equine Encephalitis Virus
VZV Varicella-Zoster Virus
WEV Western equine virus
WNV West Nile Virus
WNV West Nile virus
ZIKV Zika virus
a-syn a-synuclein.
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