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Background: Traditional Chinese medicine and food deer antler has been
extensively used in bone regeneration, but its molecular mechanisms remain
poorly understood. Preliminary investigations suggest deer antler contains
bioactive compounds that influence osteogenic differentiation and
immune microenvironments.

Purpose: To elucidate the molecular mechanisms of deer antler in promoting
human mesenchymal stem cell (hMSC) osteogenic differentiation, focusing on
JUN downregulation and immune microenvironment modulation using
bioinformatics and molecular docking approaches.

Methods: Chemical components and targets were identified using the BATMAN-
TCM database. Differentially expressed genes (DEGs) related to osteogenic
differentiation were analyzed using Gene Expression Omnibus datasets. Gene
Ontology (GO), KEGG enrichment, LASSO regression, and SVM-RFE were applied
to identify key genes. A Protein-Protein Interaction (PPI) network was
constructed to determine core genes. JUN expression was validated using
independent datasets and ROC analysis. Immune cell infiltration was analyzed
using CIBERSORT, examining JUN'’s correlation with immune cells. Molecular
docking explored JUN's interaction with two active deer antler compounds.

Results: The study identified 62 bioactive compounds and 1051 potential targets.
DEGs analysis revealed 282 genes associated with osteogenic differentiation.
Cross-analysis identified 43 overlapping genes, enriched in “response to
mechanical stimulus” and ‘“rheumatoid arthritis” pathways. Machine learning
approaches highlighted 7 critical genes, with JUN emerging as the core gene.
JUN levels were significantly decreased during osteogenic differentiation, showing
high diagnostic accuracy (AUCs: 0.977-1.000). Immune cell analysis revealed JUN
correlations with neutrophils, monocytes, eosinophils, M2 macrophages, and
resting CD4+ T cells. Molecular docking confirmed strong binding affinities of
JUN with Retinol (-8.1 kcal/mol) and Progesterone (-6.0 kcal/mol).
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Conclusions: The study provides a comprehensive molecular framework
demonstrating JUN as a key molecule in hMSC osteogenic differentiation.
Deer antler's bioactive compounds, particularly Retinol and Progesterone,
potentially exert therapeutic effects through targeted JUN modulation, offering
novel insights into natural compound-mediated bone regenerative mechanismes.

deer antler, osteogenic differentiation, JUN, bioinformatics analysis, machine learning,
immune microenvironment modulation

1 Introduction

The restoration and healing of bones are essential for preserving
skeletal health, especially in the context of fractures, osteoporosis,
and other degenerative bone disorders (1, 2). Human mesenchymal
stem cells (hMSCs) are crucial for this process, as their
transformation into bone-forming cells is key to new bone tissue
development (2, 3). Although our knowledge of the cellular and
molecular basis of bone regeneration has grown, there is still a need
for more effective treatments, especially in complex scenarios where
there is a need to boost bone-forming capabilities and regulate the
immune system (4, 5).

Deer antler (Cornu Cervi Pantotrichum), a well-known
traditional Chinese medicine and food, is widely utilized for its
potential to improve bone health and facilitate repair (6, 7). This
natural remedy is abundant in bioactive components such as growth
factors, peptides, and minerals, which are thought to contribute to its
healing properties by promoting the development of bone tissue and
adjusting the immune response (6, 8, 9). However, the molecular
mechanisms underlying these effects remain poorly understood,
posing a challenge to the scientific validation and clinical
application of deer antler (10).

Recent advances in bioinformatics and high-throughput data
analysis have provided valuable tools for investigating the complex
interactions between traditional Chinese medicine and molecular
targets (11). In particular, network pharmacology and machine
learning techniques offer new opportunities to identify bioactive
compounds, potential targets, and regulatory pathways associated
with therapeutic effects (12). These computational approaches have
revolutionized our understanding of traditional medicine
mechanisms (13).

This study aims to elucidate the molecular mechanisms by
which deer antler promotes osteogenic differentiation in hMSC,
focusing on its effects on the key regulatory gene and the immune
microenvironment. Employing bioinformatics, machine learning
algorithms, immunological profiling, and molecular docking
techniques, this study investigates the mechanisms by which the
bioactive constituents of deer antler engage with molecular
signaling cascades to potentiate osteogenic processes. These
findings are expected to provide a scientific foundation for the
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therapeutic use of deer antler in bone-related disorders and
contribute to the modernization of traditional Chinese
medicine practices.

2 Materials and methods

2.1 Identification of bioactive compounds
and potential targets of deer antler

The bioactive compounds of deer antler and their potential
molecular targets were identified using the BATMAN-TCM
database (14), a comprehensive platform for exploring traditional
Chinese medicine and its pharmacological mechanisms. Potential
targets were systematically extracted based on compound-target
interactions with confidence score cutoff=0.86 (LR=112.67) and
adjusted p-value < 0.05.

