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T-cell engagers represent a transformative approach to cancer immunotherapy

leveraging bispecific and multispecific antibody constructs to redirect T-cell

cytotoxicity toward malignant cells. These molecules bridge T cells and tumor

cells by simultaneously binding CD3 on T cells and tumor-associated antigens on

cancer cells, thereby enabling precise immune targeting even in immunologically

“cold” tumors. Recent advancements include conditional T-cell engagers

activated by tumor microenvironment proteases to minimize off-tumor toxicity

as well as T-cell receptor–based engagers targeting intracellular antigens via

MHC presentation. Clinical successes, such as Kimmtrak in metastatic uveal

melanoma, underscore good potential of these modalities, while challenges

persist in the management of cytokine release syndrome, neurotoxicity, and

tumor resistance. Emerging multispecific engagers are aimed at enhancing

efficacy via incorporation of costimulatory signals, thus offering a promising

trajectory for next-generation immunotherapies. T-cell engagers are also

gaining attention in the treatment of autoimmune disorders, where they can

be designed to selectively modulate pathogenic immune responses. By targeting

autoreactive T or B cells, T-cell engagers hold promise for restoring immune

tolerance in such conditions as HLA-B*27–associated autoimmunity subtypes,

multiple sclerosis, rheumatoid arthritis, and type 1 diabetes mellitus. Engineering

strategies that incorporate inhibitory receptors or tissue-specific antigens may

further refine T-cell engagers’ therapeutic potential in autoimmunity, by

minimizing systemic immunosuppression while preserving immune

homeostasis.
KEYWORDS
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Highlights
• There are two main approaches to T-cell–based immunotherapy: HLA-restricted

and HLA-nonrestricted immunotherapy, which are mediated by naturally

occurring or genetically engineered T cells to target cancer antigens.

• T-cell engagers (TCEs) are bimodal molecules targeting a universal (e.g., CD3 or T-

cell receptor [TCR]) or subtype-specific (e.g., CD8) surface molecule on the T cell
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and a specific protein or nonprotein molecule or peptide–

MHC complex on the surface of a target cell.

• BiTEs (bispecific T-cell engagers) can be based on

antibodies targeted at cell surface tumor-associated

an t i g en s o r pep t i d e–MHC comp l ex e s (TCR-

mimic antibodies).

• BiTEs can also be based on soluble TCRs with enhanced

affinity, representing promising immunotherapeutic

candidates naturally selected to recognize peptide–

MHC complexes.

• TCEs may become the most powerful tools for specific

elimination of transformed and autoantigen-specific cells

and informed modulation of immune responses, with

accumulated knowledge facilitating rapid development of

safe and effective TCE-based interventions (Table 1).
Introduction

The enhancing strategy

Most of immunotherapeutic approaches employ the body’s own

T lymphocytes to combat disease (Figure 1). Broadly, there are two

strategies for reprogramming T cells to target specific threats. The

first involves optimizing polyclonal T cells for precise recognition

and elimination of tumor cells. Early adoptive cell transfer protocols

(5) relied on expansion of the tumor-infiltrating lymphocyte (TIL)

population ex vivo before re-infusing them into the patient. TILs

offer key advantages, including efficient tumor site trafficking and

inherent polyclonality, which enhances their ability to recognize

diverse tumor antigens (6). A landmark advancement in TIL-based

cancer therapy came in 2024 with the FDA approval of Amtagvi

(lifileucel) for patients with advanced melanoma who had
eviations: ADC, antibody–drug conjugate; AID, autoimmune disorder;

, Assessment of SpondyloArthritis International Society; BCD, B-cell

tion; BiAATE, bispecific autoantigen T-cell engager; BiTE, bispecific T-

ngager; CAAR-T, chimeric autoantibody receptor T cell; CAR-T, chimeric

en receptor T cell; CD, cluster of differentiation; CNS, central nervous

; CR, complete remission; CRS, cytokine release syndrome; CTLA-4,

oxic T-lymphocyte-associated protein 4; DART, dual-affinity retargeting

ody; EGFR, epidermal growth factor receptor; EpCAM, epithelial cell

ion molecule; HER2, human epidermal growth factor receptor 2; HLA,

n leukocyte antigen; KRAS, Kirsten rat sarcoma virus; MAGE, melanoma

en gene; MS, multiple sclerosis; NK cell, natural killer cell; ORR, overall

nse rate; OV, oncolytic virus; PD-1, programmed cell death protein 1;

C, peptide–major histocompatibility complex; RA, rheumatoid arthritis;

single-chain variable fragment; SLE, systemic lupus erythematosus; TAA,

r-associated antigen; TCE, T-cell engager; TCR, T-cell receptor; TCR-T, T-
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tor variable beta chain; TriTAC, trispecific T-cell–activating constructs;

, Wilms tumor protein 1.
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previously undergone treatment with PD-1 inhibitors (7).

Amtagvi has shown promising results in heavily pretreated

patients, including those whose cancer has progressed after

treatment with immune-checkpoint inhibitors and BRAF

inhibitors. The overall response rate (ORR) has been 31%,

median duration of response >27 months, and median overall

survival over 14 months (7). This is a significant improvement

over standard chemotherapy, which has an ORR of 4–12% and a

median overall survival of approximately 6 months. This milestone

underscores therapeutic potential of TILs in overcoming resistance

mechanisms and improving patient outcomes.

As of early 2025, 56 active TIL trials in melanoma were in

progress, including two phase 3 trials. The completion of these trials

is expected in 2027 and 2028. TILs have also shown promise in the

treatment of non–small cell lung cancer that is resistant to immune-

checkpoint inhibitor therapy and chemotherapy, including patients

with PD-L1–negative and low-TMB tumors (8). A phase 2 trial in

non–small cell lung cancer is ongoing, with results expected in 2030.

The improvement of TIL technology may be achieved by

enrichment with tumor-specific clonotypes (9) and cultivation

methods to diminish exhaustion (10). There are concerns about

potential cardiotoxic effects of TIL therapy. Hypotension-requiring

treatment in approximately 32.6% of patients receiving TILs has

been reported, just as cases of atrial fibrillation (14%) and troponin

upregulation (2.3%) (11). Toxicity associated with on-target off-

tumor recognition and IL-2 infusions has also been reported (12).

