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Introduction: Cysteine proteases from Clonorchis sinensis, including various
proteins, are essential for its pathogenicity and serve as potential vaccine
candidates. This study assesses the protective effects of three C. sinensis
cysteine proteases (CsCP1-3).

Methods: Mice immunized with recombinant CsCP1-3 and adjuvants were
subsequently infected with C. sinensis metacercariae after three immunization
rounds. Liver damage was evaluated through hematoxylin and eosin (H&E),
Masson’s trichrome, and immunohistochemical analyses. The levels of 1gGl,
IgG2a antibodies, and cytokines (IFN-g, IL-2, IL-4, and IL-10) were quantified by
enzyme-linked immunosorbent assay (ELISA).

Results: RT-gPCR revealed that CsCP1-2 exhibited the highest expression in
newly encysted larvae (NEL), while CsCP3 was predominantly expressed in adult
stages. Immunohistochemical localization confirmed that CsCP1-3 are present
in the eggshells, syncytial layers of metacercariae, NEL cuticle, and adult
intestines. Histological and immunohistochemical analysis demonstrated that
the rCsCP1-3-immunized group displayed reduced liver inflammation and biliary
fibrosis compared to the control group. The rCsCP1-3 induced a progressive
increase in specific IgGl and IgG2a antibody titers by the second week post-
immunization. In the CsCP1-2 group, cytokines IFN-g, IL-2, IL-4, and IL-10 were
elevated relative to the control, with particularly high levels of IFN-g and IL-10 in
CsCP1, indicating a strong mixed Th1/Th2 immune response. In contrast, the
CsCP3 immunization group exhibited a transient increase in cytokines (IFN-g, IL-
2, IL-4, and IL-10) three days postinfection, which subsided after one to
two weeks.
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Discussion: These findings suggest that CsCP1-3 elicit robust antibody and
cellular immune responses, mitigating liver damage caused by C. sinensis
infection. CsCP1, in particular, induces a potent mixed Th1/Th2 response,
positioning it as a promising vaccine candidate.

Clonorechis sinensis, cysteine proteases, characteristics, liver damage, immune protection

1 Introduction

Clonorchiasis is a serious foodborne parasitic disease that affects
over 200 million people worldwide, with an estimated 15-20 million
individuals infected (1, 2). Infection with Clonorchis sinensis (C.
sinensis) primarily occurs through the accidental ingestion of
metacercariae, potentially leading to bile duct dilation,
cholecystitis, cholelithiasis, liver fibrosis, and even hepatocellular
carcinoma and cholangiocarcinoma (3-5). The disease is mainly
endemic in southeastern and northeastern China, northern Korea,
northern Vietnam, and eastern Russia, regions where the
consumption of raw fish is common, complicating prevention
and control efforts (6, 7). Current prevention and treatment
strategies primarily rely on medications such as praziquantel and
albendazole, with no commercially available vaccine yet (8, 9).

Cysteine proteases (CPs) are eosinophilic proteolytic enzymes
with hydrolytic activity. They are classified into various families
based on primary amino acid sequence and secondary/tertiary
structure (10). In parasitic organisms, CPs are secreted proteins
involved in key biological and pathogenic processes, including host
cell adhesion, tissue invasion, cytotoxicity, nutrient uptake, and
immune evasion (11, 12). CPs from various parasites have shown
the potential to induce robust humoral and cell-mediated immune
responses, positioning them as promising vaccine candidates (13).
CPs derived from Fasciola hepatica (14), Schistosoma mansoni (15,
16), Haemonchus contortus (17), and Trichinella spiralis (18) have
been demonstrated to stimulate strong immune responses, with
immunization reducing worm burden (18, 19). As such, parasitic
CPs are considered significant vaccine candidates with broad
potential for application (20, 21).