2.2 Collection and preprocessing of gene
expression datasets

Gene expression profiles associated with osteogenic
differentiation and stem cell proliferation were retrieved from the
Gene Expression Omnibus (GEO) database (15). Five datasets
(GSE80614, GSE100752, GSE12267, GSE28205 and GSE9451) were
curated based on rigorous criteria pertinent to osteogenic
differentiation and stem cell research. Subsequent data
preprocessing encompassed normalization and batch effect
correction, facilitated by the R packages limma (version 3.62.1) (16)
and edgeR (v4.4.0) (17). Principal Component Analysis (PCA) was
performed to visualize sample clusters and evaluate potential batch
effects. The Combat algorithm (18) from the sva package (v3.54.0)
(19) was applied to remove batch effects. Differentially expressed
genes (DEGs) were identified using the criteria of |log2FoldChange| >
1 and adjusted p-value < 0.05. Data visualization was accomplished
through hierarchical clustering heatmaps and volcano plots
generated using the Complex Heatmap package in R (20). Detailed
descriptions of datasets including sample size, cell source, induction
conditions, and culture environments are summarized in
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Supplementary Table S1. To address dataset heterogeneity, the
Combat algorithm from the sva package was used to perform batch
correction. The efficacy of this correction was validated using
PCA visualization.

2.3 Functional enrichment analysis

Gene Ontology (GO) (21) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) (22) pathway enrichment analyses were
conducted using the ClusterProfiler package (v4.14.3) (23) in R. The
intersection between DEGs and deer antler target genes was
identified through Venn diagram analysis using the VennDiagram
package (24). The resulting overlapping genes underwent further
functional enrichment analysis to elucidate their roles in biological
processes and molecular pathways.

2.4 Machine learning for key gene
identification

Two complementary machine learning approaches were employed
to identify key regulatory genes. Least Absolute Shrinkage and Selection
Operator (LASSO) regression was implemented using the glmnet
package (v4.1-8) (25), while Support Vector Machine Recursive
Feature Elimination (SVM-RFE) was performed using the 1071
package (v1.7-16) (26). Genes identified by both methods with
consistent selection frequencies > 80% were retained for
subsequent analyses.

2.5 Protein-protein interaction network
analysis

A PPI network was constructed using both STRING database
(v11.5) (27) and GeneMANIA database (28) with an interaction
confidence score threshold of 0.4. Core regulatory genes were
determined based on the centrality metrics from both networks.

2.6 Validation of gene expression and
diagnostic performance

Independent validation was performed using GEO datasets
GSE18043 and GSE28074. These validation datasets underwent
identical preprocessing procedures as the primary analysis.
Receiver Operating Characteristic (ROC) curves were generated
using the pROC package (v1.18.5) (29), with Area Under the Curve
(AUC) values calculated to assess diagnostic accuracy.

2.7 Immune infiltration analysis

Immune microenvironment analysis was conducted using the Cell-
type Identification By Estimating Relative Subsets Of RNA Transcripts
(CIBERSORT) algorithm (30) with the LM22 signature matrix. Results
were visualized using ggplot2 (v3.5.1) (31) for heatmaps and violin
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plots. Correlations between core regulatory gene expression and
immune cell populations were assessed using Pearson correlation
analysis, with significance threshold set at p < 0.05. All immune cell
estimations were performed on batch-corrected gene expression data.
Low-quality samples were excluded using LM22 matrix quality
thresholds to ensure robust immune deconvolution.

2.8 Molecular docking analysis

Molecular interactions between core regulatory gene and deer
antler bioactive compounds were investigated through molecular
docking simulations. Three-dimensional structures of bioactive
compounds were obtained from PubChem (32), while the core
regulatory gene protein crystal structure was retrieved from the
Protein Data Bank (33). Docking simulations were performed using
AutoDock Vina (v1.5.6) (34), and molecular interactions were
visualized using PyMOL (v3.1.0) (34).

2.9 Statistical analysis

All statistical analyses were performed in R (version 4.4.2) (35).
Multiple testing corrections were implemented using the Benjamini-
Hochberg method to control the false discovery rate (FDR). Statistical
significance was set at p < 0.05 unless otherwise specified.

3 Results

3.1 Identification of bioactive compounds
and potential targets in deer antler

Analysis through the BATMAN-TCM database (14) identified 62
bioactive compounds and 1,051 potential molecular targets in deer antler.

3.2 Identification of differentially expressed
genes

PCA visualization before and after batch correction confirmed
the effectiveness of the correction (Figure 1A). Analysis of GEO
datasets yielded 282 DEGs associated with osteogenic differentiation
(Jlog2FoldChange| > 1, adjusted p < 0.05). Hierarchical clustering
analysis revealed distinct expression patterns between osteogenic
differentiation and control groups (Figure 1B). Volcano plot
visualization highlighted 112 upregulated and 170 downregulated
genes (Figure 1C).