Current developments are targeted toward genetic engineering

approaches to the adoptive transfer of ex vivo–modified immune cells

(13). In vivo transduction approaches are evolving concurrently, and

nearly a dozen products may enter clinical trials by 2026 (14). A

chimeric antigen receptor (CAR) is a transmembrane receptor

molecule that combines antigenic specificity of an antibody with

the effector function of a T cell (15). Several generations of CARs have

been created to date and differ in the design of the intracellular

signaling part. Since 2017, seven chimeric antigen receptor T cell

(CAR-T) products that target CD19 and BCMA antigens have gained

FDA approval and shown breakthrough efficacy in hematological

cancers (16). Their current limitations include safety concerns due to

the high rate of grade 3–4 cytokine release syndrome (CRS) and

evidence of recurrence risk. Long-term follow-up studies have shown

some risk (3.6%) of secondary primary malignant tumors after

commercial CAR-T therapy; these rates are comparable to those

observed with chemo- and radiotherapy and remain lower than those

reported for stem cell transplantation (17). Similarly to antibodies

and antibody–drug conjugates (ADCs), off-tumor toxicity remains a

major limitation, significantly restricting clinical applications. In solid

tumors, the microenvironment and tumor heterogeneity pose

additional efficacy barriers (18, 19). Nonetheless, some clinical trials

dealing with solid tumors show promising results. In stage IV

pancreatic ductal adenocarcinoma (PDAC), the next-generation

CAR-T has shown significant clinical results with up to a 40%

reduction in tumor size after the initial cycle (20). Currently

approved CAR-T therapeutics are hard to produce and expensive,

and the need for patient preconditioning limits their therapeutic
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niche. Emerging in vivo CAR-T approaches (13, 21) represent a

significant advancement in this field.

A critical challenge in targeted immunotherapies is antigen loss due

to tumor heterogeneity and immune editing, which compromise

therapeutic efficacy. This limitation has spurred interest in

combinatorial approaches, such as using oncolytic viruses (OVs) to

induce de novo expression of CAR-targetable antigens within tumors

(22, 23). The convergence of CAR-T therapy and OVs holds promise

for overcoming antigen variability in solid tumors because OVs can

remodel the tumor microenvironment (TME) to enhance CAR-T

activity (24, 25). Innovations such as locoregional delivery (e.g.,

intraventricular or intrapleural administration) and multiantigen

targeting (e.g., bispecific CARs) showed improved tumor infiltration

and reduced antigen escape in recent trials (26, 27). Furthermore, such

strategies as cytokine-secreting CARs and synthetic biology tools such

as switchable receptors are aimed at counteracting immunosuppressive

TME barriers, e.g., hypoxia, nutrient scarcity, and regulatory immune

cells (28).

The use of T-cell receptor (TCR)-based recognition helps to

expand the repertoire of targetable antigens because T-cell receptor

T cells (TCR-T) can recognize epitopes derived from both
Frontiers in Immunology 03
membrane and intracellular proteins in a certain MHC context.

Some studies point to advantageous low antigen density required

for inducing TCR-T cytotoxicity as compared to CAR-T therapy

(a few molecules versus hundreds or thousands, respectively)

(29, 30); however, there are also observations based on high-

resolution microscopy potentially establishing new sensitivity

thresholds for CAR-T activation (31). Due to its high avidity,

TCR-T does not require high affinity for activation, which may

result in the scanning and sequential elimination of several antigen-

expressing cells.

The first clinical success was achieved with TCR-T specific to

the tumor-associated MAGE-A4 antigen in the HLA−A*02 context:

Tecelra. It gained accelerated approval by the FDA in August 2024

for the treatment of synovial sarcoma on the basis of a high ORR

rate and durable responses. According to published clinical reports,

TCR-T therapeutics are also promising in melanoma (32, 33),

multiple myeloma (34), HPV-driven cancers (35), and pancreatic

(36) and liver cancers (33). So-called public neoantigens resemble an

excellent class of TCR-T target because they are expressed only in

tumor cells, in many patients, are highly homogenous, and may

possess oncodriver activity, thus decreasing the probability of
FIGURE 1

Distinct targeted immunotherapy approaches. TAA, tumor-associated antigen; TCR, T-cell receptor; CD3, cluster of differentiation 3; CAR, chimeric
antigen receptor; BiTE, bispecific T-cell engager.
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antigen loss. KRASG12 mutants are currently the best-validated

neoantigens for TCR-T therapy (37–39).

At present, CAR-T and TCR-T therapeutics share the limitation

of manufacturing complexity, and methods of in vivo transduction

are urgently needed. One promising approach to overcoming the

limitations of allogeneic CAR-T therapy is the leveraging of viral

immune evasion mechanisms. Perica et al. (40) have demonstrated

that the HIV-1 Nef protein enhances the persistence and efficacy of

allogeneic CAR-Ts by reducing HLA-I expression to an optimal

level, preventing both CD8+ T-cell–mediated rejection and NK cell

activation. Additionally, Nef launches the Pak2 kinase pathway,

protecting CAR-Ts from activation-induced cell death and

enhancing their survival upon repeated antigen stimulation. This

strategy represents a significant advancement against immune

evasion for engineered T-cell therapies and potentially improves

their applicability to off-the-shelf treatments.
The engaging strategy

Another strategy for redirecting immune cells against

malignant or autoreactive targets is the so-called engaging

strategy. To overcome the restriction of natural TCR specificity,

antibody- and TCR-based bispecific molecules have been

developed. The essence of this strategy lies in bispecific

antibodies, which possess dual specificity: one arm recognizing a

tumor-associated antigen (TAA) and the other typically targeting

CD3 (the invariant signaling component of the TCR). This dual

targeting facilitates the formation of an immune synapse by

physically bridging the T cell and the tumor cell. CD3

engagement is widely employed due to its invariance and

constitutive expression on mature T cells, as well as T cell

activatory function (41). Although this approach ensures broad

T-cell activation, it may not represent the optimal strategy for

selective immune engagement, as discussed below.