Several cysteine proteases have been identified in C. sinensis,
including cathepsins B, F, L, and legumain (22-25). However,
limited immunoprotection studies on CsCPs have been
conducted. Notably, a 37.6 kDa CsCP has been shown to induce
both humoral and cellular immune responses, providing substantial
protection in Sprague-Dawley rats (26). Additionally, a 35 kDa
recombinant CsCP (B.s-CotC-CsCP) has demonstrated the ability
to induce a specific immune response in mice, resulting in a
significant reduction in liver fibrosis post-immunization (27).
Furthermore, immunization with CotC-CsCP in grass carp has
proven effective in conferring resistance to C. sinensis infection (28).
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Despite these findings, the immunoprotective roles of many CsCPs
remain inadequately understood.

This study examines the expression and localization of three C.
sinensis cysteine proteases (CsCP1-3). Mice were immunized with
recombinant forms of these proteases and subsequently challenged
with C. sinensis infection to assess liver damage and measure
antibody and cytokine levels. This investigation into the
immunoprotective roles of CsCP1-3 aims to enhance
understanding of their potential as vaccine candidates.

2 Materials and methods

2.1 C. sinensis metacercariae, newly
excysted juvenile worms, adult worms and
eggs preparation

C. sinensis-infected Pseudorasbora parva was collected from
Hengzhou City, Guangxi. After the head, scales, and viscera were
removed, the fish flesh was minced and digested at 37°C for 12 hours in
an artificial digestive fluid (1% hydrochloric acid and 0.6% pepsin).
Metacercariae were isolated under a stereomicroscope and stored in
0.9% saline solution (29). A portion of the metacercariae was treated
with trypsin digestive fluid (0.025% trypsin, pH 7.4) and incubated at
37°C for 3 minutes to obtain newly excysted juveniles (NEJ).
Additionally, a portion of the metacercariae was orally administered
to Sprague-Dawley (SD) rats, with 150 metacercariae per rat. After 4
weeks, the rats were euthanized, and adult worms were collected from
the bile ducts, along with eggs from the uteri of the adult worms. The
adult worms, NEJ, metacercariae, and eggs were partially stored in
RNA preservation solution at -80°C and partially fixed in 4%
paraformaldehyde at room temperature.

2.2 Expression, purification, and
identification of recombinant CsCP1-3
protein

Total RNA was extracted from adult C. sinensis, and cDNA was

synthesized through reverse transcription. The CsCP1-3 gene
(GenBank Accession: DQ902582.1, DQ902583.1, DQ902586.1)
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was amplified by PCR and subcloned into the pPic9k (+) expression
vector(Sangon Biotech, Shanghai, China), creating the recombinant
plasmid pPic9k (+)-CsCP1-3. After sequence verification, the
construct was transformed into the Pichia pastoris GS115 strain
(Sangon Biotech, Shanghai, China). GS115 cells harboring pPic9k
(+)-CsCP1-3 were inoculated into 5 mL of YPD liquid medium and
cultured at 30°C with shaking at 250 rpm for 12 hours. The culture
was then diluted 1:50 into BMGY medium and further incubated at
30°C with shaking at 250 rpm for 12-16 hours. Following
centrifugation at room temperature, the cells were resuspended in
an equal volume of BMMY medium and cultured at 30°C with
shaking at 250 rpm. Methanol was added every 12 hours to
maintain a final concentration of 0.5%, and after 72 hours, the
supernatant was collected by centrifugation at 4°C and analyzed by
12% SDS-PAGE and Western blotting. The expressed protein was
purified using a Ni-agarose affinity column with a His tag and
dialyzed to obtain a large quantity of the protein.

2.3 Preparation of anti-rCsCP1-3 immune
sera

To generate anti-sera for subsequent experiments, 150 ug of
rCsCP1-3 was mixed with an equal volume of complete Freund’s
adjuvant(Sigma-Aidrich, USA) and administered to rats via multiple
subcutaneous and intradermal injections. The dose was halved for the
second and third booster immunizations, which were given at 2-week
intervals. Blood was collected from the rats’ tails before each
vaccination and 2 weeks after the final immunization (30). The
serum was separated, inactivated by heating at 56°C for 30 minutes
to deactivate the complement, and stored at -20°C for future use. The
serum was initially diluted at 1:800 and further serially diluted, with the
titer of anti-rCsCP1-3 serum determined using an ELISA method.

