
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Shari Pilon-Thomas,
Moffitt Cancer Center, United States

REVIEWED BY

Shengshan Xu,
Jiangmen Central Hospital, China
Jun Hu,
Tianjin Medical University Cancer Institute and
Hospital, China

*CORRESPONDENCE

Weiwei Feng

fww12066@rjh.com.cn

Ye Yuan

yyuan@ipe.ac.cn

†These authors share first authorship

RECEIVED 23 December 2024

ACCEPTED 03 February 2025
PUBLISHED 28 February 2025

CITATION

Jian F, Cai H, Chen Q, Pan X, Feng W and
Yuan Y (2025) OnmiMHC: a machine
learning solution for UCEC tumor vaccine
development through enhanced
peptide-MHC binding prediction.
Front. Immunol. 16:1550252.
doi: 10.3389/fimmu.2025.1550252

COPYRIGHT

© 2025 Jian, Cai, Chen, Pan, Feng and Yuan.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Methods

PUBLISHED 28 February 2025

DOI 10.3389/fimmu.2025.1550252
OnmiMHC: a machine learning
solution for UCEC tumor vaccine
development through enhanced
peptide-MHC binding prediction
Fangfang Jian1†, Haihua Cai2†, Qushuo Chen2, Xiaoyong Pan3,
Weiwei Feng1* and Ye Yuan4,5*

1Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China, 2DigitalGene, Ltd, Shanghai, China, 3Institute of Image Processing and
Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and
Information Processing, Ministry of Education of China, Shanghai, China, 4Key Laboratory of
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The key roles of Major Histocompatibility Complex (MHC) Class I and II

molecules in the immune system are well established. This study aims to

develop a novel machine learning framework for predicting antigen peptide

presentation by MHC Class I and II molecules. By integrating large-scale mass

spectrometry data and other relevant data types, we present a prediction model

OnmiMHC based on deep learning. We rigorously assessed its performance

using an independent test set, OnmiMHC achieves a PR-AUC score of 0.854 and

a TOP20%-PPV of 0.934 in the MHC-I task, which outperforms existingmethods.

Likewise, in the domain of MHC-II prediction, our model OnmiMHC exhibits a

PR-AUC score of 0.606 and a TOP20%-PPV of 0.690, outperforming other

baseline methods. These results demonstrate the superiority of our model

OnmiMHC in accurately predicting peptide-MHC binding affinities across both

MHC-I and MHC-II molecules. With its superior accuracy and predictive

capability, our model not only excels in general predictive tasks but also

achieves significant results in the prediction of neoantigens for specific cancer

types. Particularly for Uterine Corpus Endometrial Carcinoma (UCEC), our model

has successfully predicted neoantigens with a high binding probability to

common human alleles. This discovery is of great significance for the

development of personalized tumor vaccines targeting UCEC.
KEYWORDS
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Introduction

The MHC is a crucial component of the immune system, with

MHC-I and MHC-II molecules each playing a key role in antigen

presentation and specific immune responses. MHC-I molecules are

mainly present on the surface of all nucleated cells and are responsible

for presenting antigen peptides produced within the cell to CD8+

T cells, while MHC-II molecules are widely present on the surface of

immune cells in humans and other vertebrates, such as antigen-

presenting cells, which are responsible for processing foreign antigens

into peptides and presenting them to CD4+ T cells (1–5).

For investigating the binding of MHC-I and MHC-II molecules

to peptides, traditional biochemical experimental methods are

accurate but time-consuming and labor-intensive, and there are

certain technical limitations. With the development of machine

learning technology, prediction methods based on machine learning

have gradually become mainstream (6, 7). These methods use large

volume of known data sets to train models to predict the possibility

of new peptides binding to MHC molecules (8–12).

At present, various computational methods have been

developed to predict the binding of peptides to MHC molecules,

which is a crucial step in understanding the immune response.

These methods can be broadly categorized into one group relying

on binding affinity (BA) data and the other group utilizing mass

spectrometry (MS) experimental data. For instance, NetMHCpan

and NetMHCIIpan are well-established tools that have been

recently updated to versions 4.1 and 4.0, respectively. These tools

employ machine learning strategies to integrate different types of

training data, including BA andMS-derived eluted ligand (EL) data,

resulting in state-of-the-art performance (13, 14). Other notable

approaches include MHCflurry, an open-source tool that predicts

Class I MHC binding affinity and has been recognized for its

accuracy and speed. Additionally, there are methods like

MHCnuggets, which apply deep learning to predict neoantigens

presented by MHC Class I and II molecules (15, 16).

Despite the advancements, these methods still have room for

improvement, particularly in terms of their generalizability in

handling the complexity of the antigen presentation. Some models

may struggle with the inherent biases present in the training data, such

as the overrepresentation of certain peptide features or the

underrepresentation of others due to experimental limitations.

To address these challenges and further enhance the prediction

accuracy, we proposed a novel deep learning approach, OnmiMHC.

Our method integrates BA data with MS experimental data,

leveraging the strengths of both to provide a more comprehensive

and robust prediction model. By employing advanced neural

network architectures and training strategies, OnmiMHC aims to

improve upon the current state-of-the-art by offering higher

accuracy, broader applicability, and better generalization across

diverse MHC-peptide interactions. In this study, we first used BA

data to construct a deep learning pre-training model, which enabled

the model to initially imitate the interaction rules between MHC

molecules and peptide segments through the pre-training process.