The second target can be any TAA most clearly represented in a

given cancer type. This mode of action results in serial tumor cell

killing, efficient even at picomolar concentrations of a BiTE and a

low effector-to-target ratio. Blinatumomab (Blincyto, Amgen)—an

anti-CD19 BiTE approved by the FDA in 2014 (1) for the treatment

of B-cell acute lymphoblastic leukemia—was the first success in this

field. In 2022–2024, there was a slurry of BiTEs approvals, with

seven novel therapeutics entering the US market. The spectrum of
Frontiers in Immunology 04
targeted antigens includes CD20 (mosunetuzumab, glofitamab, and

epcoritamab) and BCMA (elranatamab and teclistamab) (42),

GPRC5D (talquetamab-tgvs), and DLL3 (tarlatamab). Tarlatamab

has become the first in the T-cell engager (TCE) class to be used

against solid tumors. It was approved for small-cell lung cancer

patients with disease progression on chemotherapy and showed an

ORR up to 40%, median progression-free survival of 5 months, and

excellent intracranial control in patients with brain metastases

(DCR 94%) (43). In contrast to blinatumomab—which is based

on scFv format with extremely short half-life (2 h) and needs

continuous infusion for 28 days and thus is very inconvenient for

patients’ follow-up—recently approved BiTEs all involve full IgG-

based design allowing for once-a-week subcutaneous dosing.

BiTEs have greatly changed the therapeutic landscape in

hematological cancers. These drugs have response rates up to

90% and complete remission (CR) rates as high as 60% in

relapsed/refractory B-cell lymphomas; such rates are impossible

to reach with chemotherapy (44). In multiple myeloma, response

rates of more than 60% and CR rates of nearly 40% are achieved in

relapsed/refractory cases with more than three lines of previous

treatment: truly incredible progress apparently (45).
Clinical properties of TCEs

Flexibility and independence from
costimulatory signaling

One of the key advantages of antibody-based BiTE technology is

its independence from MHC restriction and from costimulatory

signals. The loss of MHC molecular complexes on tumor cells (as in

the case of various viral infections) is one of the main causes of

resistance to immunotherapy, including immune-checkpoint

inhibition. In addition to antigen presentation, costimulation is

also required for effective activation of T-cell immunity, and this

state of affairs also complicates the machinery by increasing the

number of targets that should be used to disrupt the holistic

immune-response cascade. Simplification of immune-synapse

formation by getting rid of all the “extraneous” factors is an aim

of current TCE treatments. The formation of an immune synapse

between a T cell and target cell, serial cell killing, and induction of

perforin and granzyme release are mode-of-action characteristics

shared by CAR-Ts and BiTEs. Furthermore, BiTEs and CAR-Ts act
TABLE 1 T-cell–engaging arsenal.

Receptor Type Mechanism Example Ref.

scFv Binding to CD3 on T cell and TAA on tumor cell, followed by activating T cell to
eliminate tumor cells

Blincyto (1)

IgG-like antibody Binding to CD3 on T cell and TAA on tumor cell as well as FcgR on innate-immunity
cells, followed by activating T cells and macrophages to eliminate tumor cells and extend
engagers’ half-life

B7-H6/CD3 (2)

Soluble TCR Binding to CD3 on T cell and pMHC on tumor cell, thus redirecting T cell to target
tumor cell

Kimmtrak (3)

Soluble pMHC Binding to TCR on T cell, followed by killing of autoreactive T cell via ADC MHC-MMAF (monomethyl auristatin F) (4)
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via both CD8+ and CD4+ T cells, though optimal differentiation

stages differ, with Tem being the predominant engaged population

in the case of BiTEs (46). The results of the BCMAxCD3 TCE study

in multiple myeloma patients showed that the TCE response was

driven by CD8+CX3CR1+ effector cells, being accompanied by both

clonal expansion and effector differentiation; although the BCMA ·

CD3-T interaction was independent of MHC recognition, MHC

class I–mediated signaling was required for activation of initially

naïve cells (47).
The toxicity profile and mitigation
strategies

Due to predicted pharmacokinetics, TCEs appear to be a more

controlled therapy in terms of on-target tumor toxicity as compared

to cell-based treatments (CAR-T and TCR-T). Nonetheless, the two

therapeutic modalities (TCE and CAR-T) share high toxicity

including CRS and immune-effector-cell–associated neurotoxicity

syndrome (48). In a phase 2/3 study (NCT01207388) of

blinatumomab, grade ≥3 adverse events were seen in 71% of

patients, with grade 3 neurological events in 24% (49). In the case

of vibecotamab (Phase II clinical trials NCT05285813) (CD123/

CD3), 59.2% of acute myeloid leukemia patients experienced CRS,

which was the most common adverse event (50). A step-up dosing

schedule is used to reduce the incidence and severity of CRS. This

condition is thought to result from pan-T-cell provocation via CD3

binding. One way to overcome this limitation is to redirect some

subpopulations of T cells. An elegant solution was suggested by

Schmittnaegel with colleagues in 2015. The fusion molecule

included an IgG whole antibody linked with a CMV-specific HLA

complex, thus engaging an already pretrained subset of CD8+ T

cells. Alternatively, engaging of T cells via coreceptor CD8 (unlike

common CD3) is being employed in the latest trials (51, 52). T cells

engaging via the TCR or both TCR and CD8 have also been shown

to be relevant strategies, likely representing safe approaches with

good activation potential (53). Currently, a dual anti-CD8/anti-

TCR targeting TCE is being evaluated in a clinical trial

(NCT06542250, primary completion 02.2028).