2.4 CsCP1-3 expression at different
developmental stages of C. sinensis

Total RNA was extracted from the eggs, metacercariae, NEJ,
and adult worms of C. sinensis using the Trizol method. cDNA was
synthesized using the PrimeScript RT Master Mix kit (Takara,
Japan, RR036A). Primers for CsCP1-3 were designed according to
the information in Supplementary Table 1, with PCR amplification
conditions specified therein. RT-qPCR was performed using the
Takara RT-qPCR premix (RR820A, Japan), with B-Actin as the
internal reference gene. Relative mRNA levels of CsCP1-3 at
different developmental stages of the liver fluke were determined
using the comparative cycle threshold (2-AACT) method (31).

2.5 Localization of CsCP1-3 in different
developmental stages of C. sinensis

Eggs, metacercariae, NEJ, and adult worms of C. sinensis were
fixed in 4% paraformaldehyde, paraffin-embedded, and sectioned to

Frontiers in Immunology

10.3389/fimmu.2025.1550775

4 pum thickness. The sections underwent deparaffinization using
xylene and graded ethanol, followed by antigen retrieval in Sodium
Citrate Antigen Retrieval Solution (pH 6.0) using an autoclave.
Endogenous peroxidase activity was quenched with 3% H,O, for 15
minutes, followed by incubation with 5% goat serum (1:10 dilution)
at 37°C for 30 minutes. Subsequently, the sections were incubated
overnight at 4°C in the dark with SD rat anti-CsCP1-3 serum (1:800
dilution). The following day, after equilibration to room
temperature, the sections were washed four times with PBS, then
incubated with Goat Anti-Rat IgG H&L (Alexa Fluor® 594)
(Abcam, United Kingdom) at 37°C for 1 hour with intermittent
shaking. After three PBS washes, protein localization was observed
using a fluorescence microscope (Leica DMi8, Germany).

2.6 Immunization protocol with rCsCP1-3
protein

Eight-week-old BALB/c mice were randomly assigned to five
groups, each comprising nine mice. The initial immunization
involved administration of 75 pg of rCsCP protein (dissolved in
50 uL) mixed with 50 pL of complete Freund’s adjuvant. For the
second and third booster immunizations, incomplete Freund’s
adjuvant (Sigma-Aldrich, USA) was used, with the dosage
reduced by half. The primary, secondary, and tertiary
immunizations were administered at two-week intervals. Control
groups received PBS or PBS plus Freund’s adjuvant. Two weeks
after the final immunization, each mouse was orally administered
30 metacercariae. At 0, 2, and 4 weeks post-gavage, three mice from
each group were euthanized, and serum, spleen, and liver tissues
were harvested for liver function assays, splenocyte culture, and
histopathological analysis.

2.7 Histopathological assessment of liver
tissue

For dehydration, liver tissues were fixed in 4% paraformaldehyde
for 24 hours, followed by a graded ethanol dehydration series (70%,
80%, 90%, 95%, and 100%). After clearing with xylene, the tissues were
embedded in paraffin, sectioned, and mounted. Sections were stained
with hematoxylin and eosin (HE) for routine histological evaluation
and Masson’s trichrome for collagen visualization. Pathological
alterations were examined and documented using a light microscope
(Olympus BX43, Japan). Liver inflammation was quantified using the
mHALI scoring system based on HE staining (32). Fibrotic areas were
morphologically evaluated and scored using the Ishak scoring system
with Image] software after Masson’s trichrome staining (33).

For immunohistochemical analysis, antigen retrieval of
mounted sections was achieved by incubation in citrate buffer
(pH 6.0) for 3 minutes, followed by endogenous peroxidase
blocking at room temperature for 10 minutes. After a 30-minute
blocking step with 5% goat serum at 37°C, sections were incubated
overnight at 4°C with primary antibodies: Anti-o.-SMA Mouse
mAb (1:1000 dilution) and Anti-Collagen I Rabbit pAb (1:1000
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dilution) (both from Servicebio, Wuhan, China). Following washes,
sections were incubated with HRP-conjugated secondary antibodies
—Goat Anti-Mouse IgG (catalog number D110087-0100) and Goat
Anti-Rabbit IgG (1:2000 dilution, catalog number D110058-0100)
(both from Sangon Biotech, Shanghai, China)—for 45 minutes at
37°C. Immune complexes were visualized using 3,3’-
diaminobenzidine (DAB), with subsequent hematoxylin
counterstaining for 5 minutes and bluing. Dehydration, clearing,
and microscopic examination were performed, and positive staining
areas were quantified using ImageJ software. Serum levels of alanine
aminotransferase (ALT) and aspartate aminotransferase (AST) in
mice were determined using commercial assay kits (Nanjing
Jiancheng, China, C009-2-1 for ALT and C010-2-1 for AST)
according to the manufacturer’s protocol.