Then, we used the pre-trained model to annotate and filter the data

detected by MS experiments, resulting in a high-quality dataset,

which greatly expanded their training set. Through independent
Frontiers in Immunology 02
validation and comparative experiments with multiple other

baseline methods, we demonstrated significant improvements in

prediction accuracy and performance of OnmiMHC.
Results

BA-based multimodal data preprocessing
and integration

Initially, we trained a regression model using the Binding

Affinity (BA) dataset (14), which encompasses affinity data

obtained from competitive binding experiments between peptides

and specific allele proteins, scored by IC50 values. Subsequently,

leveraging the trained regression model, we screened the Mass

Spectrometry-Isolated Ligands-Single Allele (MS ELs-SA) and

Mass Spectrometry-Isolated Ligands-Multiple Alleles (MS ELs-

MA) datasets to eliminate potential outliers. These datasets were

derived from experiments involving the dissociation process of

ligands with MHC molecules. These experiments employ acidic

solutions or alternative methods to dissociate antigenic peptide

segments from MHC molecules, followed by identification and

analysis via mass spectrometry or other techniques to obtain

peptide sequences. Thus, these datasets solely cover positive

samples capable of binding. While most experiments randomly

select peptide sequences from the human body as negative samples,

such practices lack rigor. Therefore, we utilized a pre-trained model

to filter these negative samples, better representing non-binding

data. For the MS ELs-MA dataset, we utilized a pre-trained model to

predict each sample, labeling the allele protein with the highest

score, thereby transforming multi-allele protein binding data into a

single allele protein dataset. Through this process, we effectively

integrated data from multiple experimental types, subsequently

training models to enhance reliability and accuracy (refer

to Figure 1A).
Model design of OnmiMHC

Predicting the binding between MHC molecules and peptide

segments is crucial for understanding immune responses. However,

due to the complex interactions and high diversity between peptide

segments and MHC molecules, it is technically challenging (1). In

this study, we present a model named OnmiMHC to predict

whether alleles and peptides can bind based on representations

learned from the sequences of peptides and alleles.

The OmniMHC model adopts a strategy that integrates

multimodal feature fusion, combining two-dimensional

convolutional kernels with one-dimensional ones. After

convolution, the features enter a BiLSTM for sequence

information extraction, and Convolutional Block Attention

Module2(CBAM) is introduced to attend to the features. Finally,

various features and Blocks Substitution Matrix 62(Blosum62) (17)

encoding are merged to capture the relationship between MHC

molecules and peptide sequences. This model comprises the
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following components: (i) a two-dimensional convolutional neural

network for extracting high-level abstract features from sequences

of MHC molecules and peptides, (ii) a Convolutional Neural

Network - Bidirectional Long Short-Term Memory(CNN-

BiLSTM) (18) neural network for extracting binding sequences of

MHC molecules and peptides, (iii) a CBAM module for attention

on features, and (iv) lastly, through MLP, various features undergo
Frontiers in Immunology 03
dimensionality reduction to predict the binding between peptides

and MHC molecules.

This design enables OmniMHC to comprehensively consider

features from multiple perspectives and leverage the capabilities of

neural network models to learn the binding probability between

MHCmolecules and peptide segments (Figure 1B). Through feature

fusion, the model demonstrates superior performance.
FIGURE 1

Model design and data preprocessing based on iterative methods. (A) We trained a regression model using Binding Affinity (BA) data from
competitive binding experiments, then used this model to screen and refine Mass Spectrometry-Isolated Ligands datasets by eliminating outliers and
improving the representation of non-binding samples, ultimately enhancing the reliability and accuracy of our model. (B) The OmniMHC model
integrates 2D and 1D convolutional kernels, BiLSTM, CBAM, and Blosum62 encoding with concatenation to accurately predict MHC-peptide binding.
This comprehensive design takes into account multiple features, thereby enhancing predictive performance.
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Model performance and comparison with
other methods

To mitigate overfitting during the model training process, we

adopted a 5-fold cross-validation method. This approach divides

the data into five parts, and in each training iteration, four parts are

used for training while the remaining one part is used for testing.

This yields five models, and their predictions are averaged to obtain

the final results. To ensure the rigorousness of the comparison

experiments, we selected only models that provided complete

training code for our experiments to ensure the consistent

training and test set splits. Additionally, we performed online

comparisons with multiple models on the IEBD platform.

For the MHC-I task, we utilized the public dataset of

NetMHCpan-4.1, divided into five BA and five EL datasets. We

performed five rounds of multimodal data preprocessing and

integration based on BA., which includes 95 cell lines expressing

individual HLA alleles created via stable transfection techniques

and over 186,464 peptides binding to these HLA molecules (19).

For the MHC-II task, we employed the public dataset of

NetMHCIIpan-4.1, also divided into five BA and five EL datasets.

Similarly, we conducted five rounds of multimodal data

preprocessing and integration based on BA, containing 81,422

unique HLA-DR401 peptides and 7,692 unique HLA-DR402

peptides identified through high-throughput screening methods

based on yeast display technology (1, 20).

