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Hangzhou, China, 2Zhejiang Cancer Hospital, Institute of Medical Research, Chinese Academy of
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Background: Traditional Chinese medicine and food deer antler has been

extensively used in bone regeneration, but its molecular mechanisms remain

poorly understood. Preliminary investigations suggest deer antler contains

bioactive compounds that influence osteogenic differentiation and

immune microenvironments.

Purpose: To elucidate the molecular mechanisms of deer antler in promoting

human mesenchymal stem cell (hMSC) osteogenic differentiation, focusing on

JUN downregulation and immune microenvironment modulation using

bioinformatics and molecular docking approaches.

Methods: Chemical components and targets were identified using the BATMAN-

TCM database. Differentially expressed genes (DEGs) related to osteogenic

differentiation were analyzed using Gene Expression Omnibus datasets. Gene

Ontology (GO), KEGG enrichment, LASSO regression, and SVM-RFE were applied

to identify key genes. A Protein-Protein Interaction (PPI) network was

constructed to determine core genes. JUN expression was validated using

independent datasets and ROC analysis. Immune cell infiltration was analyzed

using CIBERSORT, examining JUN’s correlation with immune cells. Molecular

docking explored JUN’s interaction with two active deer antler compounds.

Results: The study identified 62 bioactive compounds and 1051 potential targets.

DEGs analysis revealed 282 genes associated with osteogenic differentiation.

Cross-analysis identified 43 overlapping genes, enriched in “response to

mechanical stimulus” and “rheumatoid arthritis” pathways. Machine learning

approaches highlighted 7 critical genes, with JUN emerging as the core gene.

JUN levels were significantly decreased during osteogenic differentiation, showing

high diagnostic accuracy (AUCs: 0.977-1.000). Immune cell analysis revealed JUN

correlations with neutrophils, monocytes, eosinophils, M2 macrophages, and

resting CD4+ T cells. Molecular docking confirmed strong binding affinities of

JUN with Retinol (-8.1 kcal/mol) and Progesterone (-6.0 kcal/mol).
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Conclusions: The study provides a comprehensive molecular framework

demonstrating JUN as a key molecule in hMSC osteogenic differentiation.

Deer antler’s bioactive compounds, particularly Retinol and Progesterone,

potentially exert therapeutic effects through targeted JUN modulation, offering

novel insights into natural compound-mediated bone regenerative mechanisms.
KEYWORDS

deer antler, osteogenic differentiation, JUN, bioinformatics analysis, machine learning,
immune microenvironment modulation
1 Introduction

The restoration and healing of bones are essential for preserving

skeletal health, especially in the context of fractures, osteoporosis,

and other degenerative bone disorders (1, 2). Human mesenchymal

stem cells (hMSCs) are crucial for this process, as their

transformation into bone-forming cells is key to new bone tissue

development (2, 3). Although our knowledge of the cellular and

molecular basis of bone regeneration has grown, there is still a need

for more effective treatments, especially in complex scenarios where

there is a need to boost bone-forming capabilities and regulate the

immune system (4, 5).

Deer antler (Cornu Cervi Pantotrichum), a well-known

traditional Chinese medicine and food, is widely utilized for its

potential to improve bone health and facilitate repair (6, 7). This

natural remedy is abundant in bioactive components such as growth

factors, peptides, and minerals, which are thought to contribute to its

healing properties by promoting the development of bone tissue and

adjusting the immune response (6, 8, 9). However, the molecular

mechanisms underlying these effects remain poorly understood,

posing a challenge to the scientific validation and clinical

application of deer antler (10).

Recent advances in bioinformatics and high-throughput data

analysis have provided valuable tools for investigating the complex

interactions between traditional Chinese medicine and molecular

targets (11). In particular, network pharmacology and machine

learning techniques offer new opportunities to identify bioactive

compounds, potential targets, and regulatory pathways associated

with therapeutic effects (12). These computational approaches have

revolutionized our understanding of traditional medicine

mechanisms (13).