2.8 Determination of serum specific IgG,
IgG1, and IgG2a antibody titers

The rCsCP1-3 antigen was coated at 50 pg per well and
incubated overnight at 4°C in a humid chamber. Non-specific
binding was blocked with 5% bovine serum albumin (BSA) at 37°
C for 2 hours. Primary antibodies from mouse serum were added
starting at a 1:200 dilution, followed by serial dilutions up to
1:51200, and incubated overnight at 4°C. After three washes with
PBS-T (pH 7.4), HRP-conjugated goat anti-mouse IgG secondary
antibodies (diluted 1:50000, 100 uL per well) were added (Sangon
Biotech, Shanghai, China, China, catalog number D110087-0100)
and incubated for 1 hour at 37°C. The plates were washed three
times with PBST (pH 7.4), and the colorimetric substrate 3,3’,5,5-
tetramethylbenzidine (TMB) (100 pL per well) was added for color
development. The reaction was allowed to proceed for 10-15
minutes at room temperature in the dark, then stopped by adding
1M sulfuric acid (H,SO,) (100 uL per well). Absorbance at 450 nm
was measured using a microplate reader (BioTek Synergy H1). The
endpoint titer for specific IgG antibodies in infected serum was
determined as the highest dilution at which the measured values
approximated those of the negative control serum.

2.9 Splenocyte preparation and cytokine
measurement

The effect of rCsCP1-3 on splenocyte viability was evaluated
using the CCK-8 assay (APExBIO, USA, K1018). Splenocytes were
isolated and seeded into 96-well plates at a density of 5 x 10° cells per
well in a complete RPMI-1640 medium (containing 10% fetal bovine
serum and 1% penicillin/streptomycin) (34). After 24 hours of
incubation at 37°C in a 5% CO2 atmosphere, cells were treated
with rCsCP1-3 at concentrations of 0, 12.5, 25, 50, 100, and 200 pg/
mL (10 uL per well) for an additional 24 hours. The old medium was
removed, and 10 uL of CCK-8 solution was added to each well,
followed by incubation for 2 hours at 37°C in a 5% CO2 incubator.
Cell viability was assessed by measuring absorbance at 450 nm using a
microplate reader (BioTek Synergy H1), with cell viability expressed
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as a percentage. The optimal concentration for co-culture with
splenocytes was determined to be 12.5 ug/mL (100 uL per well).

For cytokine measurement, splenocytes were seeded into 24-well
plates at a density of 5 x 10° cells/mL (1 mL per well) and treated with
rCsCP1-3 at a concentration of 12.5 ug/mL (100 pL per well), with PBS
serving as the negative control. After 48 hours of incubation at 37°C in
a 5% CO2 environment, cell supernatants were collected and stored at
-80°C for subsequent analysis. The concentrations of interleukin (IL)-2
(Multi Sciences, China, EK202), IL-4 (Multi Sciences, China, EK204),
IL-10 (Multi Sciences, China, EK210), and interferon (IFN)-y (Multi
Sciences, China, EK280) in the supernatants were quantified using
ELISA Kkits according to the manufacturer’s protocol. A multifunctional
microplate reader (BioTek Synergy H1) was used to measure dual-
wavelength absorbance at 450 nm and 570 nm/630 nm, with the
adjusted OD values calculated by subtracting the 570 nm/630 nm
readings from the 450 nm readings. The experiment was performed in
triplicate, and mean values were used for analysis.