Finally, we conducted comparative experiments on the MHC-I

and MHC-II tasks using the automated server benchmark datasets

from the IEDB analysis resource (21, 22). These automated server

benchmarks provide performance rankings for MHC-I and MHC-

II servers and are regularly reassessed to stay updated. Each week,

the latest version of IEDB automatically checks for sufficiently large

datasets to add to these benchmarks, including BA datasets.

We used data from November 2022 to April 2024, which is

relatively new and does not overlap with the training set. For the BA

dataset in the test set, we classified samples with IC50 less than 500

nM as positive samples (high affinity) and the rest as negative

samples, forming a classification test set.

OmniMHC achieves an area under precision-recall curve(PR-

AUC) score of 0.854 and a TOP20%-PPV of 0.934 in the MHC-I

task. These scores notably surpass those established models such as

NetMHCpan4.1EL (14) (PR-AUC=0.729, TOP20%-PPV=0.670),

mhcfurry-1.2.0 (15) (PR-AUC=0.600, TOP20%-PPV=0.593), and

PickPocket (23) (PR-AUC=0.625, TOP20%-PPV=0.566)

(Supplementary File 1).

Similarly, in the domain of MHC-II prediction, our model

OmniMHC exhibited a PR-AUC score of 0.606 and a TOP20%-

PPV of 0.690, outperforming both NetMHCIpan-4.3EL (PR-

AUC=0.543, TOP20%-PPV=0.592) and NetMHCIpan-4.3BA

(PR-AUC=0.246, TOP20%-PPV=0.105). These results underscore

the superiority of our model in accurately predicting peptide-MHC

binding affinities across both MHC-I and MHC-II molecules, as

detailed in Figures 2A–D (Supplementary File 1).

Additionally, we conducted comparative experiments for the

MHC-I task using CcBHLA (24) and xTrimoPGLM (25).

xTrimoPGLM is a large language model with 100 billion
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parameters, and its downstream tasks include peptide-HLA/MHC

affinity prediction. In this comparison experiment, we used the

same training set (575K), validation set (144K), and test set (171K)

as CcBHLA and xTrimoPGLM. The test results were measured

using Receiver Operating Characteristic - Area Under the Curve

(ROC-AUC), OmniMHC yields an ROC-AUC of 98.35%, higher

than 95.00% of CcBHLA scoring, and 96.68 of xTrimoPGLM,

indicating OmniMHC outperforms the baseline methods.
Application of OnmiMHC in TCGA
tumor samples

We employed the dataset obtained by Xia et al. in their study,

specifically utilizing Supplementary Table S7 provided in their

Supplementary Materials (26). Xia et al.’s data were obtained

through the integration of clinical samples, bioinformatics tools,

and experimental validation. Specifically, they initially gathered

genomic information of tumor samples and patients’ HLA allele

genotypes from various sources, including clinical collaboration

projects and public databases such as The Cancer Genome Atlas

(TCGA). Subsequently, they used a series of bioinformatics

algorithms to predict potential novel antigenic peptide segments

and experimentally validated the MHC binding capabilities of these

peptides through IC50 binding affinity assays and cell

stability experiments.

We tested the OnmiMHC model on this dataset and conducted

comparative experiments with other models. Here, we validated the

performance using the Pearson correlation coefficient, and the

results demonstrated that OnmiMHC exhibited the highest

correlation coefficient of 0.78.as detailed in Figure 3

(Supplementary File 3). This was tested on an independent test

set, which is separated from the training dataset. As shown in

Figure 3, different distributions of predicted values across different

BA values can be noted. Particularly notable is the concentration of

scatter points for the OnmiMHC model compared to all other

models, indicating its superior predictive capability. This result

further confirms the significant application potential of the

OnmiMHC model in the development of tumor vaccines. By

accurately predicting the binding of MHC molecules with tumor-

specific antigens, OnmiMHC can facilitate the design and

optimization of personalized tumor vaccines, enhancing the

specificity and effectiveness of treatment. The model enables rapid

screening of potential immunogens, accelerating the discovery and

development of tumor immunogens.
Application of OnmiMHC in EpiScan data

The EpiScan (30) technology represents a significant

breakthrough in MHC class I ligand identification through an

innovative screening process and advanced cell engineering. This

technique utilizes an initial pool of over 100,000 synthetic peptides

and specific cell lines modified with CRISPR-Cas9 technology (31,

32) to eliminate the interference of endogenous peptides, allowing

for the exclusive expression of exogenous peptides. These
frontiersin.org
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exogenous peptides are transfected into cells via lentiviral vectors

and subjected to high-throughput screening using flow cytometry.

Subsequently, peptide identification is carried out through genomic

DNA extraction, PCR amplification, and next-generation

sequencing (33), resulting in a substantial dataset of peptide-allele

binding interactions.

