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Adult learning, memory, and social interaction partially depend on neurogenesis

in two regions: the hippocampus and the subventricular zone. There is evidence

that the immune system is important for these processes in pathological

situations, but there is no review of its role in non-pathological or near-

physiological conditions. Although further research is warranted in this area,

some conclusions can be drawn. Intrusive LyC6hi monocytes and autoreactive

CD4+ T cells have a positive impact on neurogenesis and behavior, but the latter

are deleterious if specific to external antigens. Mildly activated microglia play a

crucial role in promoting these processes, by eliminating apoptotic neuronal

progenitors and producing low levels of interleukins, which increase if the cells

are activated, leading to inhibition of neurogenesis. Chemokines are poorly

studied, but progenitor cells and neurons express their receptors, which

appear important for migration and maturation. The few works that jointly

analyzed neurogenesis and behavior showed congruent effects of immune

cells and cytokines. In conclusion, the immune system components -mostly

local- seem of utmost importance for the control of behavior under non-

pathological conditions.
KEYWORDS

cytokine, hippocampus, immune system, neurogenesis, olfactory bulb, social behavior,
subventricular zone, chemokine
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1 Introduction

The nervous and immune systems connect us with the external

environment and regulate internal biological functions to maintain

homeostasis. Moreover, they interact in ways that were not even

suspected half a century ago, even though conventional wisdom

suggested such a connection for many years (1, 2). It is now well

established that the immune system plays a crucial role in

maintaining central nervous system (CNS) homeostasis, as well as

in the onset or progression of various diseases (3–6).

Several reviews on these fascinating phenomena have suggested

the role of specific immune cells, cytokines/chemokines, or related

intracellular signaling on memory, learning and social behavior, as

well as in neurogenesis in the subgranular zone (SGZ) of the

hippocampus, the subventricular zone (SVZ) and the olfactory

bulb (OB) of most vertebrates (7–13). Even though, most of the

reviews have focused on diseases in which neuroinflammation is

important and few have included the impact on non-pathological

conditions. Additionally, there is considerable heterogeneity as

reviews focus on multiple species, complicating comparisons.

Moreover, the SVZ has received less attention in the context of

behavior, so many reviews ignore this zone (5, 9, 14–18).

In the present review, we focus on in vitro studies of adult

rodent cells or in vivo models without baseline disease. Studies on

the effect of long-term cytokine treatment or chronic effects of acute

exposure on the hippocampus, SVZ or OB, as well as those

employing knockout (KO) models for cytokines or their

receptors, were included. Models of neurodegenerative diseases,

traumatic injuries, ischemia, stroke, infection or acute

neuroinflammation were omitted, as well as those studies carried

out in non-rodent species to minimize variability and improve the

validity of conclusions regarding neurogenesis and cognitive

aspects. On the other hand, we focus on animals whose brains

have completed their development. Finally, we specifically review

studies investigating cytokine receptor expression in neural stem

cells, neuroblasts, and mature neurons within the hippocampus and

the SVZ-olfactory bulb (SVZ-OB) systems.

To our knowledge, this review is the first to take a fully

integrative approach to non-pathological interactions between the

cytokines, the two neurogenic niches in adult rodents, and their

possible outcome in memory and social behavior.
2 Memory and social behavior

Memory refers to the ability of the brain to encode, store, and

later retrieve information. The hippocampus, a brain region in the

medial temporal lobe, is involved in long-term memories, which are

studied in paradigms such as Morris Water maze (spatial memory)

and contextual fear conditioning (19–21). The hippocampus

comprises the dentate gyrus (DG), the Cornu Ammonis

structures -CA1, CA2, CA3, and CA4- and the subiculum. These

regions are densely interconnected and communicate through

intricate neural circuits and play a fundamental roles in memory

retrieval, classified as declarative or explicit memory. For a
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comprehensive understanding of these circuits, see Lisman (22)

Basu and Siegelbaum (23) and Eichenbaum (24).

On the other hand, social behavior refers to the ability of an

individual to interact and communicate with other members of its

species, maximizing its survival and reproductive success. These

behaviors include aggression, mating, parental care, and

communication (25–27). The relationship between social behavior

and the olfactory system is well-known; because, during social

interaction, brain structures associated with smell in mammals

are activated, including the olfactory bulb, the piriform cortex, the

nucleus of the lateral olfactory tract and the olfactory tubercle,

among others (28). This circuit serves as an essential sensor that

regulates physiological and behavioral responses by detecting small

volatile and water-soluble molecules present in the environment,

known as odorants (25, 29).
3 Neurogenesis in the hippocampus

Neurogenesis in adult mammals was first described in the rat

hippocampus many years ago, specifically in the SGZ of the DG (7).

In Figure 1, we summarize the general process and specify the

markers used in the works included in the present review. To

deepen the understanding of the process, refer to several

extraordinary papers (13, 30–33).

Newborn cells committed to the neural lineage originate from

neural stem cells/neural progenitor cells (NSCs/NSPCs, hereinafter

referred to as NSPC), which differentiate into intermediate progenitors

and neuroblasts, stimulated by the neurotransmitter gamma-amino-

butyric acid, GABAergic inputs. These cells migrate radially from SGZ

to the granular layer. Subsequently, they form glutamatergic

connections onto CA3 and become mature neurons with strong

synaptic plasticity. The new cells will integrate into pre-existing

neuronal circuits in the hippocampus (13, 32). Each cell exhibits

distinct molecular markers depending on its developmental stage,

frequently used for identification: NSPCs can be detected by Nestin,

Ki67,Mash1 (Ascl1), Tbr2, and Sox2. Neuroblasts express doublecortin

(DCX), polysialylated neuronal cell adhesion molecule (PSA-NCAM),

and Tuj1; and mature neurons express Calbindin and NeuN (9, 34).

Neurogenesis in the DG participates in processes such as

learning, memory and pattern separation, favoring the conversion

of short-term memory into long-term memory, which can be

retrieved when required, allowing the subject to incorporate new

knowledge into the response repertoire (13, 33). Neurogenesis also

promotes cognitive flexibility because it prevents interference

between new and previously stored memories, allowing the

development of novel strategies in response to a changing

environment (30, 35).

It has been widely demonstrated that numerous factors can

enhance neurogenesis, including an enriched environment, exercise,

dietary restriction, estrogen, luteinizing hormone, pheromones, and, as

will be discussed in this review, cytokines and immune cells (36–40).

Several of these stimuli promote the production of different trophic

factors such as brain-derived neurotrophic factor (BDNF),

neurotrophin-3 (NT-3), nerve growth factor (NGF) or vascular
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endothelial growth factor (VEGF), which mediate the proliferation,

differentiation and survival of the NSPCs; some of them are also

involved in synaptogenesis (37, 41, 42).

Increased neurogenesis has been associated with better

performance in spatial memory and pattern separation tasks (36,

40, 43–45). In contrast, reduced neurogenesis has been linked to

impairment in contextual fear learning and spatial memory (46, 47).

Nevertheless, there is some controversy, since some studies have

reported that a decrease in neurogenesis did not influence

hippocampal-dependent memory (48, 49).

It is important to mention that neurogenesis begins with an

intensive proliferation of the undifferentiated cells, NSPCs, but

most of them die because they lack sufficient response to signals

that allow them to proceed to the next step. Only 40% become

neuroblasts, and from these, a smaller percentage become mature

neurons since there is a second wave of apoptosis (31).
4 Neurogenesis in the subventricular
zone and the olfactory bulb

Bipolar neurons called olfactory sensory neurons (Figure 1)

detect odors in the OB. These neurons form excitatory and

inhibitory synapses with periglomerular, tufted, and mitral cells.

This synaptic region, the glomerulus, is activated in response to

specific odors (29, 50).

The first study of neurogenesis in the SVZ-OB was carried out by

Doetsch, Garcıá-Verdugo, and Álvarez-Buylla in 1997. This region
Frontiers in Immunology 03
serves as the neurogenic niche of the OB in the murine adult brain.

The SVZ contains type B1 and B2 cells, located below the lateral

ventricles. The first are bipolar, with processes that directly contact

the blood vessels of the blood-brain barrier (BBB) on one side and the

cerebrospinal fluid (CSF) on the other (51, 52). B1 cells differentiate

into type C cells and produce neuroblasts that express DCX and PSA-

NCAM. They can further differentiate into different types of

interneurons, astrocytes, or oligodendrocyte progenitor cells

produced in different subregions of the SVZ (53–56).