Another subpopulation that can be specifically engaged is

mucosa-associated invariant T cells. These are an innate subset of

T cells that express a common Va7.2 chain. This approach is still in

preclinical development, but there is already proof of concept

available. The same barriers in the TME that hinder CAR-T

activity in solid tumors, such as inadequate T-cell migration, T-cell

exhaustion, and suppressive immune-cell populations, also apply to

BiTEs. This situation limits their effectiveness. Unlike CAR-Ts, TCEs

do not rely on active migration to reach a tumor site. This means that

they can accumulate in tumors if CAR-T migration is impaired.
Efficacy and multitargeting

TCEs hold promise for the treatment of solid tumors, despite

challenges such as the immunosuppressive TME, antigen
Frontiers in Immunology 05
heterogeneity, and immune evasion. Advances in molecular

engineering are enabling the creation of more durable and tumor-

penetrating TCEs with enhanced specificity. To address antigen

loss, multispecific engagers targeting multiple TAAs are being

explored, reducing the risk of immune escape. Additionally,

extending the half-life and stability of TCEs helps sustain

therapeutic efficacy while minimizing systemic toxicity.

Emerging technologies such as half-life–extended TCEs (54),

checkpoint-inhibitory TCEs (55), and simultaneous multiple-

interaction TCEs (56) offer innovative ways to refine TCE

selectivity and activity. These techniques enhance tumor targeting

while mitigating off-target effects and improving both safety and

efficacy. A detailed discussion of these strategies and their potential

to revolutionize TCE-based immunotherapy will be presented in

the following section.

Comparison of engagers with cell-based alternatives by

important clinical factors are presented in summary Table 2.
Optimization of immune-cell
engagers

Antibody-based immune-cell engagers

To date, clinical development of TCEs has been mainly focused

on hematological cancers because they are good targets with high

homogenous expression and lineage restriction. Selection of an

appropriate antigen poses the main challenge for TCE application

to solid tumors because there is a problem of tumor heterogeneity

and antigen sharing with normal tissues. Solitomab (aEpCAM

\aCD3) is an example of clinical failure due to the absent

therapeutic window because the expression of epithelial cell

adhesion molecule (EpCAM) on normal intestinal epithelia has

led to dose-limiting toxicity and even fatal toxicity (68). Other

features of solid tumors that greatly restrict TCE efficacy include

low T-cell infiltration, anergy, and exhaustion due the

immunosuppressive TME. Some of these limitations may be

overcome by TCE optimization, including additional antigen

specificities and functional modules. There are different BiTE

modifications suitable for different classes and numbers of targets,

and there is a constant search for stabler molecules with increased

affinity. Be that as it may, there is an open field for experiments with

different functional structures of canonical BiTEs (Figure 2).

Dual-affinity retargeting antibodies (DARTs) have cruciform

structure that gives them greater stability. In preclinical testing,

DARTs have shown more cytotoxicity as compared to BiTEs (69).

PF-03732010, a P-cadherin specific DART, has been effective in

several tumor models by inducing full regression of established

tumors (70). Two DARTs linked by disulfide bonds—thereby

maintaining the avidity of bivalent antibodies—form the structure

of tandem diabodies. With the molecular weight of >100 kDa, they

possess longer half-life and hence a pharmacokinetic advantage as

compared to smaller antibody constructs. Tetravalent bispecific

antibody AFM11 evokes effective T-cell activation as well as

cytokine production in B-cell cancer models, in particular non-
frontiersin.org
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Hodgkin’s lymphoma, with affinity values 10 times higher than

those of BiTEs (71). Anti-EGFRvIII tandem diabodies have been

investigated in glioma models and show superiority to anti-EGFR

despite 10–100-fold lower doses (72).

One of the strategies utilized to overcome an intratumoral

suppressive microenvironment is to combine BiTE technology

with immune-checkpoint blockade (73). This notion has been a

rationale for the creation of bifunctional checkpoint-inhibitory
Frontiers in Immunology 06
TCEs, which in addition to the T-cell redirection module contain

a variable domain against a certain immune checkpoint, such as

PD-1 (55). A checkpoint-inhibitory TCE that simultaneously binds

CD3 and PD-L1 activates T cells as well as NKT cells despite the

presence of myeloid-derived suppressor cells and extends the

survival of mice bearing established spontaneously metastatic

melanoma xenografts (74). Another approach is to develop a

BiTE for targeting T-cell coactivators. A trimeric EGFR/4-1BB
FIGURE 2

The repertoire of immune-cell engagers. TAA, tumor-associated antigen; scFv, single-chain variable fragment; CD3, cluster of differentiation 3;
pMHC, peptide+major histocompatibility complex; scTCR, single-chain T-cell receptor; CD28, cluster of differentiation 28; ICI, immune-
checkpoint inhibitor.
TABLE 2 A comparison of TCEs with cell-based immunotherapies.

Therapy Advantages Limitations

TCE - Broad antigen range using soluble TCR (3)
- Solid tumor efficacy (57)
- Escape adaptation (56)
- Persistence (54)
- ‘Off-the-shelf’ mode of action with relatively simple

production process (46)

- Toxicity (48)

CAR-T - Persistence (40) - Toxicity
- Antigen escape
- Solid tumor infiltration
- Manufacturing complexity (58)
[Sterner and Sterner (59)]

TCR-T - Broad antigen range including intracellular
oncoproteins (60)
- Solid tumor efficacy (61)

- Low persistence under optimization by
overexpressing c-Jun (62)
- Toxicity (61)
- Antigen escape (35)
- Manufacturing complexity (63)

TILs - Solid tumor efficacy (8)
- Broad antigen range due to polyclonal nature (6)
- Low toxicity due to the lack of genetic

modifications (64)
- Escape adaptation due to polyclonal nature (65)

- Low persistence under optimization in combination
with immune checkpoint blockade to augment the
lifespan (66)

- Manufacturing complexity under optimization using
CliniMACS Prodigy® Tumor Reactive T cell (TRT)
Process (67)
TCE, T-cell engager; CAR-T, Chimeric antigen receptor T cell; TCR-T, T cell receptor T cell; TILs, Tumor infiltrating lymphocytes.
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BiTE has been constructed based on a nanobody platform and has

shown antitumor activity with no systemic toxicity characteristic of

agonistic 4-1BB antibodies (75).