3.3 Overlapping genes and functional
enrichment analysis

Upon integrating the deer antler-associated targets (n=1,051) with

DEGs (n=282), we identified 43 intersecting genes, as depicted in
Figure 2A. GO analysis revealed that the biological processes “response
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FIGURE 1

Visualization of Batch Correction and Differential Gene Expression Analysis. (A) PCA visualization before and after batch correction. (B) Hierarchical

clustering analysis of GEO dataset. (C) Volcano plot.

to mechanical stimulus” (GO:0009612, adjusted p-value=1.14E-07) and
“muscle cell proliferation” (GO:0033002, adjusted p-value=1.99E-07)
were significantly enriched, as illustrated in Figures 2B, C. KEGG
pathway analysis indicated a pronounced enrichment in immune-
modulatory pathways, particularly “rheumatoid arthritis” (hsa05323)
and “lipid and atherosclerosis” (hsa0541), with adjusted p-values less
than 3E-6, as shown in Figures 2D, E. These findings align with recent
studies highlighting the mechano-immunological regulation of bone
regeneration (36). Specifically, the enrichment of ‘theumatoid arthritis’
pathway highlights the immunological basis of osteogenic modulation,
given the role of T cells and monocytes in bone microenvironment
remodeling and osteoclast activity.

3.4 Machine learning and PPI identifies
JUN as a core gene

Advanced machine learning approaches identified key regulatory
genes from the 43 overlapping candidates. LASSO regression identified
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14 genes (A=1) (Figure 3A), while SVM-RFE yielded 13 genes (10-fold
cross-validation accuracy=0.824) (Figure 3B). Seven genes were
consistently identified by both methods: JUN, EGR1, ADRA1B,
RARRESI, APOD, RBPI1, and CXCL12 (Figure 3C). Protein-protein
interaction (PPI) network analysis revealed JUN as the hub gene
(Figures 3D, E). The LASSO regression was tuned using 10-fold
cross-validation to select A=1. SVM-RFE was configured with a
linear kernel and optimized with 10-fold CV to achieve 82.4%
accuracy. These settings are provided in the supplementary code.

3.5 Validation of JUN expression

Independent validation using GEO datasets GSE18043 and
GSE28074 confirmed significant downregulation of JUN in
osteogenic differentiation compared to hMSC controls (adjusted
p=3.7E-08) (Figure 4A). ROC analysis demonstrated JUN’s robust
diagnostic potential, with AUC values of 0.977 (95% CI: 0.945-
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FIGURE 2

Integration of Deer Antler Targets with DEGs and Enrichment Analysis. (A) Venn diagram illustrating the integration of deer antler targets. (B) Bar
diagram of GO analysis. (C) Bubble diagram of GO analysis. (D) Bar diagram of KEGG pathway analysis. (E) Bubble diagram of KEGG pathway analysis.

0.999) in the experimental dataset (Figure 4B) and 1.000 (95% CI:
1.000-1.000) in the validation dataset (Figure 4C).

3.6 Immune infiltration analysis and JUN-
immune cell correlations

CIBERSORT analysis revealed significant alterations in
immune cell proportions between osteogenic differentiation and
control groups (Figure 5A). The relationships between different
immune cell populations based on their infiltration levels
are illustrated (Figure 5B). Significant differences in immune cell
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populations were observed, as presented in Figure 5C: CD8+ T cells
(p = 0.005), monocytes (p < 0.001), M2 macrophages (p = 0.013),
neutrophils (p < 0.001), dendritic cells in both resting (p = 0.013)
and activated states (p = 0.010).

JUN expression showed significant correlations with specific
immune cell populations (Figure 5D):

Significant Positive Correlations

1. Monocytes (Figure 5E) exhibited the strongest positive
correlation (R=0.277, p=0.005), suggests potential
crosstalk between JUN signaling and monocyte
recruitment/activation during osteogenic differentiation.
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JUN expression

Immune Infiltration Analysis and Correlation of JUN Expression with Immune Cells. (A) Immune cell proportions between osteogenic differentiation
and control groups. (B) Relationships among immune cell populations. (C) Specific immune populations between osteogenic differentiation and
control groups. (D) JUN expression correlations with immune cell. (E) JUN's role in monocyte. (F) JUN's role in eosinophils. (G) JUN's role in
neutrophils. M2 Macrophages (H) JUN's role in M2 macrophages. (1) JUN's role resting memory CD4+ T cells.

2. Eosinophils (Figure 5F) showed notable positive
correlation (R=0.253, p=0.010),
involvement of eosinophil-mediated processes in the

indicates possible
differentiation context.
Significant Negative Correlations
1. Neutrophils (Figure 5G) demonstrated the strongest

negative correlation (R=-0.444, p<0.001),
relationship suggests potential suppressive effects during

inverse

osteogenic differentiation.