The proliferation and migration of adult-born OB interneurons

are tightly regulated by trophic factors, mainly the fibroblast growth

factor 2 (FGF-2) (57) and epidermal growth factor (EGF) (58), as

well as by GABA and glutamate through bidirectional

communication between astrocytes and neuroblasts, providing

robust homeostatic control over neurogenesis (59). Neuroblasts

then migrate in chains through the rostral migratory stream (RMS)

towards the OB, where those that survive differentiate into multiple

subtypes of interneurons that integrate into local circuits (Figure 1)

(11, 52, 60). The vast majority of neuroblasts that reach the OB

differentiate into granule cells (94%), while some become

periglomerular cells (4%) or astrocytes (<2%) (11, 61). All of

these cell types play a crucial role in inhibiting and synchronizing

glutamatergic mitral cell activity. However, only 50% of the newly

differentiated granule cells survive (62, 63).

Although the exact role of SVZ neurogenesis in mammalian

behavior is not fully understood, it plays an important role in

detection, discrimination, and learning of novel odors. For example,

newly generated neurons have been associated with the recognition
FIGURE 1

Representation of the neurogenesis in the hippocampus, the subventricular zone (SVZ) and the olfactory bulb (OB) of the mouse, along with the cell
types that make up this phenomenon and their markers (in red). MOB, main olfactory bulb; AOB, accessory olfactory bulb; OE, olfactory epithelium;
RMS, rostral migratory stream; LV, lateral ventricle; 3°V, third ventricle. The scheme was made in BioRender License MJ27W1N9FE..
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of familiar odors and their discrimination from new ones (64).

Inhibition of neurogenesis in the SVZ induces an increase in the

odor detection threshold, as well as changes in behaviors such as

mounting between males and females, aggression between males

and recognition of new conspecifics (65, 66).

Neurogenesis has been documented in the adult human SVZ.

The group led by Curtis et al. (67–69) described the presence of type

A, B and C cells in the subependymal layer of normal brains in three

separate studies, and found that they are important for

neuroregeneration in Huntington’s disease. It remains to be

elucidated what is the result of this process in normal

human behavior.
5 The role of the immune system
components on neurogenesis,
memory, and social behavior

As mentioned, the interdependence of the immune and nervous

systems has long been recognized (reviewed in 2, 4). However, the

study of specific actions of the immune response on neurogenesis

and its impact on memory/learning and social behavior began later

(18, 70). In the following sections we present the main findings that,

as we will see, are sometimes controversial.
5.1 Immune cells

5.1.1 Microglia
Microglia, CNS resident macrophages, are classically activated

by infection or injury, switching from a ramified to an amoeboid

morphology (71). Neurons produce CX3CL1 (fractalkine) which

binds to CX3CR1 on microglia, inhibiting their inflammatory

activity (72), and is the quiescent microglia which promote

neurogenesis in the DG by phagocytosing newly born apoptotic

cells (73, 74). Neither intracerebroventricular (i.c.v.) administration

of CX3CL1 nor genetic deletion of CX3CL1 in mice alters NSPC

proliferation or differentiation (75, 76). In contrast, CX3CR1

knockout (KO) mice or those treated with CX3CR1 blocking

antibodies exhibit reduced proliferation and differentiation of

newborn cells in the DG (75–80). Importantly, hippocampal

NSPC cells do not express CX3CR1 (Table 1), thus, it seems that

these effects are mediated indirectly through microglial signaling.

Behavioral studies in CX3CR1 knockout mice reveal

controversial results. Some reports indicate deficits in spatial

memory and fear conditioning (76, 79), with CX3CL1 levels in

the hippocampus increasing after spatial learning tasks (81). In

contrast, other works demonstrate improved cognitive performance

in CX3CR1 KO mice (77, 78).

On the other hand, SVZ-OB microglia exhibit a unique

phenotype characterized by reduced branching and some

phagocytic activity (82). Ablation of microglia in the SVZ does not

affect NSPC proliferation (83), and CX3CR1 KO mice display intact

SVZ-OB neurogenesis despite enhanced olfactory memory (78).

However, they support neuroblast migration through CX3CR1-
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independent mechanisms, by secreting insulin-like growth factor-1

(IGF-1) and cytokines such as IL-4 and IL-10, which promote

neuroblast survival and integration into the olfactory bulb (84, 85).

Activation of microglia enhances their phagocytic activity and

the secretion of proinflammatory cytokines such as TNF-a, IL-1b
and IL-6 (Figure 2) (71), which may negatively affect neurogenesis

and probably also cognitive functions, as discussed below.

5.1.2 Monocytes Ly6Chi
Ly6Chi monocytes, although not resident in the CNS, influence

hippocampal neurogenesis when they arrive via CCL2/CCR2

signaling. Neurons and astrocytes produce CCL2, recruiting

monocytes to the hippocampus, as demonstrated by reporter gene

screening (86). Systemic depletion of Ly6Chi monocytes (via

antibody blockade or CCR2 KO) reduces DG neurogenesis. These

cells enhance neurospheres formation in vitro, via unidentified

soluble factors. Potential mediators include IL-6 and TNF-a,
which promote neurogenesis if in controlled amounts (87).

NSPCs in the hippocampus express CCR2 (Table 2), so they may

respond directly to CCL2. To our knowledge, there are no reports

on the role of Ly6Chi monocytes in neurogenesis in the SVZ or

social behavior.

5.1.3 T cells
B and T lymphocytes mediate adaptive immunity (88). While B

cells are dispensable, CD4+ T cells critically regulate hippocampal

neurogenesis and behavior (89–92).

Immunodeficient mice (nude, SCID and RAG1/2 KO) display

reduced DG cell proliferation and maturation, which is reversed by

CD4+ T cell reconstitution (90, 91, 93). TCR specificity is

important: MBP-specific T cells enhance DG neurogenesis,

whereas ovalbumin-specific T cells depress it (92, 94). These

effects are likely mediated by BDNF rather than by cell contact

mechanisms (91). Furthermore, regulatory T cells stimulate NSPC

proliferation via IL-10 in the SVZ (95).

Regarding cognitive aspects, CD4+ T cells specific for myelin

basic protein (MBP)-or myelin oligodendrocyte glycoprotein

(MOG) stimulate performance in the MWM (92, 96), whereas

SCID, nude or anti-CD4-treated mice have deficits, reversed by T

cell reconstitution (89, 97). RAG1 KO mice do not show impaired

spatial memory, although deficient meningeal T cell trafficking

correlates with cognitive decline (98, 99).

Only these three cell types have been reported to influence

neurogenesis or cognitive functions, and as it will be seen, all

mechanisms, except for the abovementioned scavenging activity

of quiescent microglia, involve cytokines or chemokines.
5.2 Innate response cytokines and
chemokines

Cytokines and chemokines are short peptides produced by

various types of cells. They mediate the generation, proliferation/

differentiation, activation, modulation, or migration of various cell

types. They were initially called interleukins (ILs) since some are
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TABLE 1 Effect of cytokines on neurogenesis of the hippocampus and the subventricular zone-olfactory bulb of mice in vivo and in vitro models and in multiple tasks dependent on neurogenesis in
these regions.
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TABLE 1 Continued
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secreted by leukocytes and act upon other leukocytes (100). Today,

they are called cytokines because the functions of all systems,

including the endocrine and CNS, are highly dependent on them.

Several cytokines may indirectly affect the CNS through the

“neural pathway” by activating sensory afferent fibers of the

autonomic nervous system, such as the Vagus nerve, thus relaying

information to the brain (1). Additionally, cytokines may be

transported across the BBB through active mechanisms or are

produced by BBB endothelial cells or leukocytes that invade the

CNS, potentially crossing this narrow structure under pathological

and possibly even non-pathological conditions (101, 102).