A valid way to minimize on-target off-tumor toxicity of BiTEs is

to restrict their activity to tumor sites by local expression. This may

be achieved by combination of a TCE with CAR-T and OV

platforms. As revealed in preclinical models, a TCE produced by

CAR-Ts acts locally at the site where the cognate antigen is engaged

by the CAR-Ts (76). EGFRvIII-specific CAR-Ts designed to secrete

a T-cell–engaging antibody molecules (TEAMs) recognizing wild-

type EGFR (CARv3-TEAM-E) have been evaluated in patients with

recurrent glioblastoma (77). The combination of two specificities

helped there to overcome glioblastoma’s heterogeneity in EGFRvIII

expression, thereby leading to dramatic radiographic responses in

three out of three participants within days after a single

intraventricular infusion. In one patient, the effect was durable,

lasting more than 150 days. The secretion of the anti-EGFR TCE by

CAR-Ts was safe despite widespread expression of the target among

tissues, though it is important to confirm the safety of this approach

with systemic delivery of CAR-Ts (77). Another way to reduce

unwanted toxicity is the targeting of surface coreceptor CD8

(instead of CD3) to engage only the cytotoxic subset of T cells

but not the entire arsenal (78). On the other hand, efficiency in this

case is supposed to be compromised by safety.

OVs offer another promising avenue for localized TCE

expression, thus mitigating systemic toxicity while enhancing T-

cell recruitment and activation at a tumor site. Engineered OVs

have been successfully used as a platform for TCE delivery, thereby

leading to a sustained immune response in preclinical models (79).

For instance, an oncolytic adenovirus encoding a B7H3-targeting

BiTE has manifested significant antitumor efficacy by enhancing T-

cell–mediated tumor killing while reducing systemic exposure (80).

This OV-mediated BiTE secretion method creates an

immunostimulatory microenvironment, effectively redirecting

virus-specific T cells toward tumors and overcoming tumor-

induced immunosuppression (80). Such strategies highlight good

potential of OV–TCE combinations to improve tumor-specific

immune responses while maintaining safety. Moreover, there is

another way to combine OVs’ potency with an “off-the-shelf”

immunotherapy. Taha with colleagues have developed an elegant

technology based on a dual-virus approach to overexpression of

HER2T (truncated TAA HER2) on tumor cells. One component of

this dual system (VSVD51) delivers a synthetic HER2 target to

tumors, making them susceptible to an ADC called T-DM1, while

the other virus (VV) expresses a HER2-targeted TCE to redirect T

cells to attack the tumor. This approach overcomes limitations of

target antigen absence in tumors, thus enhancing the efficacy of

targeted immunotherapies (81).

Intensive research is directed toward increasing the number of

targets of synthetic antibodies while maintaining affinity. This

approach is related to another “trick” of cancer cells: in the

process of malignant transformation, they acquire completely

unconventional properties. In particular, antigen loss is one of

such tricks (82). This process may be based on antigenic drift or
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a change in transmembrane trafficking of a certain surface antigen,

similarly to what normally occurs with TCRs and the MHC

complex during immune-synapse formation (83). In this regard,

analogs of bispecifics are helpful, including simultaneous multiple-

interaction TCEs capable of recognizing several targets at once in

the event that some of them are “taken away” by a tumor cell (56).

Antitumor efficacy may be achieved not only by direct

elimination of malignant cells but also by redirecting T-cell

toxicity to cancer-supporting tumor-associated macrophages. Bi-

and tri-specific TCEs recognizing folate receptor b (FRb) expressed
on M2-like macrophages have been studied in a model of malignant

ascites. A shift toward a proinflammatory macrophage phenotype

was observed there with increased expression of CD80 and CD86,

and the percentage of residual CD11b+CD64+ cells diminished to an

average of 37.9% (84). Regarding macrophages that resemble the

predominant immune population in solid tumors and have strong

tumor-promoting activities, targeting them may be a relevant

strategy for altering the total TME and for achieving

antitumor effects.

An important clinical limitation of prototypical BiTEs is their

short half-life and the need for continuous intravenous

administration. Therefore, currently, so-called half-life–extended

BiTEs are being designed (54). Many of these are equipped with an

additional Fc domain, creating bispecific antibodies with greater

molecular weight. The Fc fragment may attract components of

innate immunity (NK cells and macrophages), and therefore this

class of synthetic molecules is functionally related to so-called

bispecific natural killer cell engagers (85). Catumaxomab

(EpCAM/CD3) was the first bispecific trifunctional antibody that

reached the market; it was approved by the European Medicines

Agency in 2009 for the treatment of malignant ascites. IgG-based

bispecific antibodies have longer half-life in vivo as compared with

scFv-based TCEs and also possess improved solubility and stability.

At the same time, Fc inclusion may result in a nonspecific cytokine

release and additional toxic effects due to binding to an array of Fcg
receptors on a variety of immune cells. Accordingly, the ADAPTIR

platform has been engineered; it incorporates scFv homodimers in

opposite orientations and Fc that is unable to bind FcgRs. Due to

higher avidity, ADAPTIR-TCE has EC50 values approximately 30-

fold lower than those observed with the tandem scFv of the same

specificity. Diminished CD4+ T-cell vs CD8+ T-cell activation and a

low level of a cytokine release have been demonstrated (86). Despite

promising preclinical data (86), clinical development of an

ADAPTIR-based BiTE (APVO414, PSMA/CD3) has been halted

due to high immunogenicity and an unacceptable level of antidrug

antibodies (87).

Designing engagers with an albumin-binding domain is also a

feasible approach to half-life improvement. Trispecific T-cell–

activating constructs (TriTACs) have three domains, binding to a

tumor antigen, human serum albumin, and CD3e (57). The

domains binding a tumor antigen and albumin typically are

single-domain antibodies (VHH). TriTACs possess a redirected

lysis activity equivalent to that of BiTEs and comparable in vivo

antitumor efficacy. Despite low molecular weight of approximately
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53 kDa, TriTACs are suitable for once-weekly dosing in humans

(57). TriTAC compounds HPN-217 and HPN-328 are currently

undergoing phase I/II clinical trials against myeloma

(NCT04184050) and small-cell lung cancer (NCT04471727),

respectively. An alternative way to improve pharmacokinetics has

been devised by BioNTech. Lipid nanoparticle (LNP)-formulated

RNA (RNA-LNP) encoding a T-cell–engaging antibody specific for

claudin 6 has been assessed in mice and cynomolgus monkeys;

RNA-LNP maintained therapeutic serum concentrations sufficient

for once-a-week injection (88).