This study aims to elucidate the molecular mechanisms by

which deer antler promotes osteogenic differentiation in hMSC,

focusing on its effects on the key regulatory gene and the immune

microenvironment. Employing bioinformatics, machine learning

algorithms, immunological profiling, and molecular docking

techniques, this study investigates the mechanisms by which the

bioactive constituents of deer antler engage with molecular

signaling cascades to potentiate osteogenic processes. These

findings are expected to provide a scientific foundation for the
02
therapeutic use of deer antler in bone-related disorders and

contribute to the modernization of traditional Chinese

medicine practices.
2 Materials and methods

2.1 Identification of bioactive compounds
and potential targets of deer antler

The bioactive compounds of deer antler and their potential

molecular targets were identified using the BATMAN-TCM

database (14), a comprehensive platform for exploring traditional

Chinese medicine and its pharmacological mechanisms. Potential

targets were systematically extracted based on compound-target

interactions with confidence score cutoff≥0.86 (LR=112.67) and

adjusted p-value ≤ 0.05.
2.2 Collection and preprocessing of gene
expression datasets

Gene expression profiles associated with osteogenic

differentiation and stem cell proliferation were retrieved from the

Gene Expression Omnibus (GEO) database (15). Five datasets

(GSE80614, GSE100752, GSE12267, GSE28205 and GSE9451) were

curated based on rigorous criteria pertinent to osteogenic

differentiation and stem cell research. Subsequent data

preprocessing encompassed normalization and batch effect

correction, facilitated by the R packages limma (version 3.62.1) (16)

and edgeR (v4.4.0) (17). Principal Component Analysis (PCA) was

performed to visualize sample clusters and evaluate potential batch

effects. The Combat algorithm (18) from the sva package (v3.54.0)

(19) was applied to remove batch effects. Differentially expressed

genes (DEGs) were identified using the criteria of |log2FoldChange| >

1 and adjusted p-value < 0.05. Data visualization was accomplished

through hierarchical clustering heatmaps and volcano plots

generated using the Complex Heatmap package in R (20). Detailed

descriptions of datasets including sample size, cell source, induction

conditions, and culture environments are summarized in
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Supplementary Table S1. To address dataset heterogeneity, the

Combat algorithm from the sva package was used to perform batch

correction. The efficacy of this correction was validated using

PCA visualization.
2.3 Functional enrichment analysis

Gene Ontology (GO) (21) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) (22) pathway enrichment analyses were

conducted using the ClusterProfiler package (v4.14.3) (23) in R. The

intersection between DEGs and deer antler target genes was

identified through Venn diagram analysis using the VennDiagram

package (24). The resulting overlapping genes underwent further

functional enrichment analysis to elucidate their roles in biological

processes and molecular pathways.
2.4 Machine learning for key gene
identification

Two complementary machine learning approaches were employed

to identify key regulatory genes. Least Absolute Shrinkage and Selection

Operator (LASSO) regression was implemented using the glmnet

package (v4.1-8) (25), while Support Vector Machine Recursive

Feature Elimination (SVM-RFE) was performed using the e1071

package (v1.7-16) (26). Genes identified by both methods with

consistent selection frequencies > 80% were retained for

subsequent analyses.
2.5 Protein-protein interaction network
analysis

A PPI network was constructed using both STRING database

(v11.5) (27) and GeneMANIA database (28) with an interaction

confidence score threshold of 0.4. Core regulatory genes were

determined based on the centrality metrics from both networks.
2.6 Validation of gene expression and
diagnostic performance

Independent validation was performed using GEO datasets

GSE18043 and GSE28074. These validation datasets underwent

identical preprocessing procedures as the primary analysis.