Leukocytes and cytokines may also come from a structure

described in the 18th century by Paolo Mascagni but reliably

demonstrated until recently, that is, the meningeal lymphatic

network in the dura mater, which is formed postnatally (revised

by 103). Furthermore, recent research has identified a mesothelial-

like meningeal layer that compartmentalizes the subarachnoid

space in the brain, called the subarachnoid lymphatic-like

membrane, or SLYM (104). This structure is morpho- and

immunophenotypically similar to the mesothelial membranes that

line peripheral organs and body cavities. It consists of bone

marrow-derived myeloid cells (macrophages and dendritic cells)

that control the exchange of molecules larger than 3kDa. No doubt,

its role in the transmission of immune molecules between colony-

stimulating factor (CSF) and the parenchyma of the brain (and

spinal cord) will soon be studied.

Finally, it has been shown that cytokines and chemokines can be

produced within the CNS, by glial and even neuronal cells (105,

106; Figure 2).

5.2.1 Interleukin 1 beta
Interleukin-1b (IL-1b) is an agonist of the IL-1 family, produced

mainly by hematopoietic cells such as blood monocytes, tissue
Frontiers in Immunology 07
macrophages, skin dendritic cells and brain microglia and astrocytes,

as well as endothelial cells in response to molecular patterns associated

with pathogens (PAMPs), activated complement components and

cytokines like TNF-a and IL-1 itself (107; Figure 2). In addition, IL-

1b orchestrates the differentiation and function of innate and adaptive

lymphoid cells, induces the production of other cytokines, and is also

involved in acute phase protein synthesis by the liver, the induction of

fever through the hypothalamus, and sickness behavior (108, 109).

In the CNS, the IL-1b type 1 receptor (IL-1R1) is expressed in the
hippocampus by the pyramid cells of CA3 and CA4 regions (110,

111). The cytokine modulates the excitability and neurotransmission

of neurons (106). Regarding the role of IL-1b in neurogenesis, it has

been shown that both newborn cells and neuroblasts also express IL-

1bR1 in mice and rats (112, 113; Tables 1, 3). Intracerebroventricular

or subcutaneous administration of IL-1b reduces proliferation and

differentiation of NSPC in the DG. This effect is prevented by IL-1ra,

the antagonist of IL-1R (112, 114). Moreover, in transgenic mice with

chronic overexpression of IL-1b in the brain, DCX and NeuN cells

are reduced, while the number of GFAP cells increases (115).

Interestingly, IL-1bR1 KO does not affect the differentiation and

survival of NSPC (112, 114). Seguin et al. (116) reported an increase

in BrdU cells after four consecutive daily administrations of IL-1b via

the intrahippocampal route, although they did not identify the

phenotype of the proliferating cells. Notably, a single

administration of IL-1b did not change the number of BrdU cells,

whether injected locally or intraperitoneally.

Studies performed in vitro supported these findings since the

addition of IL-1b to adult hippocampal cells decreases the number of

proliferating (BrdU+) cells (112), which is consistent with the results

obtained by Ryan et al. (113), who reported a decrease in proliferation

and differentiation to DCX in a dose- and time-dependent manner.

Regarding neurogenesis in the SVZ-OB axis, a single

administration of IL-1b in the lateral ventricles decreases the
FIGURE 2

Representation of the CNS resident and extracerebral cells that produce cytokines or chemokines described in the text. The scheme was made in
BioRender license FA26YDR5NL.
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number of proliferating cells in the SVZ. In a neurosphere culture

obtained from this region, the cytokine directly increases the number

of the NSPCs and reduces their differentiation intoMASH1 cells, thus

inhibiting lineage progression (117). In particular, NSPCs display IL-

1R1, and the cytokine could be produced by microglia or astrocytes,

or it could arrive from external sources (Table 2).

The involvement of IL-1b in memory and learning seems

paradoxical. For example, overexpression in the hippocampus has

been associated with impaired spatial memory in MWM (118),

further confirmed by Hein et al. (119), who found conditioning

deficits in spatial memory and contextual fear using the same

transgenic model. In contrast, experiments with IL-1R1 KO mice

have shown deficiencies in these tasks (120). Thus, physiological levels

of IL-1b are likely necessary tomaintain proper memory and learning.

As in the DG, SVZ NSPCs express the IL-1b receptor 1

(Table 3), but the origin of the cytokine could be local (microglia

or astrocyte) or external (Figure 2) since it is long known that it

reaches the brain.
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There are contradictory results regarding SVZ-OB-related

behavior. Chronic subcutaneous administration of IL-1b for four

weeks impairs social exploration of the mice, but IL-1R KO mice

show no change in this behavior, while aggressive behavior

increases in interleukin gene knockout mice (114, 121, 122).

In summary, IL-1b in the SGZ and SVZ mainly leads to reduced

NSPC proliferation and differentiation. Furthermore, both

overproduction and inhibition of IL-1b can harm contextual and

spatial memory. This cytokine also affects social behavior, but more

studies are needed to clarify this.

5.2.2 Tumor necrosis factor alpha
Tumor Necrosis Factor-a (TNF-a) coordinates the

inflammatory immune response and exhibits pleiotropic effects

on various cell types (123). For example, it activates neutrophils,

causes muscle catabolism and, like IL1-b, induces acute phase

proteins and fever (88). TNF-a is initially produced as an active

transmembrane protein, serving as a precursor to the soluble form
TABLE 2 Chemokine and cytokine receptors found in different cellular phenotypes of the hippocampus and the subventricular zone.

Cytokine Subgranular zone receptors Subventricular zone receptors

NSPC Neuroblast Mature neuron NSPC Neuroblast Mature neuron

IL-1b R1 R1 R1 R1

TNF-a R1
R2

R1
R2

IL-6 Ra ? Ra ?

IL-15 ? IL-15Ra IL-15Ra

INF-a & IFN-b R1
R2

R1
R2

IFN-g ? R1
R2

IL-4 N.F. Ra

IL-17 R

IL-23

IL-2 Ra
Rb

Ra
Rb

IL-10 N.F. N.F. R1

TGF-b R1* R2
R3*

R2 R2

GM-CSF Ra Ra Ra Ra

CX3CL1 N.F. N.F. CX3CR1 N.F.

CCL2 CCR2 CCR2 CCR2 ? CCR2

CCL3 CCR1
CCR5

CCR1
CCR5

CCR1
CCR2

? CCR1
CCR5

CCL11 ? ? CCR3

CXCL12 CXCR4 CXCR4 CXCR4 CXCR4 CXCR4
NSPC, Neural progenitor cell; N.F., Not found.?, suggested by functional studies, but not demonstrated directly.
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Sepúlveda-Cuéllar et al. 10.3389/fimmu.2025.1550660
generated through processing by the TNF-a-converting enzyme

(124). Both forms of TNF-a exhibit a binding preference for the

TNF-a receptor 1 (TNFR1).

This interaction leads to inflammation by triggering the

production of other inflammatory cytokines and chemokines, as

well as cell death by apoptosis. When TNF-a interacts with the type

2 receptor (TNFR2), it may also induce apoptosis, but it can protect

the cell from death as well (88, 125, 126).

Inflammatory stimuli in the CNS induce the production of TNF-

a by microglia, neurons, astrocytes, and infiltrating immune cells,

specifically monocytes (Figure 2). Furthermore, soluble TNF-a
crosses the BBB through a specific saturable transport system to

the brain under physiological conditions. It has different effects

depending on the type of receptor and the form of cytokine, such

as inducing the death of dopaminergic neurons or protecting the

myelin sheath (127). While TNFR1 is related to inflammation and

glutamatergic and dopaminergic activity, TNFR2 downregulates it in

the periphery and has a neuroprotective and repairing effect in the

CNS (127).

Regarding neurogenesis, the progenitor cells (Nestin) of the

hippocampus express TNF-a and its receptors (128; Table 1).

Seguin et al. (116) reported a decrease in BrdU cells in the DG 24

h after a single i.p. injection (1mg) of the cytokine. However, this

effect is probably indirect, since no significant difference in

proliferation were identified when TNF-a was administered

directly to the hippocampus (0.05 mg), either 24 h or five days

prior. In contrast, Chen and Palmer (129) reported that infusion of

TNF-a directly into the DG reduces the differentiation, maturation,

and survival of newly generated neurons, an observation supported

by the opposite effect in TNFR1 or TNF-a KO mice. The same

observation was reported by Iosif et al. (128) using a TNFR1 KO

model. Interestingly, TNFR2-deficient mice presented the opposite

effect (129), consistent with its neuroprotective role (125–127). In

agreement, Matsuda et al. (130) demonstrated inhibition of NSPC

replication in vitro in a dose-dependent manner in the range

between 10 and 50 ng of the cytokine.