2. M2 Macrophages (Figure 5H) showed significant negative
correlation (R=-0.243, p=0.014), indicates a shift in
macrophage polarization during differentiation.
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3. Resting memory CD4+ T cells (Figure 5I) displayed
negative correlation (R=-0.236, p=0.017),
potential immunomodulatory effects on T cell populations.

suggests

3.7 Molecular docking confirms JUN-
bioactive compound interactions

Molecular docking simulations demonstrated strong
interactions between the JUN protein and bioactive compounds
derived from deer antlers. Specifically, retinol exhibited a binding
energy of -8.1 kcal/mol (Figure 6A), while progesterone showed a
binding energy of -6.0 kcal/mol (Figure 6B). These binding energy
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FIGURE 6

Molecular Docking Simulations of JUN Protein with Deer Antler-Derived Bioactive Compounds. (A) Retinol demonstrates a strong interaction with
the JUN protein. (B) Progesterone shows a stable binding interaction with JUN.

values indicate stable molecular interactions, suggesting that deer
antler compounds may directly modulate JUN activity.

3.8 Summary of key findings

1. Identification of 62 bioactive compounds and 1,051
potential targets in deer antler.

2. Detection of 282 DEGs in osteogenic differentiation.

3. Discovery of 43 overlapping genes between deer antler
targets and DEGs.

4. Identification of JUN as a core regulatory gene through
machine learning and PPL

5. Validation of JUN’s role through expression analysis and
diagnostic performance.

6. Establishment of JUN’s relationship with immune
cell populations.

7. Confirmation of molecular interactions between JUN and
deer antler compounds.

4 Discussion

Bone regeneration represents a complex biological process
orchestrated by intricate cellular signaling networks, immune system
interactions, and environmental factors (37). This study presents a
comprehensive investigation of deer antler’s molecular mechanisms in
promoting human mesenchymal stem cell (hMSC) osteogenic
differentiation. Our findings identify JUN as a pivotal regulatory
molecule and demonstrate how deer antler’s bioactive compounds
may facilitate bone regeneration through JUN-mediated pathways.

Frontiers in Immunology

4.1 JUN as a central regulator of
osteogenic differentiation

JUN, a key component of the activator protein-1 (AP-1)
transcription factor family, orchestrates various cellular processes
including proliferation, differentiation, and stress responses (38).
Our analysis revealed significant downregulation of JUN during
osteogenic differentiation, consistent with previous studies
suggesting its role as a negative regulator of osteogenesis (39).
The remarkable diagnostic performance of JUN (experimental
AUC: 0.977; validation AUC: 1.000) establishes it as a robust
biomarker for osteogenic differentiation. This downregulation
appears to be a critical checkpoint in the osteogenic pathway,
potentially facilitating the activation of pro-osteogenic
transcriptional programs (40). However, the role of JUN was
identified via bioinformatics analysis only. Functional validation
such as gene knockdown or overexpression experiments are
planned in follow-up studies to verify its causal role in osteogenesis.

4.2 Immune modulation and JUN's role in
the osteogenic microenvironment

The significant changes in immune cell composition suggest an
active immune response during osteogenic differentiation. The
increased proportion of CD8+ T cells, monocytes, and M2
macrophages aligns with previous findings showing their
involvement in bone regeneration and remodeling (41). The
presence of both resting and activated dendritic cells suggests
ongoing immune surveillance and potential antigen presentation
during the differentiation process (42).
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The correlation between CD4+ T cell subsets indicate
coordinated T cell responses, while the M2 macrophage-neutrophil
correlation suggests a potentially orchestrated innate immune
response (Figure 5B). These findings provide new insights into the
immune microenvironment during osteogenic differentiation and
may have implications for bone tissue engineering and regenerative
medicine (43).

The transcription factor JUN plays crucial roles in immune
response regulation through its differential association with various
immune cell populations. Our correlation analysis reveals several
significant relationships that align with and extend previous
findings in the literature.

The positive correlation between JUN expression and
monocytes supports previous studies demonstrating JUN’s
essential role in monocyte differentiation and function (38, 44). A
striking negative correlation was observed between JUN and
neutrophils, representing the strongest relationship in our study.
This finding suggests JUN may act as a negative regulator of
neutrophil activation states. This observation is consistent with
work by Behre et al. (45). The strong negative correlation might
indicate a regulatory mechanism where JUN helps maintain
neutrophil homeostasis by preventing excessive activation. The
negative correlation with M2 macrophages provides interesting
insights into JUN’s potential role in macrophage polarization.
This relationship suggests that JUN might influence the balance
between M1 and M2 phenotypes (46). The observed correlations
with resting memory CD4+ T cells and eosinophils suggest broader
immunomodulatory roles for JUN. The negative correlation with
memory CD4+ T cells might reflect JUN’s involvement in T cell
quiescence, as supported by Riera-Sans et al. (47).