The EpiScan dataset consists of four alleles: B0801 (3,262

samples), B5701 (2,121 samples), A0301 (7,277 samples), and

A0201 (19,205 samples). Ensuring no overlap between the test

and training sets, we conducted comparative experiments using

NetMHC-4.0, NetMHCpan-4.1, PickPocket-1.1, and HLA-Thena

(19) against OnmiMHC. Given the relatively balanced ratio of

positive to negative samples in this dataset, we employed PR-

AUC and ROC-AUC metrics for more precise model

performance evaluation. The results indicated that OnmiMHC

performed exceptionally well for the A0201 (Figure 4A), B0801

(Figure 4B), A0301 (Figure 4C), B5701 (Figure 4D) alleles: for

B5701, PR-AUC=0.940 and ROC-AUC=0.975; for A0301, PR-
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AUC=0.931 and ROC-AUC=0.939; and for A0201, PR-

AUC=0.939 and ROC-AUC=0.907 (Figure 4A). Overall, across

these four allele datasets, OnmiMHC achieved PR-AUC=0.931

and ROC-AUC=0 .920 , ou tper fo rming NetMHC-4 .0 ,

NetMHCpan-4.1, PickPocket-1.1, and HLA-Thena, establishing

itself as the optimal model (Figures 4E, F) (Supplementary File 4).
Application of OnmiMHC in uterine corpus
endometrial carcinoma cancer tumor

We are conducting Cohort Frequency Peptide Analysis using

the TCGA Uterine Corpus Endometrial Carcinoma(UCEC) dataset

(34). Specifically, we utilize peripheral blood DNA-seq, tumor tissue

DNA-seq, and RNA-seq data. Initially, we align and detect

mutations in sequences using Burrows-Wheeler Aligner (BWA)

(35) in conjunction with Samtools (36, 37). Subsequently, we

annotate mutations using the Genome Analysis Toolkit (GATK)
FIGURE 2

Model performance comparison. (A) MHC-I PR-AUC: The PR-AUC comparison for MHC-I tasks between OmniMHC and other models. (B) MHC-II
PR-AUC: The PR-AUC comparison for MHC-II tasks between OmniMHC and other models. (C) MHC-I TOP20%-PPV: The TOP20%-PPV comparison
for MHC-I tasks between OmniMHC and other models. (D) MHC-II TOP20%-PPV: The TOP20%-PPV comparison for MHC-II tasks between
OmniMHC and other models.
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(38), including tools such as Variant Effect Predictor (VEP) (39) or

ANNOVAR (40). The analysis identified the following mutation

types: Silent, Missense Mutation, Splice Region, Frame Shift Del,

Nonsense Mutation, In Frame Del, 3’ Flank, RNA, Frame Shift Ins,

Intron, Splice Site, 5’ Flank, Nonstop Mutation, and Translation

Start Site. From these, we selected Missense Mutation, Nonsense

Mutation, Frame Shift Del, Frame Shift Ins, Splice Site, Intron, and

Nonstop Mutation for further analysis.

The data preprocessing steps included: 1. Removing peptides

with missing values. 2. Eliminating records where the post-

mutation peptide sequence remained unchanged. 3. Deduplicating

the data. These steps ensured the accuracy and reliability of the
Frontiers in Immunology 06
analysis (Figure 5A). Next, we used sliding windows of lengths 8, 9,

10, and 11 to extract candidate peptides containing mutation sites.

This resulted in datasets of 3,027,392 peptides of length 8, 3,409,819

peptides of length 9, 3,790,965 peptides of length 10, and 4,171,062

peptides of length 11 (Figure 5B). We combined these peptides with

20 common human alleles and used OnmiMHC for prediction.

Finally, we identified high-scoring peptides by setting appropriate

thresholds. These peptides can be designed into highly translatable

mRNA sequences, which are then delivered into the human body

via mRNA delivery systems. Since the candidate peptides are

specific, this could be used to develop a targeted cancer vaccine

(Figure 5C).
FIGURE 3

Description of scatter plot for the relationship between BA values of various models and their corresponding predicted values. (A) represents OnmiMHC,
(B) represents MHCflurry (15), (C) represents MHCnuggets (16), (D) represents NetMHC (27), (E) represents NetMHCcons (13), (F) represents NetMHCpan
(14), (G) represents PickPocket (23), (H) represents SMM (28), and (I) represents SMMPMBEC (29). x-axes is “Measured BA”, y-axes is “Predicted BA”.
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Finally, we used the average scores from 20 alleles to select the

high-scoring peptides, applying three thresholds of 0.2, 0.5, and 0.7.

The choice of these thresholds is based on a trade-off between

precision and recall. A threshold of 0.7 provides a higher precision

but leads to a decrease in recall, whereas a threshold of 0.2 results in

a higher recall at the cost of precision. The threshold of 0.5 strikes a

balance between the two, offering a reasonable tradeoff. Ultimately,

we performed motif analysis using seq2logo (41) on peptides with

average scores above the 0.5 and 0.7 thresholds. The results showed

that the fourth residue P and the terminal residues L and F had

higher bits in the high-scoring peptides.
Frontiers in Immunology 07
Model ablation studies on OnmiMHC