Regarding the effect of TNF-a in the SVZ (Table 2), it has been

shown that i.c.v. administration increased the number of

proliferating cells in the SVZ; however, the identity of these cells
Frontiers in Immunology 09
was not explicitly specified (131). It was shown that TNF-a
receptor-1 is expressed by NSPCs in this area (Table 1). Still,

deletion of the receptor or cytokine did not affect the basal

number of BrdU or Proliferating Cell Nuclear Antigen positive

(PCNA) cells. However, the effect of the other receptor still needs to

be studied (132). In vitro, 10ng/mL of TNF-a inhibited proliferation

and decreased the percentage of b-tubulin III cells (an early neuron

marker) in SVZ-derived NSPC cultures (133).

More recently, Belenguer et al. (134) demonstrated that low

dose (0.1 ng/ml) of murine TNF-a increases the proliferation of

subependymal zone NSPCs, but a higher concentration (10 ng/mL)

inhibits it. In the same study, TNF-a was shown to activate both

receptors, with opposite effects: TNFR2 moves NSPCs to activated

states, while TNFR1 promotes their return to the “deep quiescence”

and differentiation multipotentiality; this mechanism ensures that

changes in basal levels in the microenvironment will not exhaust the

NSPC pool (134). In apparent contradiction, Widera et al. (135)

reported an increase in the number of BrdU cells in NSPC cultures

after the addition of 4.0 and 10.0 ng/mL of TNF-a, although, they
used human TNF-a , which precludes any conclusive

interpretation (136).

In summary, most studies have shown that high levels of TNF-a
reduce the proliferation, differentiation, maturation, or survival of

NSPC in both the DG and SVZ. However, it is suggested that it has

opposite effects depending on the receptor to which it binds in vivo.

Regarding cognitive functions, Scherbel et al. (137) reported no

significant differences between TNF-a KO and wild-type C57BL/6

mice in spatial learning using the MWM test. More recent studies

suggest the opposite, as TNFR1, TNFR2, and TNF-a KO mice of

the same genetic background show deficits in hippocampus-

dependent memory, assessed in the Barnes spatial maze and the

novel object recognition test (138, 139).

Much less information is available on TNF-a and social

behavior: the only report showed ablation of aggressive conduct

in TNFR1 and TNFR2 KO mice (140).

In vivo and in vitro studies of the effect of TNF-a on

neurogenesis must carefully evaluate the role of the two receptors

and different concentrations of the cytokine, along with

simultaneous changes in the levels of other cytokines.
TABLE 3 Effect of chemokines on learning and memory in mice and neurogenesis in the hippocampus and subventricular zone.

Chemokine Original name Learning and
memory impact

In vivo hippocampal
neurogenesis

In vitro subventricular
zone neurogenesis

CCL2 MCP-1 Differentiation ↓
Migration ↑

CCL3 MIP-1a PA↓ Differentiation ↑

CCL11 Eotaxin YM↓
CFC ↓

Differentiation ↓

CXCL1 GROa Differentiation ↑

CXCL12 SDF1 MWM ↑ Differentiation ↑
Maturation ↓

CX3CL1 Fractalkine Proliferation =
Differentiation =
A positive effect is represented with an up arrow, a negative effect with a down arrow.
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5.2.3 Interleukin 6
IL-6 is a proinflammatory cytokine initially called “B-cell

stimulating factor-2” due to its ability to induce immunoglobulin

production, and cloned in 1986 (141). IL-6 exerts its

proinflammatory functions by binding to the IL-6 receptor, IL-

6R, and this binary complex can interact with gp130, a ubiquitously

expressed receptor (142).Although only those cells that express IL-

6R are traditionally considered to be affected by IL-6 (143, 144), the

metalloproteinase ADAM17 can release IL-6R from the membrane

(145). Soluble IL-6R (sIL-6R) can bind IL-6 and subsequently

interact with gp130, even in cells that do not express IL-6R. This

process is called IL-6 trans-signaling (146–148). Through these

mechanisms, IL-6 acts as a primary regulator of immune cell

metabolism, proliferation, and differentiation.

This cytokine is highly expressed in the central nervous system

(149), with astrocytes being the primary source. However, it can be

synthesized by microglial and neural cells and can come from

infiltrating monocytes (Figure 2). Its production is regulated by IL-

1b, TNF-a, neuropeptides, and neurotransmitters such as

norepinephrine and serotonin. At the cellular level, IL-6 has an

inhibitory effect on sodium (Na+) and calcium (Ca2+), which may

serve as neuroprotective mechanisms in the CNS (106). In vitro

studies have reported mRNA expression of its receptor in NSPC

obtained from the SGZ and SVZ (Table 2) (150, 151).

Regarding its role in neurogenesis, it has been shown that

exposure of NSPCs derived from the hippocampus to media

conditioned by IL-6 decreases their differentiation into neurons

but not into oligodendrocytes or astrocytes, the latter being even

increased (152, 153). Furthermore, Oh et al. (154), observed an

increase in Tuj1 cells in NSPC cultures after administering anti-IL-6

antibodies. In vivo, these observations are supported by studies

showing that transgenic mice overexpressing IL-6 in the brain

exhibit decreased proliferation, differentiation, and survival of

newly formed neural cells in the SGZ (155). Paradoxically, Bowen

et al. (156) studied both neurogenic regions in IL-6 KO mice and

observed decreased proliferation and survival of NSPCs in the DG

and the SVZ; and Storer et al. (151) demonstrated that IL-6 is

necessary for NSPC self-renewal and proliferation in the SVZ.

However, Seguin et al. (116) obtained apparently different results,

i.e. they observed no changes in the proliferation or number of DCX

cells in the DG of mice with acute intraperitoneal or

intrahippocampal administration of IL-6, indicating a lack of

differentiation into neurons.

Current evidence points to conflicting effects of IL-6 on

behavior. IL-6 KO mice showed improved performance in the

radial maze (157); but using the same model, other researchers

later found deficits in novel object recognition and MWM tasks

(158–160). On the other hand, mice overexpression of IL-6 from

birth presents deficits in passive avoidance and spatial memory

(161, 162). Consistently, transgenic GFAP-IL6 mice show

impairments in contextual fear-memory and social motivation;

this is the only study that evaluates a social component (163).

Finally, it is essential to consider that some deficits in tasks such

as MWM could be attributed to other potential confounding

factors, like motor dysfunction (164, 165).
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5.2.4 Interleukin 15
IL-15 belongs to the 4-a helix bundle family of cytokines, like

IL-2. Although both bind to the IL-2/IL-15Rbgc receptor complex,

it binds with high affinity to its specific IL-15a receptor (166).

Through trans-signaling it is involved in the development,

maintenance and activation of natural killer (NK) and long-lived

CD8 memory cells, which promote apoptosis in cancer cells and

cells infected with intracellular pathogens (167).

IL-15Ra is expressed in the adult CNS by nestin-positive cells in

the SVZ and by mature neurons in the OB, while IL-15 is expressed

by GFAP-positive cells in the SVZ and by immature neurons in the

RMS (168, 169) (Figure 2, Table 2).

Gomez-Nicola et al. (168) demonstrated a negative effect of IL-

15 KO on NSPC proliferation and maturation into DCX cells in the

SVZ, with restoration after intraventricular injection of this

cytokine. Regarding the cognitive aspects, it is vitally important to

mention He et al. (170), who reported deficits in contextual fear

conditioning in mice lacking IL-15Ra. Additionally, IL-15Ra-/-

mice show deficits in stone T-maze resolution and contextual fear

memory tests. Unfortunately, no correlative studies of SVZ/RMS

neurogenesis and OB-dependent behavior exist.

5.2.5 Interferons alpha and beta
Interferons alpha and beta (IFN-a and IFN-b) are aptly named

for their ability to truly interfere with viral replication. These

interferons are produced mainly by macrophages and

plasmacytoid dendritic cells. Virtually cells in the body express

IFNAR1; upon cytokine-receptor ligation, the cell is prepared to

fight a potential infection, which involves the induction of MHC-I

expression, making the cell susceptible to CD8 cytotoxicity.