Antibody-based engagers are a valid method for elimination of

malignant cells and immunosuppressive populations and provide

broad opportunities for the targeting of surface antigens. On the

other hand, this mode of recognition has substantial limitations due

to strong off-tumor on-target toxic effects. The use of TCR-based

engagers may be a more targeted approach because it allows for the

recognition of specific point mutations in intracellular proteins.
TCR-based TCEs

Antibody-based bispecifics have shown efficacy against

hematological tumors; promising developments are implemented

in the field of BiTE-based solid-tumor therapies, but the repertoire

of antibody targets is limited to surface-expressed proteins. On the

other hand, ~90% of the proteome is localized within the cell and

thus is inaccessible to antibodies (89, 90). Recognition of

intracellular antigens is possible in the context of their

presentation by MHC complexes.

TCRs, whose natural target is a complex of MHC, which

represents the “inner world” of the cell, are the most amenable

candidates for the role of such molecules. MHC I molecules are

normally expressed on all cells except for cases of masking of MHC

I complexes by cancerous cells or cells affected by some viruses (91).

Thus, genetic and protein engineers have had to obtain TCRs that

would maximally resemble antibodies, taking into account their

strong affinity (on average three orders of magnitude stronger than

that of TCRs) and soluble form.

First attempts to construct soluble TCRs consisting of only

variable domains of both chains (Va+Vb) were not successful due to

poor solubility and stability because of the high content of exposed

hydrophobic residues normally shielded by a membrane (92).

Nonetheless, researchers have encountered a number of technical

challenges that stem from the very nature of the TCR, namely how

to stabilize the chains in a soluble form while increasing avidity. At

last, we currently have one FDA-approved BiTE based on a soluble

TCR: tebentafusp (Kimmtrak® from Immunocore), which is

specific to HLA-A*02:01–positive TAA gp100 of uveal melanoma,

which is one of the most common ocular malignant tumors (3).

This biologic is related to the class of molecules called immune-

mobilizing monoclonal TCR against cancer (ImmTAC). Currently,

it is being evaluated in a phase II/III trial in nonocular melanoma

(NCT05549297). The ImmTAC platform comprises an affinity-

matured TCR fused to a humanized CD3-specific scFv. ImmTACs
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are highly efficient at killing tumor cells but have a half-life of only

several hours and require frequent dosing. Other TCR-based TCEs

in development target MAGE-A4/8, MAGE-A1, WT1 (93), or

survivin (94).

A novel TCE concept has been proposed based on ectodomains

of Vg9d2 T cells’ TCR as a tumor-targeting part, named gamma

delta TCR anti-CD3 bispecific molecule (GAB). Vg9d2-TCR
recognizes members of the butyrophilin (BTN) family; therefore,

tumor targeting is independent of mutational load, MHC, and TAA

expression. At present, the principal challenge for the GAB

approach is the low expression level (95).

For example, a new class of engagers opens a huge opportunity

for the targeting of potentially hidden intracellular antigens that

remain undetected by conventional bispecific antibodies and CAR-

T therapy. On the other hand, attempts to target oncopeptide–

MHC complexes have been made with the use of the CAR-T

platform: so-called peptide-centric CARs (96). Nonetheless, MHC

remains a natural ligand for TCRs with all their features and

optimal responsiveness. The only issue to be resolved is the

transmembrane state of TCRs and their relatively weak affinity in

vivo. Progress in genetic engineering techniques has given new

opportunities for improving natural analogs of biological molecules,

and TCEs are no exception.
Engagers in autoimmunity

Collaboration of B and T cells lies at the core of chronic

inflammation in autoimmune disorders (AIDs), and current

therapeutic strategies are aimed at elimination of B- or T-cell

subpopulations and at disruption of their activation and cross-

talk (97). T and B cells interact through direct contact-dependent

mechanisms and via secretion of cytokines and other soluble

factors. To date, B–T-cell costimulation has been targeted

through various pathways such as anti-CD52 (alemtuzumab) and

CTLA-4–Fc fusion (abatacept). Alemtuzumab has been approved

for multiple sclerosis (MS) treatment and shows insufficient efficacy

in other AIDs; the use of alemtuzumab is also limited due to the

safety profile: a black box warning of fatal autoimmune

complications and cancer risk. Abatacept indications are broader

including rheumatoid arthritis (RA), juvenile idiopathic arthritis,

psoriatic arthritis, and the prophylaxis of acute graft-versus-

host disease.

Targeting of inflammatory cytokines, their receptors, or

downstream signaling leads to tremendous clinical success in a

number of AIDs (RA, ankylosing spondylitis, Crohn’s disease,

ulcerative colitis, psoriasis, psoriatic arthritis, and others) (98–

101). Cytokines such as IL-12, IL-17, and TNF have pleiotropic

activities guiding proliferation and activation of various populations

of cells of adaptive and innate immunity, important for the control

of infections. Because of broad immunosuppressive action, a

prolonged cytokine block may entail a risk of serious infections

and latent pathogen reactivation (102, 103). Precise targeting of T-

cell and B-cell populations is a promising therapeutic tool for
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activation-induced cytidine deaminase upregulation as a safer

alternative to anticytokine therapy and to generalized

immunosuppression. Antibodies, CAR-Ts, and TCEs can be

exploited in several areas of autoimmunity immunotherapy,

where elimination of a specific T- or B-cell subset is a likely

therapeutic goal. The existing approaches include bulk B-cell

depletion (BCD), V or C region–targeted depletion of a T-cell

subpopulation, and depletion of antigen-specific T or B cells.