To evaluate the contribution of different components in the

OnmiMHC model, we performed ablation studies on the different

modules in OnmiMHC. Specifically, we assessed the impact of

removing the CBAM attention mechanism, the 1DCNN_BiLSTM

module, and the BLOSUM encoding individually. The performance

of the ablated models was compared using PR-AUC and ROC-AUC

metrics. We used the downstream task dataset of the MHC-I task

from xTrimoPGLM. The model ablation experiments were

conducted on the same training, testing, and validation sets.
FIGURE 4

Application of OnmiMHC to EpiScan data with comparison of OnmiMHC with other models for each allele. (A) for A0201, (B) for A0301, (C) for
B0801, and (D) for B5701. Each subfigure includes a comparison of OnmiMHC with other models using PR-AUC and ROC-AUC metrics. (E) shows
PR-AUC results for various models, and (F) shows ROC-AUC results for the same models. The overall efficacy of OnmiMHC in predicting peptide-
allele binding was evaluated by comparing results from multiple models across all alleles.
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Fron
• No CBAM: This variant excludes the CBAM attention

mechanism while retaining the 1DCNN_BiLSTM module

and 2DCNN and blosum encoding.

• No 1DCNN_BiLSTM: This variant excludes the

1DCNN_BiLSTM module while retaining the CBAM

attention mechanism and 2DCNN and blosum encoding.

• No BLOSUM Encoding: This variant excludes the blosum

encoding while retaining the CBAM attention mechanism

and 2DCNN and the 1DCNN_BiLSTM module.
As shown in Figure 6, both the PR-AUC and ROC-AUC values

are plotted. The results demonstrate that each component

significantly contributes to the model’s predictive accuracy, as the

removal of any single module leads to a noticeable decline in

performance. To further investigate the contribution of each

component, the CBAM mechanism plays a crucial role in

capturing long-range dependencies and attention distribution

across sequences, which is especially beneficial for identifying key

features in complex sequence patterns. The 1DCNN_BiLSTM

module is essential for feature extraction and learning temporal

patterns, effectively capturing both local patterns in amino acid

sequences and long-term dependencies. The BLOSUM encoding

provides richer biological information about amino acid

substitutions, which is crucial for the model’s performance when

handling protein sequences.
Discussion

In this study, we introduced the OnmiMHC model, a novel

machine learning framework for predicting antigen peptide

presentation by MHC Class I and II molecules. Our model

integrates large-scale mass spectrometry data with other relevant

data types, showcasing superior performance in both MHC-I and

MHC-II prediction tasks. This discussion will focus on the

implications, strengths, limitations, and future directions of

our research.

The ability to accurately predict peptide-MHC binding is

crucial for understanding immune responses and identifying

potential immunogenic peptides. The superior performance of

OnmiMHC, demonstrated through high PR-AUC and ROC-AUC

scores, offers significant advancements in this area. By

outperforming established models such as NetMHCpan-4.1 and

NetMHCIIpan-4.3, OnmiMHC provides a more reliable tool for

predicting peptide presentation, which is essential for the

development of personalized immunotherapies and tumor

vaccines. The improved accuracy and predictive capabilities of

OnmiMHC can expedite the screening and evaluation of potential

vaccine candidates, thereby reducing the time and resources

required for tumor vaccine development.

One of the key strengths of OnmiMHC is its innovative design

that integrates multimodal feature fusion and combines two-

dimensional convolutional kernels with one-dimensional ones.

This approach, along with the use of a BiLSTM for sequence

information extraction and CBAM for feature attention, allows

the model to comprehensively consider features from multiple
tiers in Immunology 08
perspectives. Additionally, the iterative data preprocessing

method enhances the quality and robustness of the training data,

leading to improved model performance. Our comparative

experiments highlight OnmiMHC’s ability to generalize well

across different datasets and alleles, reinforcing its potential utility

in practical applications.

Despite the advancements made by OnmiMHC, several

limitations need to be acknowledged. First, while our model

showed a high predictive accuracy for MHC-II tasks, which is

better than existing models, is still lower compared to MHC-I tasks.

This indicates a need for further refinement in handling the

complexities associated with MHC-II molecules. The difference in

task complexity is one contributing factor: the peptide binding

length for MHC-I typically ranges from 8 to 10 amino acids,

whereas for MHC-II, it usually ranges from 13 to 17 amino acids.

This results in a significantly larger feature space for MHC-II tasks,

thereby increasing the complexity of the task. Furthermore, the

differences in training data size also play a role. Currently, the

publicly available data for MHC-I is far more abundant than for

MHC-II. As such, there remains substantial room for improvement

in MHC-II tasks using the OnmiMHC, especially as more MHC-II

sample data becomes available. We expect the model’s performance

to further improve with the availability of larger datasets. Second,

the iterative data preprocessing approach, although effective, may

inadvertently exclude relevant peptide sequences, potentially

affecting the model’s comprehensiveness.

Future research should aim to enhance the OnmiMHC model

by integrating additional data types such as structural information

and peptide-MHC binding kinetics. The interaction between MHC

molecules and peptides depends not only on the peptide sequence

but also on the structural interplay between the peptide and MHC.

Introducing three-dimensional structural data for both MHC

molecules and peptides, derived from protein structure prediction

tools like AlphaFold or experimental data from protein databases

like PDB, could improve the model. By combining this structural

information with existing sequence data, the model could more

accurately predict MHC-peptide binding potential. Furthermore,

many current models focus on the static state of peptide-MHC

binding, neglecting the dynamic nature of the interactions.