Furthermore, several molecular mechanisms are activated to

interfere with viral RNA or protein synthesis if the pathogen

infects the cell (88).

IFN-a and IFN-b can be produced by neurons, microglia, and

astrocytes (Figure 2). The former has been shown to modulate

neuronal activity in specific brain regions, including the

hypothalamus, thalamus, amygdala, and hippocampus (171, 172).

In vitro studies with adult hippocampal neural stem cells and

mature neurons have shown expression of both IFNR1 and

IFNR2 (Table 2) (173).

Chronic i.v. administration of IFN-a has been shown to

decrease cell proliferation within the DG, likely affecting NSPCs

and reducing the survival of BrdU- and NeuN-labeled cells three

weeks after the last administration (174). IL-1b may mediate these

effects, as its levels increase in the hippocampus after injection of

IFN-a. Notably, the inhibition of cell proliferation was reversed by

i.c.v administration of IL-1ra (174).

Zheng et al. (173) conducted a comprehensive study

encompassing in vivo and in vitro assessments of neurogenesis in

both the hippocampus and SVZ as well as examining social

behavior, reinforcing the findings above. In their investigation, a

4-week intraperitoneal treatment of C57BL6/J mice with IFN-a led

to a reduction in cell proliferation and neuronal differentiation in

the DG. In contrast, cell survival was not affected in this region.

Similar effects were observed in the SVZ, where IFN-a
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administration decreased proliferation and reduced the population

of MASH1 cells, indicating a negative impact on the self-renewal

capacity of neural progenitor cells. Paradoxically, in vitro

experiments demonstrated that only proliferation was affected,

with no changes in differentiation observed. This decrease in

proliferation was evident in cells obtained from both DG and

SVZ. The study further established that the effect of IFN-a is

direct on neural progenitors but could be amplified by the

induction of synthesis of three inflammatory cytokines (IL-1b, IL-
6, and TNF-a) by microglia (173, 175). The impact of IFN-b on

neurogenesis remains unclear. However, Lum et al. (176) observed

that culturing neurospheres isolated from SVZ with IFN-b inhibited
proliferation and differentiation, similar to the effects of IFN-a.
Additional studies on this cytokine are warranted.

The role of IFN-a and IFN-b in learning, memory, and social

behavior is currently poorly understood. In a study by Hosseini

et al. (177), a decrease in MWM performance was reported in both

IFNAR-/- and Ifnb-/- mice. Another outcome was social behavior, as

mice subjected to chronic IFN-a treatment showed poor

performance in the Crawley social interaction test (173). These

findings suggest type I interferons may impair behavior, but more

studies are required for a comprehensive understanding.
5.2.6 Granulocyte-macrophage colony-
stimulating factor

There are three canonical members of myelopoiesis stimulating

factors in mammals, i.e. granulocyte (G), monocyte/macrophage

(M) and granulocyte/macrophage (GM) colony stimulating factors

(CSF). All were shown to stimulate myeloid cell proliferation/

differentiation in vitro. However, it is known that GM-CSF is not

as important for steady-state myelopoiesis as previously thought, as

it has rather restricted function for alveolar macrophages and some

dendritic cells (178).

Instead, GM-CSF seems involved in promoting local and

systemic inflammation. Its receptor (GM-CSFR) is made up of

two chains, alpha and beta, the first holding the specificity for this

cytokine. GM-CSF has now been involved in chronic inflammation,

and various cell types, particularly activated T cells, produce it and

act on resident macrophages, which release cytokines and reactive

oxygen species (ROS), directly causing tissue damage. Activated

granulocytes and tissue-resident DCs have also been proposed as

targets of this molecule (178).

The GM-CSF GM-CSFRa is expressed in NSPCs, immature

neurons, and mature neurons in the DG, but has only been reported

on NSPCs in the SVZ (179, 180) (Table 2). In vitro treatment of

adult neural stem cells with GM-CSF induces differentiation and

maturation into neurons (179). In vivo studies have reported

increased NSPCs proliferation in the DG and SVZ in a dose-

dependent manner (181). However, Kiyota et al. (182) observed

no changes in the number of DCX+ cells after chronic GM-

CSF administration.

Both overexpression and knockdown of GM-CSFRa in the

adult hippocampus resulted in slight improvement in MWM

performance (180). Other studies suggest that the cytokine plays

a more important role in memory than its receptor: GM-CSF
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knockout (GMko) mice exhibit impaired hippocampal-dependent

memory, as demonstrated in MWM and contextual fear

conditioning tests.

Similarly, Ahmed et al. (183) reported improved spatial

memory in the radial-arm MWM after chronic GM-CSF

administration. Although, Kiyota et al. (182) did not find any

improvement in the same task with chronic GM-CSF treatment,

this could be due to differences in dosage, as Ahmed et al. (183)

administered 5 mg/kg, while Kiyota et al. (182) used 50 mg/kg body
weight. These findings suggest a dose-dependent effect on spatial

memory, such as the dose-response relationship observed in DG

and SVZ neurogenesis (181). Furthermore, it cannot be ruled out

that GM-CSF is acting through receptors for other cytokines, like

IL-3 or IL-5 since it binds to their alpha chains (178).

5.2.7 CCL-2, CCL-3 and CXCL1
CCL2 and CCL3, along with their respective receptors, CCR2

and CCR3/CCR5, are expressed by endothelial cells throughout the

body and recruit diverse leukocyte populations (88).

Within the CNS, CCL2 is expressed in astrocytes and microglia

(184; Figure 2). The expression of CCR2 and CCR3 at the mRNA

and protein levels has been observed in different brain regions, such

as the cerebral cortex, amygdala, thalamus, hypothalamus, and

hippocampus (185–187). Furthermore, these receptors are

expressed in the granule and hilar cells of the DG and in the

granule cells of the OB (187). Ji et al. (188) also detected the

expression of CCR2 and CCR5 in NSPCs from adult SVZ rats

cultured in neurospheres (Table 2).

Regarding neurogenesis, Liu et al. (189) observed that CCL2

increased the differentiation and migration of SVZ-derived NSPCs

in vitro (Table 3). In contrast, Gordon et al. (186) found that CCL2

inhibited the differentiation of adult rat SVZ progenitors into MAP-

2 (early neurons) or RIP (oligodendrocytes) in vitro while strongly

stimulating GFAP cell production. The authors maintain that they

allowed the cells to differentiate seven days longer than Liu et al.

(189). Additionally, differences between species and variation in

doses used (lower in Liu et al., higher in Gordon et al.) must be

considered when interpreting these contrasting results.

Notably, CXCL1 favored differentiation towards all three neural

types, with a notable preference for neurons dominating the

population at the stimulation end (186).

Regarding learning and memory, Marciniak et al. (190)

reported that i.c.v. chronic administration of CCL3 significantly

impairs long-term memory in passive avoidance, accompanied by a

reduction in LTP (long-term potentiation). Unfortunately, changes

in neurogenesis within the DG were not evaluated in this work.

5.2.8 Eotaxin (CCL11)
Eosinophils, basophils and Th2 cells are recruited to

extracerebral tissues by eotaxin, which acts through CCR3.

Endothelial cells that express CCR3 are also the main producers

of the chemokine (88).

The only study related to this chemokine and neurogenesis is

that of Villeda et al. (191), who conducted an elegant study with a

cohort of mice. They showed that systemic administration of
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humoral (non-cellular) components of the blood of old animals

decreased differentiation of young animals in the DG, as assessed by

the generation of DCX cells. They showed that CCL11 was one of

the main molecules affecting both neurogenesis and LTP within the

DG, which were reversed by local administration of specific

monoclonal antibodies. Interestingly, they found impairment in

contextual fear conditioning in the radial arm water maze by i.p.

CCL11 administration.

5.2.9 CXCL12
The chemokine CXCL12 (SDF-1) and its receptor, CXCR4,

participate in the trafficking of B lymphocytes and plasma cells to

lymph nodes and bone marrow, respectively (88). Chemokine

mRNA has been identified in neurons throughout the brain,

including the cerebral cortex and hippocampus. Additionally, the

mRNA coding for CXCR4 has been reported in the hippocampus,

ependymal layers of the ventricles, and the OB (192). The

chemokine and its receptors, CXCR4 and CXCR7, are expressed

on the endothelial membrane and in several types of brain cells,

including astrocytes, microglia, and neurons. It should be noted that

the receptors are coexpressed in the same cell (193).