Collectively, our results imply that the JUN protein serves as a
central regulatory hub within the immune system, modulating the
equilibrium among various immune cell subsets. The contrasting
correlations observed with distinct myeloid cell types—positively
associated with monocytes and negatively with neutrophils and M2
macrophages—suggest a potential role for JUN as a molecular
determinant in the lineage commitment and functional
specification of myeloid cells.

4.3 Bioactive compounds in deer antler
target JUN

Utilizing the BATMAN-TCM database, our investigation
revealed 62 bioactive compounds and 1,051 potential targets in
deer antler. Molecular docking identified Retinol and progesterone
as key interactors with the JUN transcription factor, with binding
energies of -8.1 kcal/mol and -6.0 kcal/mol, respectively. Given
Retinol’s established role in osteogenic differentiation and its stable
interaction with JUN, it emerges as a promising candidate for
bone health therapies (48). Progesterone boosts bone health via
multiple mechanisms like regulating bone resorption and formation
(49). Its significant binding affinity with JUN implies its role in bone
regeneration. These molecular interactions establish a fundamental
groundwork for the traditional function of deer antler in bone
regeneration and its therapeutic uses.
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4.4 Functional enrichment and pathway
analysis

Functional enrichment analysis has identified a number of
crucial biological processes and pathways that are significantly
correlated with the bioactive components of deer antler. The
prominent discoveries are as follows:

1. Response to Mechanical Stimulus (GO:0009612, p < 0.001):
This indicates a function in mechanotransduction, which is
an essential process in bone remodeling (50);

2. Rheumatoid Arthritis Pathway (hsa05323, p < 0.001): It
underlines the potential immunomodulatory impacts that
might sustain bone health under inflammatory
circumstances (51);

3. Immune Modulation Pathways: This points to a
cooperative interaction between immune responses and
bone regeneration procedures (52).

These results align with current understandings of bone
physiology, emphasizing mechanical and immunological pathways
as the principal mediators of the therapeutic outcomes of deer antler.

4.5 Implications for bone regeneration
therapies

The identification of JUN as a central regulator presents several
therapeutic opportunities:

1. Development of targeted interventions focusing on JUN
modulation (53);

2. Optimization of deer antler-derived compounds for
therapeutic applications (6);

3. Integration with current stem cell-based therapies.

4.6 Study limitations and future directions

The study is subject to several limitations. Firstly, it depends on
bioinformatics findings which call for experimental verification.
Secondly, it only concentrates on particular compounds within the
intricate composition of deer antlers. Thirdly, bulk RNA sequencing
has limitations in analyzing immune cell heterogeneity. Future
endeavors should prioritize in vitro and in vivo validations,
investigate additional bioactive compounds, and employ single-
cell RNA sequencing to achieve a more nuanced understanding of
the immune microenvironment.

5 Conclusion

This study establishes JUN as a critical regulator in
hMSC osteogenic differentiation and elucidates potential
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mechanisms through which deer antler bioactive compounds may
promote bone regeneration. The findings provide a scientific
foundation for the development of novel therapeutic strategies
in bone regeneration.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.

Author contributions

CY: Conceptualization, Formal analysis, Funding acquisition,
Methodology, Writing - original draft. YW: Software, Writing -
original draft. HH: Validation, Writing - original draft. XL:
Formal analysis, Writing - original draft. JW: Formal analysis,
Writing — original draft. CL: Investigation, Writing - review &
editing. YS: Resources, Writing — original draft. DH: Data curation,
Writing - review & editing. RT: Writing - review & editing.
ZW: Visualization, Writing - review & editing. LJ: Supervision,
Writing - review & editing. FL: Conceptualization, Project
administration, Writing - review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was funded
by Key Project of Zhejiang Provincial Administration of Traditional
Chinese Medicine Co-construction by the Province and Bureau,
grant number GZY-ZJ-KJ-23080.

References

1. Berni M, Brancato AM, Torriani C, Bina V, Annunziata S, Cornella E, et al. The
role of low-level laser therapy in bone healing: systematic review. Int ] Mol Sci. (2023)
24:(8). doi: 10.3390/ijms24087094

2. Yu XH, Tang XY, Gohil SV, Laurencin CT. Biomaterials for bone regenerative
engineering. Adv Healthc Mater. (2015) 4:1268-85. doi: 10.1002/adhm.201400760

3. LiJ, Zhou ZX, Wen J, Jiang F, Xia Y. Human amniotic mesenchymal stem cells
promote endogenous bone regeneration. Front Endocrinol. (2020) 11:543623.
doi: 10.3389/fend0.2020.543623

4. Lian MF, Qiao ZG, Qiao SC, Zhang X, Lin JM, Xu RD, et al. Nerve growth factor-
preconditioned mesenchymal stem cell-derived exosome-functionalized 3D-printed
hierarchical porous scaffolds with neuro-promotive properties for enhancing
innervated bone regeneration. ACS Nano. (2024) 18:7504-20. doi: 10.1021/
acsnano.3¢11890