2.10 Statistical analysis

All quantitative data are presented as mean + standard
deviation (x * s) from three independent experiments. Data were
analyzed using one-way analysis of variance (ANOVA), followed by
Bonferroni’s post hoc test. Statistical charts were generated using
GraphPad Prism software (version 9.0; GraphPad Software, Inc.),
and statistical analyses were conducted with SPSS software (version
25.0; SPSS Inc.).

3 Results
3.1 Sequence comparison and analysis

CsCP1-3 possess conserved structural domains characteristic of
cysteine proteases, including ERFNIN, GNFD, GCNGG, and the
catalytic triad C, H, N (Figure 1A). The open reading frame (ORF)
amino acid sequences of CsCP1-3 are 326, 371, and 327 amino acids
in length, respectively. The amino acid sequence homology between
CsCP1 and CsCP2 is 52.9%, between CsCP1 and CsCP3 is 73.15%,
and between CsCP2 and CsCP3 is 50.72%. Phylogenetic analysis of
C. sinensis cysteine proteases reveals that CsCP1, CsCP2, and
CsCP3 are situated on distinct branches (Figure 1B). B-cell
epitope prediction, performed using the IEDB tool (https://
www.iedb.org/), identified multiple phosphorylation sites and B-
cell epitopes across CsCP1-3, suggesting strong antigenicity and
immunogenicity, making CsCP1-3 a promising candidate for
vaccine development (Supplementary Figure 1).

3.2 Expression of rCsCP1-3

The cDNA of CsCP1-3 from C. sinensis was cloned into the
pPic9k expression vector. The recombinant proteins, expressed in
Pichia pastoris GS115, were present in the soluble fraction. The
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Homology and phylogenetic analysis of rCsCP1-3. (A) Homology analysis of the amino acid sequences of rCsCP1-3 revealed that all three proteins
contain the conserved cysteine protease sequences ERFNIN, GNFD, and GCNGG, along with the catalytic residues C, H, and N. (B) Phylogenetic
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soluble proteins were denatured with guanidine hydrochloride and
purified using Ni2+-affinity chromatography (Figure 2A). The
recombinant CsCP1-3 proteins were efficiently eluted at
molecular weights of 35 kDa, 40 kDa, and 35 kDa, respectively.
Western blot analysis confirmed that the target bands in the 72-
hour induced supernatant were recognized by anti-6 x His
monoclonal antibody (Figure 2B).

3.3 Transcriptional levels of CsCP1-3 at the
egg, metacercaria, newly excysted juvenile,
and adult worm stages

RT-qPCR results demonstrated that the expression of CsCP1

was significantly upregulated at the NEJ stage compared to the egg,
metacercaria, and adult stages (P < 0.001), with expression in the
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NEJ stage being nearly 100-fold higher than in the other stages
(Figure 3A). CsCP2 also exhibited the highest expression in the NEJ
stage, being twice as high as in the adult and four times as high as in
the egg stage (Figure 3B). In contrast, CsCP3 expression
progressively increased across all stages, peaking in the adult
worm stage (Figure 3C). These results suggest that CsCP1-3 have
distinct roles throughout the developmental stages of C. sinensis.

3.4 Tissue localization of CsCP1-3 at
different developmental stages of C.
sinensis

Immunofluorescence localization revealed that CsCP1 is

primarily localized on the surface of the eggshell, the surface of
metacercariae, the tegument and oral sucker of NEJ, and the
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FIGURE 2

Expression and validation of rCsCP1-3 in yeast. (A) SDS-PAGE analysis of rCsCP1-3 purified using a nickel column (Ni-NTA), showing molecular
weights of 35 kDa (rCsCP1 and rCsCP3) and 40 kDa (rCsCP2). (B) Western blotting of the 6 x His tag on rCsCP1-3. (A, B) show, from left to right,
rCsCP1, rCsCP2, and rCsCP3; M, molecular weight markers; lane 1, induced protein expression of rCsCP1-3; lane 2, negative control.
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Gene expression of rCsCP1-3 at different developmental stages of Clonorchis sinensis. RT-gPCR was used to quantify the mRNA expression levels of

rCsCP1-3 in the egg, metacercaria, newly excysted juvenile, and adult stages of C. sinensis. (A) rCsCP1; (B) rCsCP2; (C) rCsCP3. *P < 0.05, **P < 0.01,
***+p < 0.001, ****P < 0.0001.
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anti-CsCP3