Abe et al. (194) reported that CXCL12/CXCR7 regulates the

maturation and survival of new granule neurons in the DG of mice.

To demonstrate this, they removed CXCL12 and CXCR7 from the

granule cell layer, resulting in fewer proliferating cells (BrdU).

Although the number of BrdU/NeuN was not affected, there was

disorganization of the DG cell layers and dendritic growth of

immature neurons.

Trousse et al. (195) observed in CXCL12+/- mice a reduced

number of Ki67 cells without changes in DCX cell counts. In

CXCR7+/- mice, they observed the opposite: no changes in Ki67

and decreased DCX cells. Furthermore, they noted that CXCL12+/-

mice presented an impairment in spatial memory, which was

evaluated in the MWM. These findings emphasize the role of

CXCL12 or its receptor not only in neurogenesis but also in

learning and memory.
5.3 Adaptive response effector/
inflammatory cytokines

5.3.1 Interferon gamma
The discovery of interferon-g (IFN-g) dates to 1965 when it was

identified as a protein produced by leukocytes in response to

phytohemagglutinin, but its name was not formally coined until

1980 (196, 197). As Billiau and Matthys highlighted in 2009 (198),

this cytokine was named for its role as an antiviral factor, but has

broader regulatory functions on leukocytes and other non-immune

cells. In fact, IFN-g and its receptor are not structurally or

functionally related to type I interferons.

This cytokine is essential in antigen processing and presentation

because it activates genes related to these processes in accessory cells.

Furthermore, it has antitumor effects by inducing cell cycle arrest and

apoptosis, activates the antimicrobial effector functions of phagocytes

and NK lymphocytes, shifts T helper cells toward a Th1 phenotype,
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and strongly promotes inflammation by enhancing leukocyte

trafficking, myeloid cell production of IL-12 and chemokines, as

well as the expression of adhesins by endothelial cells. It is produced

by innate (NK) and adaptive lymphocytes (CD3+CD4+ and CD3

+CD8+) after induction by IL-12 or IFN-g itself (88).
Although generally undetectable in the CNS, IFN-g is expressed

in response to infections and other disorders (199). Despite the lack

of information on the expression of its receptors in the DG, there

are reports on its action. For example, Barón et al. (200) used a

transgenic mouse model that expressed low constitutive levels of

IFN-g in the adult brain. They observed an increase in early-stage

cell proliferation and differentiation in the hippocampus of three-

month-old mice. Notably, these brains had elevated levels of IL-6,

TNF-a, and BDNF mRNA; therefore, its action could be indirect.

Similarly, Campos et al. (201) demonstrated that IFN-g KO mice

have reduced numbers of DCX cells in the DG. A conflicting result

came from another study with IFN-g KO mice, which showed

increased differentiation of early progenitor cells in the same region

(202). Likewise, a single i.c.v. Injection of IFN-g reduced the

number of BrdU and DCX/NeuN cells in this region due to

increased apoptosis of immature cells, microglia-derived

inflammatory cytokines, and nitric oxide, a phenotype hindered

by the antibiotic minocycline or with Ruxolitinib, an inhibitor of

JAK/STAT1 signaling (203).

In the SVZ, expression of both receptors, IFNR1 and IFNR2, has

been demonstrated in NSPCs (204; Table 2). Three in vitro studies

with mouse cells showed increased differentiation of NSPCs from the

SVZ, although conflicting results were reported regarding

proliferation (133, 176, 205). Li et al. (206) observed that

neurospheres from IFN-g−/− mice exhibited increased proliferation

and differentiation into neurons and oligodendrocytes and reduced

differentiation into astrocytes. When IFN-g was added to the culture

medium, these effects were reversed. The same study demonstrated

that IFN-g KO is associated with increased proliferation in vivo.

Pereira et al. (207) suggested a similar effect, and reported that i.c.v.

administration of IFN-g reduces the proliferation and differentiation

of SVZ cells and decreases the survival of new neurons in the OB

of rats.

Experimental data and controversy hardly support the role of

IFN-g in memory and learning. Genetically modified mice with

limited brain expression of IFN-g, which does not cause cellular

damage or infiltration, demonstrated better MWM performance

than wild-type animals (200). However, Monteiro et al. (202) found

that IFN-g KO mice performed better on MWM and novel object

recognition tests. In social behavior there is only one work by

Filiano et al. (208), who reported that mice lacking IFN-g expression
showed reduced social interaction.

These results suggest that basal levels of the cytokine are

necessary for neurogenesis in the SGZ and SVZ and memory

because high levels or absence of this cytokine impair them.

5.3.2 Interleukins 4 and 13
Interleukins 4 and 13 are produced by Th2 CD4+ cells. They

share the IL-4Ra chain and participate in several effector functions.

IL-4 has broad actions on different cells and can be produced by
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multiple cell types in addition to Th2 cells, including CD4+NK1.1+

natural T cells (NKT), macrophages, eosinophils, basophils, mast

cells, and type 2 innate lymphoid cells (ILC2). It is a fundamental

cytokine for antibody production, but is also involved in Th2

inflammation, fibrosis, allergic reactions, and antitumor activity (209).

IL-4Ra is highly expressed in the cortex and hippocampus in

GABAergic and glutamatergic neurons (Table 2). Its deficiency has

been linked to the reduction of synaptic vesicles in the hippocampus,

indicating that this receptor plays a crucial role in synaptic activity

within this region (210). Regarding neurogenesis, we found no studies

on the expression of IL-4Ra in young adult mice. However, there is a

report investigating this receptor in NSPCs of 12-month-old wild-

type C3B6F1 mice, but they did not find it (211).

Higher levels of IL-4 have been reported in the peripheral and

CNS as a result of genetic restriction of the T cell repertoire to a

foreign antigen (OVA) in Balb/c mice; this increase was negatively

correlated with the number of Ki-67 and DCX cells, but no direct

effect of the cytokine was shown in vivo. In this study, the researchers

further analyzed the impact of cytokine on hippocampal NSPC

cultures. They observed reduced proliferation, a response that

appears to be dose- and time-dependent (94). In contrast, Zhang

et al. (212) observed no changes in proliferation, differentiation, or

survival in NSPCs of the DG due to IL-4 or IL-4Ra KO. However,

they used CX3CR1 KO mice and as mentioned above, this receptor

has a vital role in neurogenesis. In vitro, Guan et al. (213) did not find

an increase in migration in neurospheres obtained from SVZ.

IL-4 and IL-13 have been linked to memory and learning, as

evidenced by an increase in their levels within the meninges and

hippocampus when a mouse performs a spatial task. Furthermore,

mice lacking IL-4, IL-13, or IL-4Ra exhibit deficits in MWM

resolution and contextual fear conditioning (97, 210, 214–216).

Moon et al. (217) reported no changes in IL-4 KO mice in either

MWM or novel object recognition tests, and state that differences

due to active/inactive cycling between their study and that of

Derecki et al. (216) could explain the differences. Finally, this

study was the only one that explored the effect of lack of IL-4; in

this case an increase in social exploration was observed, suggesting

an inhibitory function of the cytokine (217).
5.3.3 Interleukins 17 and 23
The IL-17 cytokine family includes six members: IL-17A, B, C,

D, E and F, produced by Th17 (inflammatory) lymphocytes and Tg/
d and CD8 cells (88). Isoform A is the most active and indirectly

mediates intense neutrophil-mediated inflammation by enhancing

the production of IL-1b, IL-6 and G-CSF by tissue-resident cells. It

induces a much more powerful inflammatory response than an

initial innate aggression, thus closing a positive feedback loop to

attack bacteria and fungi.