Receiver Operating Characteristic (ROC) curves were generated

using the pROC package (v1.18.5) (29), with Area Under the Curve

(AUC) values calculated to assess diagnostic accuracy.
2.7 Immune infiltration analysis

Immunemicroenvironment analysis was conducted using the Cell-

type Identification By Estimating Relative Subsets Of RNA Transcripts

(CIBERSORT) algorithm (30) with the LM22 signature matrix. Results

were visualized using ggplot2 (v3.5.1) (31) for heatmaps and violin
Frontiers in Immunology 03
plots. Correlations between core regulatory gene expression and

immune cell populations were assessed using Pearson correlation

analysis, with significance threshold set at p < 0.05. All immune cell

estimations were performed on batch-corrected gene expression data.

Low-quality samples were excluded using LM22 matrix quality

thresholds to ensure robust immune deconvolution.
2.8 Molecular docking analysis

Molecular interactions between core regulatory gene and deer

antler bioactive compounds were investigated through molecular

docking simulations. Three-dimensional structures of bioactive

compounds were obtained from PubChem (32), while the core

regulatory gene protein crystal structure was retrieved from the

Protein Data Bank (33). Docking simulations were performed using

AutoDock Vina (v1.5.6) (34), and molecular interactions were

visualized using PyMOL (v3.1.0) (34).
2.9 Statistical analysis

All statistical analyses were performed in R (version 4.4.2) (35).

Multiple testing corrections were implemented using the Benjamini-

Hochbergmethod to control the false discovery rate (FDR). Statistical

significance was set at p < 0.05 unless otherwise specified.
3 Results

3.1 Identification of bioactive compounds
and potential targets in deer antler

Analysis through the BATMAN-TCM database (14) identified 62

bioactive compounds and 1,051 potentialmolecular targets in deer antler.
3.2 Identification of differentially expressed
genes

PCA visualization before and after batch correction confirmed

the effectiveness of the correction (Figure 1A). Analysis of GEO

datasets yielded 282 DEGs associated with osteogenic differentiation

(|log2FoldChange| > 1, adjusted p < 0.05). Hierarchical clustering

analysis revealed distinct expression patterns between osteogenic

differentiation and control groups (Figure 1B). Volcano plot

visualization highlighted 112 upregulated and 170 downregulated

genes (Figure 1C).
3.3 Overlapping genes and functional
enrichment analysis

Upon integrating the deer antler-associated targets (n=1,051) with

DEGs (n=282), we identified 43 intersecting genes, as depicted in

Figure 2A. GO analysis revealed that the biological processes “response
frontiersin.org
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to mechanical stimulus” (GO:0009612, adjusted p-value=1.14E-07) and

“muscle cell proliferation” (GO:0033002, adjusted p-value=1.99E-07)

were significantly enriched, as illustrated in Figures 2B, C. KEGG

pathway analysis indicated a pronounced enrichment in immune-

modulatory pathways, particularly “rheumatoid arthritis” (hsa05323)

and “lipid and atherosclerosis” (hsa0541), with adjusted p-values less

than 3E-6, as shown in Figures 2D, E. These findings align with recent

studies highlighting the mechano-immunological regulation of bone

regeneration (36). Specifically, the enrichment of ‘rheumatoid arthritis’

pathway highlights the immunological basis of osteogenic modulation,

given the role of T cells and monocytes in bone microenvironment

remodeling and osteoclast activity.

3.4 Machine learning and PPI identifies
JUN as a core gene

Advanced machine learning approaches identified key regulatory

genes from the 43 overlapping candidates. LASSO regression identified
Frontiers in Immunology 04
14 genes (l=1) (Figure 3A), while SVM-RFE yielded 13 genes (10-fold

cross-validation accuracy=0.824) (Figure 3B). Seven genes were

consistently identified by both methods: JUN, EGR1, ADRA1B,

RARRES1, APOD, RBP1, and CXCL12 (Figure 3C). Protein-protein

interaction (PPI) network analysis revealed JUN as the hub gene

(Figures 3D, E). The LASSO regression was tuned using 10-fold

cross-validation to select l=1. SVM-RFE was configured with a

linear kernel and optimized with 10-fold CV to achieve 82.4%

accuracy. These settings are provided in the supplementary code.
3.5 Validation of JUN expression