Control

Tissue localization of rCsCP1-3 at various developmental stages of Clonorchis sinensis. Immunofluorescence localization of rCsCP1-3 distribution in
eggs, metacercariae, newly excysted juveniles, and adult stages of Clonorchis sinensis.

intestine, tegument, and cell layer of adult worms (Figure 4). CsCP2
and CsCP3 are predominantly found on the eggshell and
metacercariae surfaces, the tegument of NEJ, and the intestine,
body surface tegument, and cell layers of adult worms (Figure 4).
No fluorescence signal was detected in the PBS-immunized rat
serum, which served as a negative control (Figure 4).
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3.5 Examination of liver tissue sections
stained

Infection experiments demonstrated that mice immunized with
rCsCP1-3, as well as those in the PBS and PBS plus Freund’s
adjuvant groups, exhibited mild liver lesions one month after being
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FIGURE 5
rCsCP1-3 immunization ameliorates liver damage and inflammatory infiltration induced by Clonorchis sinensis infection in mice. Mice immunized
with rCsCP1-3 exhibited no significant pathological changes in liver morphology. In contrast, liver samples from PBS and PBS plus Freund's adjuvant-
treated groups showed increased lesion sites and the formation of small cysts (A). HGE staining revealed dense inflammatory cell infiltration around
bile duct tissues in the PBS and PBS plus Freund's adjuvant groups compared to the rCsCP1-3 immunized group (A). The degree of liver pathology in
each group was assessed using the mHAI scoring system (B). Note: Black arrows indicate small cysts; black triangles indicate inflammatory
infiltration; red triangles indicate C.s sinensis juvenile worms; ****P < 0.0001. Scale bar: 100 pm.
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challenged with C. sinensis metacercariae, with no significant gross
appearance differences. However, H&E staining revealed a
substantial influx of neutrophils and lymphocytes from the bile
ducts to the surrounding tissues in the PBS and PBS plus Freund’s
adjuvant groups (Figure 5A). In contrast, in mice vaccinated with
rCsCP1-3, the inflammatory cell infiltration around the bile ducts
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FIGURE 6

rCsCP1-3 immunization ameliorates fibrosis induced by Clonorchis sinensis infection. Fixed liver tissues were assessed for collagen deposition using
Masson's trichrome staining (blue indicates collagen deposition areas). Infection with Clonorchis sinensis resulted in significant collagen deposition in
bile duct areas, which was alleviated by immunization with rCsCP1-3 proteins (A). Hepatic fibrosis was quantified using Imaged (B) and the Ishak
scoring system (C). Blue triangles indicate C. sinensis juvenile worms; black triangles indicate collagen deposition areas. **P < 0.01, ***P < 0.001,

***%*P < 0.0001; Scale bar: 100 pm.
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was less pronounced (Figure 5A), indicating a milder degree of liver
inflammation. Moreover, mHAI scores for the PBS and PBS plus
Freund’s adjuvant groups were significantly higher than those for
the rCsCP1-3 immunized group at both the second and fourth
weeks post-infection (P < 0.001) (Figure 5B), suggesting that
rCsCP1-3 immunization resulted in reduced hepatic inflammation.
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Masson’s staining of liver tissues showed a reduction in collagen
fiber proliferation in the bile duct areas of the rCsCP1-3 immunized
group compared to the PBS and PBS plus Freund’s adjuvant groups
(Figure 6A), accompanied by a decrease in fibrotic area (Figure 6A).
Image] analysis and Ishak scoring indicated that the rCsCP1-3
immunized group had significantly lower scores than the PBS and
PBS plus Freund’s adjuvant groups at both the second and fourth
weeks post-infection (Figures 6B, C). These results consistently
demonstrated a lower degree of liver fibrosis in the rCsCP1-3
immunized group.