Incorporating peptide-MHC binding kinetics data, such as

association and dissociation rate constants, could allow the model

to better reflect the temporal aspects of peptide-MHC interactions,

which are crucial in certain clinical applications where binding

kinetics may be more significant than static binding strength.

To improve the model’s ability to handle a broader range of

peptide sequences, especially those with mutations or

modifications, future research could introduce more diverse

peptide sequences. Advanced sequence representation methods,

such as self-attention mechanisms from Transformer

architectures, could be applied to capture more complex binding

patterns and enhance the model’s generalization capacity.

Additionally, refining the representation of negative samples,

particularly in MHC-II tasks, is essential. Current methods often

generate negative samples randomly, which may not represent the

true distribution of negative samples in biological systems. More

diverse methods for generating negative samples, such as using
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peptide-MHC interaction models or analyzing unbound peptides in

experimental datasets, could improve the model’s accuracy in

handling negative samples. Finally, the application of transfer

learning techniques could be a promising direction. By

pretraining the model on a large peptide-MHC binding dataset

and then fine-tuning it on related tasks, such as MHC-II tasks, the

model could adapt more effectively to new datasets and

experimental conditions. Additionally, cross-domain transfer
Frontiers in Immunology 09
learning could enable the model to transfer knowledge learned

from MHC-I tasks to MHC-II tasks or from peptide prediction

models to other protein-molecule interaction tasks, accelerating the

model training and enhancing its generalization ability across

various biomedical domains.

Another promising direction is the application of OnmiMHC in

real-life scenarios, such as clinical trials of personalized

immunotherapy. In the aforementioned description of the
FIGURE 5

OnmiMHC application in UCEC. (A) Process flowchart for generating data, preprocessing, and predicting candidate neoantigens using OnmiMHC.
(B) The number of candidate peptides and high-scoring peptides predicted by OnmiMHC. (C) Seq2logo analysis of high-scoring peptides identified
above thresholds 0.5 and 0.7.
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Application of OnmiMHC in UCEC, we utilized OnmiMHC to

identify high-binding probability candidate peptide segments

associated with UCEC tumors. These peptides can serve as new

antigen data to collaborate with experimental biologists and clinical

physicians to validate the model’s predictions in practical settings

and optimize its performance based on real-world feedback. In

readl-world application, the tumor microenvironment plays a

crucial role in the tumor development and immune responses,

and it is particularly relevant in the context of tumor vaccine

development (42, 43).

The OnmiMHC model represents a significant step forward in

the prediction of peptide-MHC binding, offering improved

accuracy and predictive capabilities over existing models. By

addressing the current challenges in MHC-peptide binding

prediction, OnmiMHC provides valuable insights and tools for

understanding immune responses, identifying immunogenic

peptides, and advancing personalized immunotherapy. Continued

refinement and application of this model hold great promise for

enhancing the efficiency and effectiveness of tumor vaccine

development and other immunotherapeutic strategies.
Materials and methods

OnmiMHC model architecture

OnmiMHC employs two encoding methods: BLOSUM62 (17)

and one-hot encoding. BLOSUM62 is a protein sequence alignment

algorithm widely used in bioinformatics and computational biology

(44–46). It converts amino acids in protein sequences into

representative numbers based on their chemical properties and

evolutionary similarities, allowing neural networks to better capture

complex biological patterns. By considering amino acid substitution
Frontiers in Immunology 10
scores, BLOSUM62 provides a more biologically meaningful

encoding, which is particularly advantageous when dealing with

protein sequence alignment.

In contrast, one-hot encoding represents each amino acid with

an N-dimensional vector, where N is the total number of amino

acids. In this vector, only one element is set to 1, and the remaining

elements are set to 0, with the position of the 1 corresponding to the

current amino acid. This encoding method is simple and intuitive,

easy to implement, and ensures that each amino acid is treated as a

distinct entity. While one-hot encoding does not capture

evolutionary or chemical similarities, it allows the model to easily

learn the structural features of each individual amino acid, making

it a useful tool for straightforward sequence analysis tasks.

Comparing the two methods, BLOSUM62 is generally more

informative as it accounts for amino acid substitutions, offering a

richer representation that may be crucial for capturing deeper

biological relationships. On the other hand, one-hot encoding is

computationally less demanding and may be preferable when

simplicity or computational efficiency is a priority. By using both

encoding strategies in OnmiMHC, we combine the advantages of

both approaches, allowing the model to leverage both detailed

biological context and simple, interpretable representations of

amino acids.

Once the sequence encoding is complete, OnmiMHC uses two

different types of neural network models, 1D-CNN-LSTM and 2D-

CNN, to decode and extract temporal and spatial local features.

After convolution, the CBAM attention mechanism is applied to re-

attend to the features (47, 48). 1D-CNN-LSTM is a hybrid model

that combines a 1D convolutional neural network and a long short-

term memory network (49). It can capture both the temporal

information and local features of sequences. By applying 1D

convolution to the sequence, the model detects local patterns,

while the LSTM captures long-term dependencies within the
FIGURE 6

OnmiMHC ablation study results. This figure presents the performance comparison of the OnmiMHC model and its ablated variants in terms of AUC
metrics. The blue line represents the baseline OnmiMHC model, incorporating all components. The orange line shows the performance without the
CBAM attention mechanism. The green line indicates the performance without the 1DCNN_BiLSTM module. The red line represents the
performance without BLOSUM encoding.
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sequence. In this context, 1D-CNN-LSTM transforms the encoded

sequence into temporal features, providing a better understanding

of the sequence’s context.