Disease-modifying therapies targeting T- and B-cell

populations have become mainstream in the treatment of MS.

Those include recently approved anti-CD20 antibodies

(ocrelizumab, ofatumumab, and ublituximab) (104) and

rituximab used off-label. CD20 is a general B-cell marker

expressed by the majority of B cells (starting from late pre-B

lymphocytes) and is absent on terminally differentiated

plasmablasts (PBs) and plasma cells (PCs). The absence of CD20

on fully mature PCs enables it to maintain humoral immunity

against previously encountered pathogens despite anti-CD20

treatment. CD20 is also found on a subset of T cells with

immunomodulatory and proinflammatory activities (105); these

cells are enriched within the blood and cerebrospinal fluid of

patients with MS. According to clinical data, an anti-CD20

treatment induces almost complete depletion of B cells and

CD3+CD20+ T cells in circulation by week 2 after the first dose,

and the repletion is slow, with a median of 26 weeks (ofatumumab)

to 72 weeks (ocrelizumab) (104). Evaluation of BCD in tissues is a

challenge, and incomplete B-cell clearance may lead to resistance.

Low central nervous system (CNS) bioavailability of antibodies and

inability to reach meningeal ectopic lymphoid follicles and subpial

sites of inflammation are considered the main reason for anti-CD20

inefficacy at preventing long-term disability in secondary

progressive MS (104). According to ofatumumab kinetics in

cynomolgus monkeys, marginal-zone B cells in the spleen and

lymph nodes are spared too. It can be theorized that due to the

small size and to differences in pharmacokinetics and in the

mechanism of action, TCEs may ensure more complete

elimination of pathogenic B-cell populations in tissues. This idea

is supported by data from oncological studies suggesting that CAR-

Ts and TCEs may be active in the case of antibody resistance. A

TCE can efficiently deplete B cells in the spleen and lymph nodes, as

proven for an anti-CD20 TCE (106), thus overcoming one of

mechanisms of resistance to BCD in AIDs. An important point is

the use of T lymphocytes as effector cells to deplete B cells by means

of CAR-Ts and a TCE instead of antibodies that rely on

macrophages and NK cells as effectors. Owing to active migration

of T cells, CNS bioavailability may be also improved.

Blinatumomab’s activity against acute lymphoblastic leukemia

with CNS infiltration is indirect proof of CNS bioavailability

(107), indicating that a B-cell–depleting TCE may be promising

for MS treatment. Nonetheless, an important point to consider with

CD20-targeted therapeutics is the absence of CD20 on long-lived

populations of autoantibody-producing PCs and PBs. This may be

the reason for anti-CD20 resistance in a large proportion of patients

with RA and immune thrombocytopenia (97) as well as for limited
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duration of the treatment response in patients with myasthenia

gravis (108). Another problem is connected with internalization of

antibodies; this drawback restricts the activity of antibody-

dependent cellular cytotoxicity.

In contrast to CD20, B cells express CD19 at an earlier stage in

development and retain this expression throughout all

differentiation stages up to CD19+CD20− PBs and some

CD19+CD20− PCs. CD19 regulates B-cell activation and is

overexpressed in AIDs, suggesting that this biomolecule may be a

valuable target. Current CD19-directed strategies include anti-

CD19 monoclonal antibodies and CD19-targeted CAR-Ts and

TCEs. The anti-CD19 monoclonal antibody inebilizumab is

approved for the treatment of neuromyelitis optica spectrum

disorder and has exerted a sustained effect on relapse risk and

disability scores (109). In 2024, positive results of a phase III trial in

immunoglobulin G4-related disease (IgG4-RD) were announced.

The success of CAR-T therapy against B-cell cancers has inspired

studies on CAR-Ts in a range of AIDs. Authors of initial clinical

trials in systemic lupus erythematosus (SLE) have not reported

severe cases of CRS-related toxicity, thereby showing promising

efficacy results (110). Currently, 11 clinical studies on anti-CD19

CAR-Ts in SLE are active. Single-case studies of anti-CD19 CAR-T

therapy indicate its good potential in antisynthetase syndrome

(111), systemic sclerosis (112), idiopathic inflammatory myositis

(112), and type 1 diabetes mellitus (113).

In the case of an AID, we must consider immunosuppressive

conditions and consequent underlying effects including comorbid

states. Thus, the application of CAR-T therapy may be complicated

or even impossible due to the need for leukapheresis. Although

there are successful cases of this protocol (114), alternatives are

necessary. This and other limitations of CARs, such as uncontrolled

in vivo administration, cumbersome manufacturing, and the high

cost, may be to some extent overcome by the T-cell engagement

approach. TCEs are much easier to produce as compared to CAR-

Ts and may be more effective in the case of a low antigen level; in a

direct comparison, TCEs outperform cytotoxic antibodies on target

cell elimination (115). These features make TCEs a good therapeutic

alternative. B-cell–depleting TCEs, just as CAR-Ts, are expected to

be safer in AIDs in comparison to cancers, owing to the lower

antigen load and reduced cytokine production (116). This notion is

supported by the latest clinical data on SLE (110) and RA (117).

Clinical proof-of-concept data on a TCE in relation to AIDs

have been obtained in refractory RA. In the latest study (117), six

patients with multidrug-resistant severe RA received low-dose

short-duration treatment with blinatumomab. Impressive efficacy

was observed in all patients (including those resistant to previous

BCD therapy): a decrease in disease activity scores, in synovial

inflammation, and in levels of RA-associated autoantibodies. A

reset of the B-cell profile was documented, with depletion of

activated memory B cells and their replacement by non–class-

switched IgD-positive naïve B cells.

In fact, autoreactive B cells in AIDs may constitute only 0.1–

0.5% of all circulating B cells or less; hence, there is a strong

rationale for restricted autoantigen-specific BCD (118).
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Autoreactive-B-cell elimination using chimeric autoantibody

receptor (CAAR) and TCE-based approaches has been described.