Immunohistochemical analysis showed that the expression of
o-SMA and Collagen I in the rCsCP1-3 immunized group was
lower than in the PBS and PBS plus Freund’s adjuvant groups
(Figures 7A, C). Statistical analysis of the positive staining areas
confirmed that a-SMA and Collagen I expression was significantly

10.3389/fimmu.2025.1550775

reduced in the rCsCP1-3 immunized group compared to the PBS
and PBS plus Freund’s adjuvant groups (P < 0.05) (Figures 7B, D).
These results suggest that rCsCP1-3 immunization alleviates biliary
damage and fibrosis in mice following C. sinensis infection.

3.6 Anti-rCsCP1-3 IgG antibody titer assay

Antibody titer assays demonstrated that immunization with
rCsCP1-3 induced a rapid production of specific IgG within two
weeks post-infection, whereas no increase was observed in control
groups receiving adjuvant or PBS (Figure 8A). Analysis of IgG
subclasses, IgG1 and IgG2a, revealed a rapid rise in IgG1 levels in
the rCsCP1 immunized group, with a deceleration in the second
week. IgG2a exhibited a gradual increase in the first two weeks,
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were stained with anti-o.-SMA (A) and anti-Collagen-| (C) antibodies. The positive staining areas were quantified using Imaged (B, D). Following
Clonorchis sinensis infection, o.-SMA and Collagen-| staining intensity increased in the PBS and PBS plus Freund's adjuvant groups. In contrast, the
rCsCP1-3 immunized group exhibited reduced staining intensity. The brown patr represents positive areas; *P < 0.05, **P < 0.01, ***P < 0.001, ****P
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followed by a sharp rise (Figure 8B). In the rCsCP2 immunized
group, both IgG1 and IgG2a titers showed a steady increase in the
first two weeks, with a rapid escalation thereafter (Figure 8C). In
contrast, the rCsCP3 immunized group displayed an initial rapid
increase in both IgGl and IgG2a titers, followed by a decelerated
rate of increase in the second week (Figure 8D).

3.7 Measurement of cytokine levels

ELISA results indicated that in the rCsCP1 immunized group, IL-
10 levels surged over 10-fold (11.73 + 1.97)by the first week post-
infection, compared to control groups, and remained elevated at the
second week. Concurrently, IFN-y, IL-2, and IL-4 increased
significantly starting from the second week (P < 0.001), with IFN-y
expression being more than 80-fold(82.93 + 12.86) higher than in
control groups (Figure 9). In the rCsCP2 immunized group, IL-2 and
IL-4 levels rose from the second and fourth weeks post-infection, while
IFN-y levels decreased noticeably, and IL-10 expression remained
unchanged compared to controls (Figure 9). In the rCsCP3
immunized group, IEN-y, IL-2, and IL-10 were elevated from the
first week post-infection (P < 0.01), with IL-4 levels increasing in the
second week. By the fourth week, no significant differences in the
expression of IFN-y, IL-2, IL-4, or IL-10 were observed between the
immunized and control groups (Figure 9).
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4 Discussion

This study revealed three key characteristics of CsCP1-3. Both
CsCP1 and CsCP2 exhibit the highest expression in the NEJ stage,
with CsCP1 showing over 200 times higher expression than in the
adult and metacercarial stages. This suggests that CsCP1 may play a
critical role in key processes during the NEJ stage, such as
excystation, intestinal invasion, and nutrient absorption. Further
analysis demonstrated that CsCP1 is widely distributed on the
eggshell, the surface of metacercariae, the outer tegument and
oral sucker of NEJ, as well as the intestine, tegument, and cell
layers of adult worms. The outer tegument proteins have been
shown to interact directly with immune cells, antibodies, and
cytokines (35), and several tegumental proteins have been
identified as potential vaccine candidates in flukes (28, 36, 37).