1D convolution is represented as:

yi = s (om−1
j=0 WjXi+j+b) (1)

where yi is the i-th element of the output, s is the activation

function,Wj is the weight of the j-th convolution kernel, Xi+j is the i

+j-th element of the input sequence, and b is the bias.

LSTM is represented as:

f t=s (Wf ·½ht−1,xt �+bf )

it=s (Wi·½ht−1,xt �+bi)

             ot=s (Wo·½ht−1,xt �+bo) (2)

~Ct = tanh(Wc·½ht−1,xt �+bc)

Ct=f t ·Ct−1+it ·~Ct

ht=ot · tanh(Ct)

where f t is the forget gate, it is the input gate, ot is the output
gate, ~Ct is the candidate unit state, Ct is the unit state, and ht is
the output.

2D-CNN is a commonly used convolutional neural network

designed to process image data with a planar structure (50, 51).

OnmiMHC rearranges sequences into a 2D image matrix format to

utilize 2D-CNN for extracting planar local features from the

sequences. 2D-CNN can detect planar patterns within the

sequences, thereby extracting their planar local features.

The 2D convolutional neural network is represented as:

yi,j=s (oK
k=1oL

l=1wk,l·xi+k,j+l+b) (3)

where yi,j is the i,jth element of the output, s is the activation

function, wkl is the weight of the k,lth convolution kernel, xi+k,j+l is
the i+k,j+lthe lement of the input matrix, K and L are the sizes of the

convolution kernel, and b is the bias.

By using 2D-CNN, OnmiMHC can obtain different local feature

representations compared to 1D-CNN-LSTM. By combining these

two types of neural network models, OnmiMHC can capture both

temporal and planar local features of the sequences, resulting in a

more comprehensive sequence feature representation.

CBAM (Convolutional Block Attention Module) (52) is an

attention mechanism for convolutional neural networks. It

enhances the network’s feature representation capability by

introducing channel attention and spatial attention, thereby

improving performance in tasks like image recognition and object

detection. CBAM can be inserted into existing convolutional neural

networks, and it improves the model’s performance by learning

important feature positions and feature channels. CBAM consists of

two main modules: the Channel Attention Module and the Spatial

Attention Module.
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The Channel Attention Module obtains attention weights for

the channel dimension by applying global average pooling and

global max pooling to the input feature map. These weights are then

applied to the input feature map to highlight important

feature channels.

The channel attention weights are calculated by global average

pooling and global maximum pooling:

          Mc(F)=s (MLP(AvgPool(F)) +MLP(MaxPool(F))) (4)

where Mc(F) is the channel attention weights is the sigmoid

activation function, MLP is a multi-layer perceptron,AvgPool and

MaxPool are global average pooling and global maximum

pooling respectively.

The Spatial Attention Module obtains attention weights for the

spatial dimension by applying average pooling and max pooling

along the channel dimension of the input feature map. These

weights are then applied to the input feature map to highlight

important spatial locations.

The spatial attention weights are calculated by average pooling

and max pooling in the channel dimension:

          Ms(F)=s (Conv(½AvgPool(F);MaxPool(F)�)) (5)

where Ms(F) is the spatial attention weight, s is the sigmoid

activation function, Conv is the convolution operation,[;];

represents the concatenation of feature maps,AvgPool and

MaxPool are global average pooling and global maximum

pooling respectively.

The feature map after combining these two modules is

expressed as:

F 0=Ms(F)*F (6)

F00=Ms(F
0)*F

0 (7)

where F0 is the feature map after applying channel attention, F00

is the feature map after applying spatial attention.

By combining the Channel Attention Module and the Spatial

Attention Module, CBAM effectively enhances the network’s

feature representation capability, thereby improving the model’s

performance in various computer vision tasks (Supplementary

Method 1).

In this study, OnmiMHC first concatenates peptide sequences

with MHC molecule sequences and performs one-hot encoding.

Then, OnmiMHC inputs these encoded features into both 1D-

CNN-LSTM and 2D-CNN models for decoding. Additionally,

OnmiMHC separately performs one-hot encoding and

BLOSUM62 encoding for the peptide sequences. Finally,

OnmiMHC merges all encoding and decoding features, and

reduces dimensionality through fully connected layers to predict

the binding affinity or probability between peptides and MHC.

Specifically, binding affinity prediction is utilized for pre-training

strategy. First, the OmniMHC pre-trained model is trained using

the BA dataset. Next, the pre-trained model is used to clean the data

in the EL dataset. Finally, the optimized datasets are combined to

train the final OmniMHC model.
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As for the training parameters, the batch size of the MHC-I

model is 40,000, while MHC-II model’s batch size is 20,000. The

learning rate for both models is set to 0.0001, and they use a

CosineAnnealingLR scheduler with T_max=30. The optimizer is

AdamW, and we train the models for 30 epochs.
Model pre-training using the BA dataset.