In the DG, IL-17 mRNA is mainly expressed by astrocytes and,

to a lesser extent, by microglia and NSPCs (218; Figure 2). IL-17 KO

mice showed increased differentiation, maturation, and survival of

neurogenic cells in the DG (218). Surprisingly, this was

accompanied by a decrease in several cytokines such as IFN-g,
TNF-a, IL-1b, and IL-12, suggesting that these effects could be

indirect (218). Consistent with these findings, IL-17A
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administration decreased the relative gene expression of PCNA,

indicating a reduction in cell proliferation in this area (219). In

apparent contradiction, i.p. administration of anti-IL-17A

antibodies reduced the number of DCX cells (220). However, it is

unclear whether IL-17 crosses the BBB to access the neurogenic

niche directly or whether its effect is indirect. Therefore, further

studies are necessary to identify the mechanism of the effect of IL-17

on neurogenesis. Regarding memory and learning, IL-17 KO mice

showed no changes in memory performance, as assessed in MWM

and Y-maze tests (221).

Interleukin-23 was discovered almost 20 years ago; is a member

of the IL-12 family, formed by the p19 and p40 subunits, and is a

critical promoter of Th17 differentiation and proliferation through

interaction with IL-12Rb1 and the specific IL-23 receptor (222).

The study by Willinger and Turgman (220) is the only exploration

of the role of IL-23 in social behavior and memory. They reported

that i.p. administration of anti-IL-23 reduced social interaction with

conspecifics. Furthermore, a decrease in the number of DCX cells

was observed in the DG (220). The specific effect of IL-23 on

neurogenesis in SVZ-BO is still unknown, but due to its role on

Th17 cells it could be acting through them.

It is essential to highlight the need for more research on the

cytokines IL-17 and IL-23 in neurogenesis and behavior, mainly due

to the abundance of Tg/d in the meningeal lymphatic network and

the SLYM (103, 104).
5.4 Regulatory cytokines

5.4.1 Interleukin 2
Interleukin-2 (IL-2) was discovered in 1976 by Morgan,

Ruscetti and Gallo. They demonstrated that a “conditioned

medium” obtained from normal human lymphocytes stimulated

with phytohemagglutinin induced selective proliferation and

maintenance of T cells, revealing an autocrine stimulator. It is

understood that both IL-2 and the alpha chain of its receptor (IL-

2Ra or CD25) are produced exclusively by T cells immediately after

antigenic stimulation in secondary lymphoid tissues. Regulatory T

cells (Treg) represent an exception, constitutively expressing the full

form of the receptor (IL-2Ra/b/gc) and deficient levels of cytokine.

This unique expression pattern strongly associates IL-2 with the

regulation of the immune response (88).

The cytokine and its receptor have been identified in several

regions of the CNS, including the prefrontal cortex, striatum and

hippocampus (223, 224). Both IL-2Ra and IL-2b have been found

in mature neurons of the DG and SVZ (Table 2).

Due to the limited number of studies, the role of IL-2 in

neurogenesis has not yet been elucidated. Beck et al. (225)

reported that mice lacking IL-2 exhibited increased differentiation

of neurons (BrdU/bIIITubulin cells) in the DG, suggesting a

modulatory effect, since IL-2 deletion also resulted in elevated

levels of IL-12, IL-15, IP-10 (CxCL10), and MCP-1 (CCL2) in

the hippocampus.

Regarding memory and learning, there are very few results that

allow conclusions to be drawn. On the one hand, Petitto et al. (226)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1550660
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sepúlveda-Cuéllar et al. 10.3389/fimmu.2025.1550660
reported that mice lacking IL-2 showed impaired resolution of

MWM tasks. Still, a later study by the same group found that

deletion of the standard IL-2/IL-15b chain from the receptor did

not influence performance in the MWM, leaving doubt about the

role of IL-2 (227). These findings suggest that IL-2/IL-2Ra signaling

is necessary for normal spatial memory. Finally, Wu et al. (228)

found that mice with a knockout IL-2Rgc gene (involved in IL-2

signaling) had improved contextual fear conditioning. However, the

receptor gamma chain is shared with other cytokine receptors, i.e.

IL-4, IL-7, IL-9, IL-15, and IL-21 (88); Therefore, it is not clear

which cytokine is involved in the phenomenon.

5.4.2 Interleukin 10
Interleukin-10 is a potent immune mediating cytokine with

versatile functions, initially described as a product of activated CD4

Th2 cells and termed cytokine synthesis inhibitory factor (229). It is

now known that a large subset of innate and adaptive immune cells,

including dendritic cells, macrophages, eosinophils, NK cells, T

cells, and B cells, can produce IL-10 (230). IL-10 is generally

considered an immunosuppressive cytokine, often referred to as

the “brake” of the immune system; however, IL-10 can also act as an

activator of B cells and CD8 T cells (231).

In the CNS, IL-10 is produced by microglia, astrocytes, and

neurons (Figure 2). It exerts various biological effects in the brain,

such as limiting the synthesis of pro-inflammatory molecules,

mediating neuroprotection, and modulating synaptic structure

and activity (232, 233).

In hippocampal neurogenesis, a recent study by Sánchez-

Molina et al. (234) with transgenic mice that overexpress IL-10

did not find significant differences in proliferation. However, they

reported a notable decrease in the survival and differentiation of

newborn NSPCs. Notably, IL-10R is not expressed in these cells,

suggesting an indirect effect of the cytokine on this process.

Sánchez-Molina et al. (234) discuss that this indirect effect could

be mediated by CX3CR1, since overexpression of IL-10 leads to a

reduction of the receptor, which decreases neurogenesis (75–80).

IL-10R1 expression in the SVZ is limited to Nestin cells in the

dorsal subregion, with no expression observed in the ventral

subregion (235; Table 2). After an acute i.c.v. After IL-10

administration, the overall population of proliferating cells

(BrdU) remained stable. However, a specific decrease in BrdU/

Nestin cells indicated a decrease in NSPC proliferation.

Furthermore, Nestin/Mash1 cells increased, but simultaneously,

differentiation (DCX and PSA-NCAM cells) decreased (235).

As mentioned above, direct injection of Treg cells (previously

stimulated with IL-2 and anti-CD28) into the SVZ enhanced NSPC

proliferation; this effect was mediated by IL-10 (95). Therefore, because

there is an increase in Nestin/Mash1 but a decrease in proliferation and

differentiation, these results suggest that IL-10 may play a role in

arresting lineage progression and potentially contribute to maintain

theNSPC reservoir, as indicated by Pérez Ascencio et al. (235).

The described observations align with the assessment of NSPC

survival in the OB, where acute administration of IL-10 and,

paradoxically, its absence (in IL-10 knockout mice) reduce BrdU/

DCX and BrdU/NeuN cell populations. These findings suggest that
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IL-10 could inhibit NSPC proliferation in the dorsal SVZ and their

maturation in the OB (235). Guan et al. (213) reported a slight

increase in migration of neurospheres obtained from the SVZ in

vitro. It should be noted that there is a strict regionalization of the

neurogenic niches in the ventral and dorsal subregions of the SVZ

in terms of gene expression, with the dorsal area being the gateway

to the RMS and the final objective, the OB (236).

In an interesting study by Sánchez-Molina et al. (234) using a

model of chronic IL-10 overproduction, a deficit in spatial memory

was demonstrated. Paradoxically, transgenic mice with reduced IL-

10 expression in the brain also showed impairments in MWM

performance (237). These contradictory findings underscore the

intricate role of IL-10 in modulating cognitive functions.

5.4.3 Tumor growth factor beta
Like IL-10, TGF-b family members are considered master

immunosuppressive regulators. TGF-b1 inhibits the proliferation

of T and B cells and the activation of macrophages, and also has

other functions, such as inducing class switching in B cells to

produce IgA, promoting the differentiation of Th0 lymphocytes

into Treg or Th17 (along with IL-6), and facilitating the production

of extracellular matrix, specifically collagen by fibroblasts.

Consequently, TGF-b plays a crucial role in tissue repair, scar

formation, fibrosis, apoptosis, cell motility, and angiogenesis. It is

primarily produced by regulatory T cells and macrophages,

although other cell types can also secrete it (882; 238, 239).

TGF-b receptors are expressed in multiple brain regions,

including the cortex, midbrain, cerebellum, brainstem, and

hippocampus. Microglia are the main source of TGF-b1 in the

CNS, while the producers of TGF-b2 and b3 in murine brains are

yet unknown (240, 241). Wachs et al. (242) demonstrated the

expression of Nestin neural stem cells from DG and SVZ that

express mRNA for all three receptors, TGF-bR1, TGF-bR2, and
TGF-bR3 (Table 2).