Independent validation using GEO datasets GSE18043 and

GSE28074 confirmed significant downregulation of JUN in

osteogenic differentiation compared to hMSC controls (adjusted

p=3.7E-08) (Figure 4A). ROC analysis demonstrated JUN’s robust

diagnostic potential, with AUC values of 0.977 (95% CI: 0.945–
FIGURE 1

Visualization of Batch Correction and Differential Gene Expression Analysis. (A) PCA visualization before and after batch correction. (B) Hierarchical
clustering analysis of GEO dataset. (C) Volcano plot.
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0.999) in the experimental dataset (Figure 4B) and 1.000 (95% CI:

1.000–1.000) in the validation dataset (Figure 4C).
3.6 Immune infiltration analysis and JUN-
immune cell correlations

CIBERSORT analysis revealed significant alterations in

immune cell proportions between osteogenic differentiation and

control groups (Figure 5A). The relationships between different

immune cell populations based on their infiltration levels

are illustrated (Figure 5B). Significant differences in immune cell
Frontiers in Immunology 05
populations were observed, as presented in Figure 5C: CD8+ T cells

(p = 0.005), monocytes (p < 0.001), M2 macrophages (p = 0.013),

neutrophils (p < 0.001), dendritic cells in both resting (p = 0.013)

and activated states (p = 0.010).

JUN expression showed significant correlations with specific

immune cell populations (Figure 5D):

Significant Positive Correlations
1. Monocytes (Figure 5E) exhibited the strongest positive

correlation (R=0.277, p=0.005), suggests potential

crosstalk between JUN signaling and monocyte

recruitment/activation during osteogenic differentiation.
FIGURE 2

Integration of Deer Antler Targets with DEGs and Enrichment Analysis. (A) Venn diagram illustrating the integration of deer antler targets. (B) Bar
diagram of GO analysis. (C) Bubble diagram of GO analysis. (D) Bar diagram of KEGG pathway analysis. (E) Bubble diagram of KEGG pathway analysis.
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FIGURE 3

Identification of Key Regulatory Genes Using Machine Learning and PPI Analysis. (A) LASSO regression. (B) SVM-RFE analysis. (C) Venn diagram
highlighting seven genes consistently identified by both methods. (D) PPI network analysis by STRING. (E) PPI network analysis by GeneMANIA.
FIGURE 4

Independent Validation of JUN as a Key Regulator in Osteogenic Differentiation. (A) Independent validation. (B) ROC analysis in the experimental
dataset. (C) ROC analysis in the validation dataset analysis.
Frontiers in Immunology frontiersin.org06
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Fron
2. Eosinophils (Figure 5F) showed notable positive

correlation (R=0.253, p=0.010), indicates possible

involvement of eosinophil-mediated processes in the

differentiation context.
Significant Negative Correlations
1. Neutrophils (Figure 5G) demonstrated the strongest

negative correlation (R=-0.444, p<0.001), inverse

relationship suggests potential suppressive effects during

osteogenic differentiation.

2. M2 Macrophages (Figure 5H) showed significant negative

correlation (R=-0.243, p=0.014), indicates a shift in

macrophage polarization during differentiation.
tiers in Immunology 07
3. Resting memory CD4+ T cells (Figure 5I) displayed

negative correlation (R=-0.236, p=0.017), suggests

potential immunomodulatory effects on T cell populations.
3.7 Molecular docking confirms JUN-
bioactive compound interactions