5. Mi BB, Xiong Y, Zha KK, Cao FQ, Zhou W, Abbaszadeh S, et al. Immune
homeostasis modulation by hydrogel-guided delivery systems: a tool for accelerated
bone regeneration. Biomater Sci. (2023) 11:6035-59. doi: 10.1039/d3bm00544e

6. WuF, LiH,JinL, Li X, Ma Y, You J, et al. Deer antler base as a traditional Chinese
medicine: A review of its traditional uses, chemistry and pharmacology. J
Ethnopharmacol. (2013) 145:403-15. doi: 10.1016/j.jep.2012.12.008

7. Baciut M, Baciut G, Simon V, Albon C, Coman V, Prodan P, et al. Investigation of
deer antler as a potential bone regenerating biomaterial. ] Optoelectron Adv Mater.
(2007) 9:2547-50.

Frontiers in Immunology

10.3389/fimmu.2025.1550249

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Correction note

A correction has been made to this article. Details can be found
at: 10.3389/immu.2025.1684846.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1550249/
full#supplementary-material

8. LiulY, Jiao Y, Yang M, Wu L, Long GH, Hu W. Network pharmacology, molecular
docking and molecular dynamics to explore the potential immunomodulatory
mechanisms of deer antler. Int J Mol Sci. (2023) 24:24. doi: 10.3390/ijms241210370

9. Zha EH, Li XX, Li DD, Guo XS, Gao SY, Yue XQ. Immunomodulatory effects of a
3.2 kDa polypeptide from velvet antler of Cervus nippon Temminck. Int
Immunopharmacol. (2013) 16:210-3. doi: 10.1016/j.intimp.2013.02.027

10. Zhang K, Niu L-C, Yuan F-J, Liu S-P. Research on promotory effect of traditional
Chinese medicine on fracture healing in cell and molecular level. Zhongguo gu shang =
China ] Orthoped Traumatol. (2017) 30:777-82. doi: 10.3969/j.issn.1003-
0034.2017.08.021

11. Zhao L, Zhang H, Li N, Chen JM, Xu H, Wang Y], et al. Network pharmacology,
a promising approach to reveal the pharmacology mechanism of Chinese medicine
formula. J Ethnopharmacol. (2023) 309:23. doi: 10.1016/j.jep.2023.116306

12. Sun W, Bai MH, Wang J, Wang B, Liu YX, Wang Q, et al. Machine learning-
assisted rapid determination for traditional Chinese Medicine Constitution. Chin Med.
(2024) 19:14. doi: 10.1186/5s13020-024-00992-0

13. Chung MC, Su LJ, Chen CL, Wu LC. y Al-assisted literature exploration of
innovative Chinese medicine formulas. Front Pharmacol. (2024) 15:1347882.
doi: 10.3389/fphar.2024.1347882

14. Liu ZY, Guo FF, Wang Y, Li C, Zhang XL, Li HL, et al. BATMAN-TCM: a
bioinformatics analysis tool for molecular mechANism of traditional chinese medicine.
Sci Rep. (2016) 6:11. doi: 10.1038/srep21146

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1684846
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1550249/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1550249/full#supplementary-material
https://doi.org/10.3390/ijms24087094
https://doi.org/10.1002/adhm.201400760
https://doi.org/10.3389/fendo.2020.543623
https://doi.org/10.1021/acsnano.3c11890
https://doi.org/10.1021/acsnano.3c11890
https://doi.org/10.1039/d3bm00544e
https://doi.org/10.1016/j.jep.2012.12.008
https://doi.org/10.3390/ijms241210370
https://doi.org/10.1016/j.intimp.2013.02.027
https://doi.org/10.3969/j.issn.1003-0034.2017.08.021
https://doi.org/10.3969/j.issn.1003-0034.2017.08.021
https://doi.org/10.1016/j.jep.2023.116306
https://doi.org/10.1186/s13020-024-00992-0
https://doi.org/10.3389/fphar.2024.1347882
https://doi.org/10.1038/srep21146
https://doi.org/10.3389/fimmu.2025.1550249
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yu et al.

15. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. (2013)
41:D991-5. doi: 10.1093/nar/gks1193

16. Ritchie ME, Phipson B, Wu D, Hu YF, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res. (2015) 43:13. doi: 10.1093/nar/gkv007

17. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics. (2010)
26:139-40. doi: 10.1093/bioinformatics/btp616

18. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression
data using empirical Bayes methods. Biostatistics. (2007) 8:118-27. doi: 10.1093/
biostatistics/kxj037

19. Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang YS, et al. sva:
Surrogate Variable Analysis. Bioconductor. (2025). doi: 10.18129/B9.bioc.sva

20. Gu ZG, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations
in multidimensional genomic data. Bioinformatics. (2016) 32:2847-9. doi: 10.1093/
bioinformatics/btw313

21. The Gene Ontology Consortium. Gene Ontology Consortium: going forward.
Nucleic Acids Res. (2015) 43:D1049-56. doi: 10.1093/nar/gkul179

22. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG:
integrating viruses and cellular organisms. Nucleic Acids Res. (2021) 49:D545-d551.
doi: 10.1093/nar/gkaa970

23. Yu GC, Wang LG, Han YY, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics-a ] Integr Biol. (2012) 16:284-7.
doi: 10.1089/0mi.2011.0118

24. Chen H, Boutros PC. VennDiagram: a package for the generation of highly-
customizable Venn and Euler diagrams in R. BMC Bioinf. (2011) 12:7. doi: 10.1186/
1471-2105-12-35

25. Friedman ], Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Softw. (2010) 33:1-22. doi: 10.18637/jss.v033.i01

26. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. Misc functions of
the department of statistics, probabilityTheory group (Formerly: E1071). TU Wien
(2015). doi: 10.32614/CRAN.package.e1071

27. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al.
STRING vl11: protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic Acids
Res. (2019) 47:D607-13. doi: 10.1093/nar/gky1131

28. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al.
The GeneMANIA prediction server: biological network integration for gene
prioritization and predicting gene function. Nucleic Acids Res. (2010) 38:W214-20.
doi: 10.1093/nar/gkq537

29. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an
open-source package for R and S plus to analyze and compare ROC curves. BMC
Bioinf. (2011) 12:8. doi: 10.1186/1471-2105-12-77

30. Newman AM, Liu CL, Green MR, Gentles AJ, Feng WG, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015) 12:453.
doi: 10.1038/nmeth.3337

31. Villanueva RAM, Chen ZJ. ggplot2: elegant graphics for data analysis, 2nd
edition. Measurement-Interdiscip Res Perspect. (2019) 17:160-7. doi: 10.1080/
15366367.2019.1565254

32. Kim S, Chen J, Cheng TJ, Gindulyte A, He J, He SQ, et al. PubChem in 2021: new
data content and improved web interfaces. Nucleic Acids Res. (2021) 49:D1388-95.
doi: 10.1093/nar/gkaa971

33. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, et al.
The protein data bank. Acta Crystallograph Sect D-Structural Biol. (2002) 58:899-907.
doi: 10.1107/s0907444902003451

Frontiers in Immunology

11

10.3389/fimmu.2025.1550249

34. Trott O, Olson AJ. Software news and update autoDock vina: improving the
speed and accuracy of docking with a new scoring function, efficient optimization, and
multithreading. ] Comput Chem. (2010) 31:455-61. doi: 10.1002/jcc.21334

35. Grunsky EC. R: a data analysis and statistical programming environment - an
emerging tool for the geosciences. Comput Geosci. (2002) 28:1219-22. doi: 10.1016/
$0098-3004(02)00034-1

36. Siddiqui JA, Partridge NC. Physiological bone remodeling: systemic regulation
and growth factor involvement. Physiol (Bethesda). (2016) 31:233-45. doi: 10.1152/
physiol.00061.2014

37. Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions.
Nat Rev Rheumatol. (2015) 11:45-54. doi: 10.1038/nrrheum.2014.164

38. Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev
Cancer. (2003) 3:859-68. doi: 10.1038/nrc1209

39. Zenz R, Eferl R, Scheinecker C, Redlich K, Smolen J, Schonthaler HB, et al.
Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease.
Arthritis Res Ther. (2008) 10:10. doi: 10.1186/ar2338

40. Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M. Transcriptional
control of osteoblast growth and differentiation. Physiol Rev. (1996) 76:593-629.
doi: 10.1152/physrev.1996.76.2.593

41. Chen ZT, Klein T, Murray RZ, Crawford R, Chang J, Wu CT, et al.
Osteoimmunomodulation for the development of advanced bone biomaterials. Mater
Today. (2016) 19:304-21. doi: 10.1016/j.mattod.2015.11.004

42. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, et al. Osteoimmunology:
interplay between the immune system and bone metabolism. Annu Rev Immunol.
(2006) 24:33-63. doi: 10.1146/annurev.immunol.24.021605.090646

43. Kovach TK, Dighe AS, Lobo PI, Cui Q. Interactions between MSCs and immune
cells: implications for bone healing. J Immunol Res. (2015) 2015:752510. doi: 10.1155/
2015/752510

44. Kurotaki D, Sasaki H, Tamura T. Transcriptional control of monocyte and
macrophage development. Int Immunol. (2017) 29:97-107. doi: 10.1093/intimm/
dxx016

45. Behre G, Whitmarsh AJ, Coghlan MP, Hoang T, Carpenter CL, Zhang DE, et al.
c-Jun is a JNK-independent coactivator of the PU.1 transcription factor. J Biol Chem.
(1999) 274:4939-46. doi: 10.1074/jbc.274.8.4939