T cells have been engineered carrying CAAR consisting of the

pemphigus vulgaris autoantigen (desmoglein [Dsg] 3) fused to

CD137-CD3z signaling domains (119). Dsg3 CAAR-Ts effectively

depleted anti-Dsg3 Nalm-6 B cells in vivo with efficacy comparable

to that of CART19, and there was no activity against BCR− cells.

Depending on affinity, binding kinetics, and a relative position of

the epitope, circulating auto-Dsg3 antibodies may have opposite

effects on CAAR-T efficacy and in some cases even promote CAAR-

T activity and persistence. Bispecific autoantigen T-cell engagers

(BiAATEs) create an immunological synapse between autoreactive

B cells bearing surface Ig and T cells and ensure precise elimination

of autoreactive B cells, thus being much safer than CD20- or CD19-

targeted approaches. A BiAATE has been constructed that consists

of a-CD3 scFv and an immunogenic domain of phospholipase A2

receptor (PLA2R), described as a primary nephritogenic antigen in

membranous nephropathy (120, 121). The BiAATE eliminates anti-

PLA2R–secreting B cells isolated from patients with membranous

nephropathy. Treatment of immunized hCD3 mice reduces the

anti-PLA2R titer by 40%, with the effect persisting over a month

since the end of treatment, implying an in vivo reduction in the

number of anti-PLA2R B cells. BiAATEs have not yet been

evaluated in the clinic. An ability to bind both an autoantibody

and memory autoantibody-producing B cells may be a limitation,

because in the case of high antibody titers, this feature may lead to

competition and inefficient depletion of B cells or require higher

doses for efficacy. Furthermore, a higher autoantibody load may be

associated with higher CRS risk, and this question should be

addressed too. For this reason, a BiAATE based on a TCR

specific for autoantigen–MHC complexes may be more

promising. In this case, the pathogenic autoimmune response

may be targeted at two levels: antigen presentation and CD4+ T

helper–B cell interaction.

In contrast to BCD, pan-T-cell depletion has unacceptable

toxicity; consequently, selective targeting of specific subpopulations

is the only feasible option. Because allabT cells carry either the T-cell

receptor constant beta chain 1 (TRBC1) or TRBC2 constant b-chain
gene segment, these may be targeted selectively. Such selective

depletion of approximately half of all T cells has been proposed as

a therapy for T-cell cancers using cytotoxic antibodies (122), an ADC

(123), or CAR-Ts (124). At present, there is limited evidence for

therapeutic depletion of T-cell subpopulations in AIDs. Aside from

CD20+CD3+ T-cell elimination in MS mentioned above, successful

examples include T-cell receptor variable beta chain (TRBV)-directed

therapy. VDJ recombination results in expression of 1 of the 30

TRBV gene families on the surface of each T cell. Accordingly, each

TRBV variant is expressed on the surface of 1% to 5% of all

peripheral-blood normal T cells; therefore, a therapy that involves

V segment-based T-cell elimination allows a physician to precisely

cut out small subpopulations of all T cells in a sort of liquid surgery.

This methodology has been proposed for AIDs and mature-T-cell

lymphomas (125–127). The TRBV9-containing CD8+ TCR motif is

reported to be associated with the pathogenesis of ankylosing

spondylitis, psoriatic arthritis, and acute anterior uveitis; cognate
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HLA-B*27–presented epitopes have been identified (128). The first

anti-TRBV9 treatment of an ankylosing spondylitis patient was

successful, resulting in >5-year CR (127). Preliminary phase II data

show superiority of anti-TRBV9 (seniprutug) over historical data on

adalimumab in terms of critical clinical parameters such as

Assessment of SpondyloArthritis International Society (ASAS) 20

and ASAS40 (129). Seniprutug was approved in Russia in 2024 and is

currently evaluated in two international studies (NCT05445076 and

NCT06333210). A TRBV-specific TCE (130) and CAR-Ts (131) have

been suggested for the treatment of T-cell cancers; they may also be a

valuable option for AIDs featuring pathogenic TRBV-restricted T

cells. A TRBV9-specific TCE was reported recently (132).

An interesting technology for elimination of autoreactive-T-cell

clones has been proposed by Goldberg and colleagues. This

approach exploits a soluble pMHC-II heterodimer fusion protein

recognizing the DRB1*04:01-restricted CII_259 peptide from

collagen II: an antigen described in RA. The pMHCs were

biotinylated and conjugated with cytotoxic drug monomethyl

auristatin F. After tetramerization, potent peptide-specific killing

of a hybridoma cell line was achieved. In a more translatable

therapeutic strategy, a 3DNA nanocarrier platform was utilized to

improve biocompatibility. This pMHC-based engager manifested

efficient rates of on-target cytotoxicity in vitro (4). Toxin-coupled

MHC class I tetramers have been successfully used for specific

elimination of IGRP+ CD8+ T cells in diabetic mice (133). Clinical

validation of antigen-specific T-cell targeting in AIDs is

eagerly awaited.

Despite the recent progress in AIDs’ treatments with new

biologics and small-molecule compounds, there is still a

substantial need for novel therapeutic approaches effective against

mechanisms underlying AIDs. TCEs are likely a promising tool for

AID treatment because of their efficacy in precise and deep

elimination of pathogenic immune-cell populations.
Conclusion

TCEs have evolved from hematology-focused BiTEs to

sophisticated multispecific platforms capable of targeting solid

tumors. Innovations in conditional activation, costimulation, and

TCR-mediated intracellular antigen recognition address historical

limitations of antibody-based therapies. Although toxicity

management and antigen escape remain challenges, ongoing

clinical trials testing combination regimens and novel targets are

expected to improve TCEs’ therapeutic index. Future success will

hinge on biomarker-driven patient stratification, advances in protein

engineering, and synergistic integration with complementary

immunomodulators. As the field progresses, TCEs are poised to

become cornerstone therapies for diverse cancers.

TCEs may be a valuable tool for deep elimination of B-cell and

T-cell subpopulations involved in the pathogenesis of AIDs.

Preliminary clinical data indicate their efficacy in cases of

resistance to antibody-mediated cell depletion. Development of

TCE-based approaches for precise targeting of autoantigen-

specific cells is a promising area of future research.
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