To evaluate the immunoprotective effects of CsCP1-3 following C.
sinensis challenge and two booster immunizations, liver damage was
assessed using hematoxylin and eosin (HE) staining, Masson’s
trichrome staining, and immunohistochemical analysis of o-smooth
muscle actin (-SMA) and Collagen-I. Post-immunization results
indicated that CsCP1-3 effectively reduced liver fibrosis progression
and inflammatory cell infiltration. Compared to the CsCP1-3
immunized group, control mice displayed thicker bile ducts, more
pronounced collagen fiber proliferation in the bile duct area, and higher
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Cytokine secretion levels of IFN-v, IL-2, IL-4, and IL-10. Compared to the PBS and PBS plus Freund's adjuvant control groups, the rCsCP1-
immunized group showed a sharp increase in IL-10, IFN-y, IL-2, and IL-4 levels within two weeks. The rCsCP2-immunized group induced a gradual
increase in IFN-v, IL-4, and IL-10 levels within four weeks. The rCsCP3-immunized group showed an initial increase in IFN-y, IL-2, IL-4, and IL-10
levels within two weeks, followed by a rapid decrease, with no significant differences compared to the control groups. **P < 0.01, ***P < 0.001,

****p < 0.0001.

levels of a-SMA and Collagen-I. These findings suggest that
immunization with CsCP1-3 significantly mitigated liver tissue
damage and reduced liver fibrosis induced by C. sinensis infection.
To preliminarily investigate the immunoprotective mechanisms of
CsCP1-3, antibody and cytokine responses were evaluated following
immunization. Immunization with CsCP1-3 induced a rapid
production of IgG, with IgG subclasses IgG1 and IgG2a showing a
gradual increase from 1 to 4 weeks post-infection. Previous studies on
potential vaccine candidates for C. sinensis have linked protective
immunity and worm reduction to elevated levels of IgG1/IgG2a (36,
38). Cytokine analysis revealed that the levels of IFN-y, IL-2, IL-4, and
IL-10 were significantly higher in the CsCPl-immunized group
compared to the control group, particularly IFN-y and IL-10, which
were more than 10 times higher than in controls. IL-10, an important
anti-inflammatory cytokine, plays a pivotal role in fibrosis and is
primarily secreted by activated macrophages and dendritic cells,
exerting inhibitory effects on fibrosis (39, 40). In C. sinensis-infected
mice, serum cytokines IL-4 and IL-10 increased, with IL-10 showing a
marked rise (41), while IFN-y and IL-2 levels decreased. During liver
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fibrosis, Polarized macrophages release anti-inflammatory factor IL-10,
influencing fibrosis progression (42). Moreover, IL-10 gene therapy has
been shown to reverse thioacetamide-induced liver fibrosis in mice
(43). The increased levels of IgG1/IgG2a antibodies and cytokines IFN-
Y, IL-2, IL-4, and IL-10 following CsCP1 immunization suggest that
CsCP1 elicits a mixed type 1/type 2 immune response, mitigating liver
damage caused by C. sinensis infection. In previous studies, vaccine
candidates for C. sinensis have achieved significant worm reduction
and alleviated liver damage by inducing a mixed type 1/type 2 immune
response (36, 44, 45).

In the CsCP2-immunized group, IgG1/IgG2a levels gradually
increased, and IL-2 and IL-4 expression significantly surpassed that
of the control group at four weeks post-infection. This suggests that
CsCP2 also triggers a mixed type 1/type 2 immune response in the
adult stage, reducing liver damage. In the CsCP3-immunized group,
expression levels of IFN-y, IL-2, IL-4, and IL-10 rose rapidly post-
infection but subsequently dropped to levels not significantly
different from the control by the second or fourth week. This
suggests that the observed reduction in liver damage is likely
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attributed to a robust innate immune response, which is critical in
triggering the subsequent adaptive immune response (46, 47).

5 Conclusion

This study characterized the expression and localization of three
cysteine proteases (CsCP1-3) from C. sinensis across various life cycle
stages of the parasite. Immunization with CsCP1-3 effectively reduced
liver damage caused by C. sinensis infection, although the protective
mechanisms varied among the three proteins. Notably, CsCP1 elicited
a robust mixed type 1/type 2 immune response, highlighting its
potential as a vaccine candidate. Future research will focus on
detailed vaccine efficacy, including worm burden reduction rates and
further exploration of the underlying protective mechanisms.
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