46. Mahon OR, Browe DC, Gonzalez-Fernandez T, Pitacco P, Whelan IT, Von Euw
S, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation
and MSC osteogenesis in an IL-10 dependent manner. Biomaterials. (2020)
239:119833. doi: 10.1016/j.biomaterials.2020.119833

47. Riera-Sans L, Behrens A. Regulation of alphabeta/gammadelta T cell
development by the activator protein 1 transcription factor c-Jun. J Immunol. (2007)
178:5690-700. doi: 10.4049/jimmunol.178.9.5690

48. Yee MMF, Chin KY, Ima-Nirwana S, Wong SK. Vitamin A and bone health: A
review on current evidence. Molecules. (2021) 26:(6). doi: 10.3390/molecules26061757

49. Prior JC. Progesterone as a bone-trophic hormone. Endocr Rev. (1990) 11:386—
98. doi: 10.1210/edrv-11-2-386

50. Huang C, Ogawa R. Mechanotransduction in bone repair and regeneration.
FASEB J. (2010) 24:3625-32. doi: 10.1096/f}.10-157370

51. Fan J, Jahed V, Klavins K. Metabolomics in bone research. Metabolites. (2021)
11:(7). doi: 10.3390/metabo11070434

52. Miron RJ, Bohner M, Zhang Y, Bosshardt DD. Osteoinduction and
osteoimmunology: Emerging concepts. Periodontol 2000. (2024) 94:9-26.
doi: 10.1111/prd.12519

53. Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways
in osteoblast differentiation. J Cell Biochem. (2011) 112:3491-501. doi: 10.1002/
jcb.23287

frontiersin.org


https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.18129/B9.bioc.sva
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1186/1471-2105-12-35
https://doi.org/10.1186/1471-2105-12-35
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.32614/CRAN.package.e1071
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gkq537
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1080/15366367.2019.1565254
https://doi.org/10.1080/15366367.2019.1565254
https://doi.org/10.1093/nar/gkaa971
https://doi.org/10.1107/s0907444902003451
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1016/s0098-3004(02)00034-1
https://doi.org/10.1016/s0098-3004(02)00034-1
https://doi.org/10.1152/physiol.00061.2014
https://doi.org/10.1152/physiol.00061.2014
https://doi.org/10.1038/nrrheum.2014.164
https://doi.org/10.1038/nrc1209
https://doi.org/10.1186/ar2338
https://doi.org/10.1152/physrev.1996.76.2.593
https://doi.org/10.1016/j.mattod.2015.11.004
https://doi.org/10.1146/annurev.immunol.24.021605.090646
https://doi.org/10.1155/2015/752510
https://doi.org/10.1155/2015/752510
https://doi.org/10.1093/intimm/dxx016
https://doi.org/10.1093/intimm/dxx016
https://doi.org/10.1074/jbc.274.8.4939
https://doi.org/10.1016/j.biomaterials.2020.119833
https://doi.org/10.4049/jimmunol.178.9.5690
https://doi.org/10.3390/molecules26061757
https://doi.org/10.1210/edrv-11-2-386
https://doi.org/10.1096/fj.10-157370
https://doi.org/10.3390/metabo11070434
https://doi.org/10.1111/prd.12519
https://doi.org/10.1002/jcb.23287
https://doi.org/10.1002/jcb.23287
https://doi.org/10.3389/fimmu.2025.1550249
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Molecular mechanisms of deer antler in promoting osteogenic differentiation of human mesenchymal stem cells via JUN modulation
	1 Introduction
	2 Materials and methods
	2.1 Identification of bioactive compounds and potential targets of deer antler
	2.2 Collection and preprocessing of gene expression datasets
	2.3 Functional enrichment analysis
	2.4 Machine learning for key gene identification
	2.5 Protein-protein interaction network analysis
	2.6 Validation of gene expression and diagnostic performance
	2.7 Immune infiltration analysis
	2.8 Molecular docking analysis
	2.9 Statistical analysis

	3 Results
	3.1 Identification of bioactive compounds and potential targets in deer antler
	3.2 Identification of differentially expressed genes
	3.3 Overlapping genes and functional enrichment analysis
	3.4 Machine learning and PPI identifies JUN as a core gene
	3.5 Validation of JUN expression
	3.6 Immune infiltration analysis and JUN-immune cell correlations
	3.7 Molecular docking confirms JUN-bioactive compound interactions
	3.8 Summary of key findings

	4 Discussion
	4.1 JUN as a central regulator of osteogenic differentiation
	4.2 Immune modulation and JUN’s role in the osteogenic microenvironment
	4.3 Bioactive compounds in deer antler target JUN
	4.4 Functional enrichment and pathway analysis
	4.5 Implications for bone regeneration therapies
	4.6 Study limitations and future directions

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Correction note
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