Molecular docking simulations demonstrated strong

interactions between the JUN protein and bioactive compounds

derived from deer antlers. Specifically, retinol exhibited a binding

energy of -8.1 kcal/mol (Figure 6A), while progesterone showed a

binding energy of -6.0 kcal/mol (Figure 6B). These binding energy
FIGURE 5

Immune Infiltration Analysis and Correlation of JUN Expression with Immune Cells. (A) Immune cell proportions between osteogenic differentiation
and control groups. (B) Relationships among immune cell populations. (C) Specific immune populations between osteogenic differentiation and
control groups. (D) JUN expression correlations with immune cell. (E) JUN’s role in monocyte. (F) JUN’s role in eosinophils. (G) JUN’s role in
neutrophils. M2 Macrophages (H) JUN’s role in M2 macrophages. (I) JUN’s role resting memory CD4+ T cells.
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values indicate stable molecular interactions, suggesting that deer

antler compounds may directly modulate JUN activity.
3.8 Summary of key findings
Fron
1. Identification of 62 bioactive compounds and 1,051

potential targets in deer antler.

2. Detection of 282 DEGs in osteogenic differentiation.

3. Discovery of 43 overlapping genes between deer antler

targets and DEGs.

4. Identification of JUN as a core regulatory gene through

machine learning and PPI.

5. Validation of JUN’s role through expression analysis and

diagnostic performance.

6. Establishment of JUN’s relationship with immune

cell populations.

7. Confirmation of molecular interactions between JUN and

deer antler compounds.
4 Discussion

Bone regeneration represents a complex biological process

orchestrated by intricate cellular signaling networks, immune system

interactions, and environmental factors (37). This study presents a

comprehensive investigation of deer antler’s molecular mechanisms in

promoting human mesenchymal stem cell (hMSC) osteogenic

differentiation. Our findings identify JUN as a pivotal regulatory

molecule and demonstrate how deer antler’s bioactive compounds

may facilitate bone regeneration through JUN-mediated pathways.
tiers in Immunology 08
4.1 JUN as a central regulator of
osteogenic differentiation

JUN, a key component of the activator protein-1 (AP-1)

transcription factor family, orchestrates various cellular processes

including proliferation, differentiation, and stress responses (38).

Our analysis revealed significant downregulation of JUN during

osteogenic differentiation, consistent with previous studies

suggesting its role as a negative regulator of osteogenesis (39).

The remarkable diagnostic performance of JUN (experimental

AUC: 0.977; validation AUC: 1.000) establishes it as a robust

biomarker for osteogenic differentiation. This downregulation

appears to be a critical checkpoint in the osteogenic pathway,

potentially facilitating the activation of pro-osteogenic

transcriptional programs (40). However, the role of JUN was

identified via bioinformatics analysis only. Functional validation

such as gene knockdown or overexpression experiments are

planned in follow-up studies to verify its causal role in osteogenesis.
4.2 Immune modulation and JUN’s role in
the osteogenic microenvironment

The significant changes in immune cell composition suggest an

active immune response during osteogenic differentiation. The

increased proportion of CD8+ T cells, monocytes, and M2

macrophages aligns with previous findings showing their

involvement in bone regeneration and remodeling (41). The

presence of both resting and activated dendritic cells suggests

ongoing immune surveillance and potential antigen presentation

during the differentiation process (42).
FIGURE 6

Molecular Docking Simulations of JUN Protein with Deer Antler-Derived Bioactive Compounds. (A) Retinol demonstrates a strong interaction with
the JUN protein. (B) Progesterone shows a stable binding interaction with JUN.
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The correlation between CD4+ T cell subsets indicate

coordinated T cell responses, while the M2 macrophage-neutrophil

correlation suggests a potentially orchestrated innate immune

response (Figure 5B). These findings provide new insights into the

immune microenvironment during osteogenic differentiation and

may have implications for bone tissue engineering and regenerative

medicine (43).

The transcription factor JUN plays crucial roles in immune

response regulation through its differential association with various

immune cell populations. Our correlation analysis reveals several

significant relationships that align with and extend previous

findings in the literature.

The positive correlation between JUN expression and

monocytes supports previous studies demonstrating JUN’s

essential role in monocyte differentiation and function (38, 44). A

striking negative correlation was observed between JUN and

neutrophils, representing the strongest relationship in our study.