When TGF-b1, but not TGF-b2, was added to cultures

containing these NSPCs, a dose-dependent reduction in their

proliferation, arresting the cells in G0/G1 was observed (242;

Table 1). Buckwalter et al. (243) and Kandasamy et al. (244)

reported that transgenic mice overexpressing TGF-b1 reduced the

proliferation, differentiation, and maturation of NSPC cells in the

DG. However, in the second work an increase in NSPC survival was

observed. Furthermore, chronic infusion of TGF-b1 for seven days

into the brain ventricles inhibits NSPC proliferation in both the

hippocampus and SVZ (242). This inhibitory effect persists four

weeks after the last administration, with no changes observed in cell

differentiation and maturation. However, Mathieu et al. (245)

reported conflicting results, since rats injected with adenoviral

vectors expressing TGF-b in the SVZ exhibited increased

differentiation (BrdU/DCX cells) three weeks later. Discrepancies

may arise due to differences in the vector used for transgenesis or in

the mammalian species studied. Interestingly, deletion of TGF-bR2
does not alter neuroblast exhaustion, leaving open the question of

how TGF-b affects neurogenesis (246).

Shih et al. (247) reported that inhibition of TGF-b1 signaling

through PHFR1 KO affected MWMperformance. Similarly, Bedolla
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et al. (240) found that deletion of the microglial-Tgfb1 gene affects

performance in the Barnes maze. Interestingly, overexpression of

the cytokine during adulthood increases social interaction in mice,

underscoring the context-dependent effects of TGF-b on brain

function (248).
6 Discussion

Although the initial inspiration to analyze the role of cells and

cytokines in behavior, learning and memory was their alterations

due to infectious and non-infectious diseases, we soon realized that

their role in non-pathological conditions was unclear. As

mentioned at the beginning, the extraordinary reviews cover part

of the topics discussed here. Still, many include different species

(humans, rodents and others) at different ages and often in

pathological conditions. However, these works gave us great ideas

to define the limits of this review to reduce heterogeneity and to

seek conclusions about the role of the immune system within the

CNS, especially in two fundamental areas for neuroplasticity

through neurogenesis: the DG and the SVZ. We found some data

that can lead to conclusions.
6.1 Virtually all resident but few “invader”
cells participate in neurogenesis under
non-pathological conditions

All resident and a few extracerebral cell types influence

neurogenesis and behavior primarily through the production of

neurotrophic factors and cytokines. Two extracerebral immune

cells are essential for neurogenesis in a non-diseased brain. The

first is Ly6Chi monocytes, which have positive effects, possibly

through cytokine production. Resident neuronal and glial cells can

attract them by secreting CCL2. Furthermore, CD4+ T cells

participate in neurogenesis and behavior, providing neurotrophic

factors, such as BDNF or cytokines. Interestingly, their antigenic

specificity influences their function, and those that are autoreactive

could have a positive function.

The crucial resident immune cells are microglia, which are pro-

neurogenic if quiescent, probably through scavenger-like activity,

and provide neurotrophic factors and adequate levels of some

cytokines. However, if activated, they produce high levels of pro-

inflammatory cytokines, which may inhibit neurogenesis, with

potential effects on learning, memory and social behavior.
6.2 Are cytokines direct causative factors
of neurogenesis and behavior?

We conducted this review to identify key actions of cytokines on

neurogenesis and their cognitive implications. We constructed

Table 1 and Figure 3 to show the main findings, and they do so

to some extent. Extensive research has suggested that some

inflammatory cytokines, such as IL-1b, IL-6, TNF-a, IFN-a, and
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IFN-g, but also the anti-inflammatory IL-10 and TGF-b, inhibit
neurogenesis. However, these molecules can have both stimulatory

and inhibitory effects (Table 1). Part of the reason is that there is a

dose-dependent effect on cell survival, differentiation, or

proliferation, as shown for TNF-a.
Remarkably, much of the data comes from KOmodels, with few

exceptions of tissue-specific, cell type-specific, or time-specific

transgene expression; therefore, they are inconclusive, as the

animals lacked or overexpressed the cytokine throughout their

bodies and lives.

Several studies reviewed here strongly suggest that cytokines

interact and are co- produced by single-cell types. Therefore, the

effect of a cytokine may well reflect the simultaneous or subsequent

actions of a series of molecules.

Although there is strong support for the importance of

chemokines in neurogenesis due to the presence of their receptors

in progenitor, immature, and mature neurons in both the DG and

SVZ (see Table 2), direct evidence for their role is scarce. However,

they have been involved in cell migration, differentiation and

maturation (Table 3). There is no evidence for chemokine

production by CNS resident cells other than CCL2 and

Cx3CL1 (Figure 2).
6.3 Cytokines or their receptors?

In some cases, receptors, not cytokines, were shown to be the

key factors in neurogenesis. Two examples are fractalkine and TNF-

a. In the first case, the lack of the receptor makes the microglia

amoeboid very active and more inflammatory, while the absence of

the cytokine had no effect. For TNF-a, it was elegantly shown that

the two receptors act in different and almost opposite ways: TNFR2

induces the proliferation of NSPCs and TNFR1 causes them to

return to an inactive state, thus maintaining the pool of potential

precursors. In Table 2, most NSPCs and mature neurons in the DG

have been directly studied for receptor expression, while much

remains to be done in the SVZ. This is relevant because, as

explained at the beginning, the proliferation of progenitors is not

always related to neurogenesis; in fact, it may indicate a deviation

towards the genesis of astrocytes or oligodendrocytes.
6.4 Behavioral changes caused by immune
cells and cytokines could be due to factors
non-related to neurogenesis

The expression of cytokine and chemokine receptors in mature

neurons in the hippocampus and olfactory bulb (Tables 1, 2) raises the

possibility that immune molecules directly regulate behavior. In this

review, we highlight some studies in which cytokines (e.g., IL-1b,
CCL-3) were injected directly into the brain parenchyma, inducing

memory impairment (114, 190). Particularly, in the few studies in

which neurogenesis and behavior were evaluated simultaneously,

concordant results emerged. For example, Sánchez-Molina et al.

(234) demonstrated that transgenic overexpression of IL-10 in the
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Sepúlveda-Cuéllar et al. 10.3389/fimmu.2025.1550660
hippocampus enhanced DG neurogenesis and improved spatial

memory performance, directly linking cytokine levels, neurogenesis,

and behavior. These studies underscore that, under strictly controlled

experimental conditions, immune-mediated neurogenesis can be

correlated with behavioral outcomes.
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While these findings suggest a link, establishing a causal

mechanism requires further research in this field, because the

effects on behavior could arise, for example, through cytokine-

driven alterations in synaptic plasticity (18) or neuroendocrine

signaling (249) rather than directly on neurogenesis.
FIGURE 3

Effect of cytokines and chemokines on hippocampal and SVZ neurogenesis and on memory/learning or social behavior. Green arrows indicate
better performance in behavioral tests or increase in proliferation, migration, differentiation, maturation or survival of the new neurons generated,
while the red arrows indicate a worsening of the same phenomena. The scheme was made in BioRender License VX26YDSAAS..
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has received CONAHCYT fellowship 615820. IC, FG, MC, and DC are

fellow members of the SNI CONAHCYT. DS received a research-

scholarship from Universidad Anáhuac México. The authors thank
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231. Howes A, Gabrysǒvá L, O’Garra A. Role of IL-10 and the IL-10 receptor in
immune responses. in: Reference Module in Biomedical Sciences. 3rd edition. London:
Elsevier (2014) p. 1–11.

232. Lim SH, Park E, You B, Jung Y, Park AR, Park SG, et al. Neuronal synapse
formation induced by microglia and interleukin 10. PloS One. (2013) 8:e81218.
doi: 10.1371/journal.pone.0081218
Frontiers in Immunology 22
233. Segev-Amzaleg N, Trudler D, Frenkel D. Preconditioning to mild oxidative
stress mediates astroglial neuroprotection in an IL-10-dependent manner. Brain Behav
Immun. (2013) 30:176–85. doi: 10.1016/j.bbi.2012.12.016

234. Sanchez-Molina P, Almolda B, Giménez-Llort L, González B, Castellano B.
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