In this step, we curated the BA dataset. For MHC-I tasks, we

collected five-fold BA datasets from NetMHCpan-4.1. For MHC-II

tasks, we gathered five-fold BA datasets from NetMHCIIpan-4.0.

We utilized the OnmiMHC model architecture for regression

training on these datasets using the Mean Squared Error (MSE)

loss function, where the training labels are score values. The specific

representation is as follows: first, take the natural logarithm of the

IC50 value, then divide this logarithmic value by the natural

logarithm of 50000, and finally subtract this ratio from 1.

The specific formula is:

                 score=1−(
ln(IC50)
ln(50000)

) (8)
Data preprocessing and label generation

In the second step, we utilize the OnmiMHC pre-training

model obtained from the first step to preprocess Mass

Spectrometry Eluted Ligand Single Allele (MS ELs-SA) and Mass

Spectrometry Eluted Ligand Multi Alleles (MS ELs-MA) datasets.

This preprocessing aims to enhance data quality and representation

capability. Specifically, the OnmiMHC pre-training model predicts

peptide-MHC binding and outputs binding affinity scores.

For the MS ELs-MA dataset, the OnmiMHC pre-training model

predicts each combination sample and assigns the allele with the

highest score as its label, thereby converting the multi-allele binding

data into a single-allele dataset, MS ELs-SA. It’s noteworthy that

both MS ELs-SA and MS ELs-MA datasets originate from

experiments involving peptide elution from MHC molecules.

Such experiments involve eluting antigenic peptides from MHC

molecules using acidic solutions or other methods, followed by

identification and analysis of the peptides via mass spectrometry or

other techniques to obtain peptide sequences. Consequently, these

experimental methods only yield positive samples capable of

binding. Negative samples are typically randomly selected peptide

sequences from the human body, although this practice lacks rigor.

To address this issue, the OnmiMHC pre-training model scores

these negative samples and removes those with higher binding

scores, ensuring more accurate representation of non-

binding scenarios.

Finally, OnmiMHC merges the preprocessed MS ELs-SA, MS

ELs-MA, and BA datasets to form a high-quality, large-scale dataset

by maintaining the original data splits. This dataset not only

contains information related to peptide-MHC binding events but

also encompasses information relevant to previous steps in the

biological antigen presentation pathway.
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Integration of all datasets to train the
binding probability prediction model

In the third step, we preprocess the BA dataset by changing labels:

IC50 values less than 500nm are set to 1 (positive samples), while those

greater than or equal to 500nm are set to 0 (negative samples).With the

curated datasets from previous steps, we now possess MS ELs-SA, MS

ELs-MA, and BA datasets with labels of 0 and 1. We again utilize the

OnmiMHC model architecture to train on these datasets.

Unlike the first step, we are now dealing with a classification task.

We employ cross-entropy loss function and backpropagation

algorithm to update neural network parameters (53). Cross-entropy

loss function is a commonly used classification loss function,

effectively assessing model prediction performance (54).

Backpropagation algorithm updates neural network parameters by

computing gradients, thus improving model prediction performance.

We employ 5-fold cross-validation to train and evaluate model

performance, selecting the model with the minimum test set loss as

the optimal model. Finally, we average the output results of the five

Cross-validation models to obtain the final model output. This

approach not only effectively utilizes all datasets but also mitigates

model overfitting issues.

In summary, the process is akin to semi-supervised learning. We

begin with the BA dataset, which contains continuous numeric labels.

After training a regression model on this dataset, we use the model to

score the negative samples from the EL dataset. Employing a greedy

strategy, we selectively retain only the negative samples with the lowest

scores. Finally, we integrate all datasets into classification labels using a

threshold and train a classification model.
Data curation

In this study, we utilized datasets generated by Birkir Reynisson

and their colleagues These datasets combine public domain data on

MHC binding affinity (BA) and mass spectrometry (MS) eluted

ligands (EL). We obtained these datasets from the public web

servers http://www.cbs.dtu.dk/services/NetMHCpan-4.1/ and

http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/, covering a

wide range of MHC class I and class II molecules (14).

For the MHC-I part, we also used datasets generated and

published by the research team of Siranush Sarkizova and their

colleagues. These datasets, obtained through high-resolution mass

spectrometry (LC-MS/MS), include over 185,000 peptides eluted

from cell lines expressing 95 different HLA-A, -B, -C, and -G

alleles. They not only provide identification information of HLA

binding peptides, but also detailed characteristics of peptides binding

to HLA molecules, such as peptide length preferences, binding

submotifs, and specific binding patterns for different HLA alleles (19).

For the MHC-II part, we used datasets generated by C. Garrett

Rappazzoand their colleagues. These datasets were produced using

an innovative yeast display platform that allows for the

identification of an order of magnitude more unique MHC-II

binding peptides compared to existing methods (1).

Detailed specifics of the datasets, including the MHC-II alleles

used, peptide lengths, and related binding affinity data, can be found
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in the original publications. Our data compilation aims to maximize

the utilization of these publicly available datasets to advance the

field of MHC antigen prediction.
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