This finding suggests JUN may act as a negative regulator of

neutrophil activation states. This observation is consistent with

work by Behre et al. (45). The strong negative correlation might

indicate a regulatory mechanism where JUN helps maintain

neutrophil homeostasis by preventing excessive activation. The

negative correlation with M2 macrophages provides interesting

insights into JUN’s potential role in macrophage polarization.

This relationship suggests that JUN might influence the balance

between M1 and M2 phenotypes (46). The observed correlations

with resting memory CD4+ T cells and eosinophils suggest broader

immunomodulatory roles for JUN. The negative correlation with

memory CD4+ T cells might reflect JUN’s involvement in T cell

quiescence, as supported by Riera-Sans et al. (47).

Collectively, our results imply that the JUN protein serves as a

central regulatory hub within the immune system, modulating the

equilibrium among various immune cell subsets. The contrasting

correlations observed with distinct myeloid cell types—positively

associated with monocytes and negatively with neutrophils and M2

macrophages—suggest a potential role for JUN as a molecular

determinant in the lineage commitment and functional

specification of myeloid cells.
4.3 Bioactive compounds in deer antler
target JUN

Utilizing the BATMAN-TCM database, our investigation

revealed 62 bioactive compounds and 1,051 potential targets in

deer antler. Molecular docking identified Retinol and progesterone

as key interactors with the JUN transcription factor, with binding

energies of -8.1 kcal/mol and -6.0 kcal/mol, respectively. Given

Retinol’s established role in osteogenic differentiation and its stable

interaction with JUN, it emerges as a promising candidate for

bone health therapies (48). Progesterone boosts bone health via

multiple mechanisms like regulating bone resorption and formation

(49). Its significant binding affinity with JUN implies its role in bone

regeneration. These molecular interactions establish a fundamental

groundwork for the traditional function of deer antler in bone

regeneration and its therapeutic uses.
Frontiers in Immunology 09
4.4 Functional enrichment and pathway
analysis

Functional enrichment analysis has identified a number of

crucial biological processes and pathways that are significantly

correlated with the bioactive components of deer antler. The

prominent discoveries are as follows:
1. Response to Mechanical Stimulus (GO:0009612, p < 0.001):

This indicates a function in mechanotransduction, which is

an essential process in bone remodeling (50);

2. Rheumatoid Arthritis Pathway (hsa05323, p < 0.001): It

underlines the potential immunomodulatory impacts that

might sustain bone health under inflammatory

circumstances (51);

3. Immune Modulation Pathways: This points to a

cooperative interaction between immune responses and

bone regeneration procedures (52).
These results align with current understandings of bone

physiology, emphasizing mechanical and immunological pathways

as the principal mediators of the therapeutic outcomes of deer antler.
4.5 Implications for bone regeneration
therapies

The identification of JUN as a central regulator presents several

therapeutic opportunities:
1. Development of targeted interventions focusing on JUN

modulation (53);

2. Optimization of deer antler-derived compounds for

therapeutic applications (6);

3. Integration with current stem cell-based therapies.
4.6 Study limitations and future directions

The study is subject to several limitations. Firstly, it depends on

bioinformatics findings which call for experimental verification.

Secondly, it only concentrates on particular compounds within the

intricate composition of deer antlers. Thirdly, bulk RNA sequencing

has limitations in analyzing immune cell heterogeneity. Future

endeavors should prioritize in vitro and in vivo validations,

investigate additional bioactive compounds, and employ single-

cell RNA sequencing to achieve a more nuanced understanding of

the immune microenvironment.
5 Conclusion

This study establishes JUN as a critical regulator in

hMSC osteogenic differentiation and elucidates potential
frontiersin.org
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mechanisms through which deer antler bioactive compounds may

promote bone regeneration. The findings provide a scientific

foundation for the development of novel therapeutic strategies

in bone regeneration.
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