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Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology

characterized by the development of frequently progressive cutaneous and

internal organ fibrosis accompanied by severe vascular alterations. The

pathogenesis of SSc is highly complex and, despite extensive investigation, has

not been fully elucidated. Numerous studies have suggested that unknown

etiologic factors cause multiple alterations in genetically receptive hosts,

leading to SSc development and progression. These events may be

functionally and pathologically interconnected and include: 1) Structural and

functional microvascular and endothelial cell abnormalities; 2) Severe oxidative

stress and high reactive oxygen species (3); Frequently progressive cutaneous

and visceral fibrosis; 4) Transdifferentiation of various cell types into activated

myofibroblasts, the cells ultimately responsible for the fibrotic process; 5)

Establishment of a chronic inflammatory process in various affected tissues; 6)

Release of cytokines, chemokines, and growth factors from the inflammatory

cells; 7) Abnormalities in humoral and cellular immunity with the production of

specific autoantibodies; and 8) Epigenetic alterations including changes in

multiple non-coding RNAs. These events manifest with different levels of

intensity in the affected organs and display remarkable individual variability,

resulting in a wide heterogeneity in the extent and severity of clinical

manifestations. Here, we will review some of the recent studies related to

SSc pathogenesis.
KEYWORDS
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Highlights
Fron
• Systemic Sclerosis (SSc) is a systemic autoimmune disease

characterized by a severe fibrotic process affecting the skin

and multiple internal organs associated with a generalized

obstructive vasculopathy of small arteries and arterioles.

• Despite extensive genetic, biochemical, and molecular

studies, the exact pathogenetic mechanisms of SSc have

not been fully elucidated, although several affected

molecular pathways have been identified.

• The discovery of these molecular pathway alterations has

led to a marked improvement in the understanding of

SSc pathogenesis.

• Although there is no curative therapy for the disease, and it

may progress, causing severe disabilities and high mortality,

the recent identification of novel molecular therapeutic

targets should be of value to optimize the treatment and

reduce the mortality caused by the disease.
Introduction

Systemic Sclerosis (SSc) is a clinically heterogeneous systemic

autoimmune disease of unknown etiology characterized by a

frequently progressive fibrotic process affecting the skin and

various internal organs. The fibrotic process in SSc is usually

accompanied by vasculopathy of small arteries and arterioles, the

presence of a chronic inflammatory process in the affected tissues,

and the occurrence of humoral and cellular immune abnormalities

resulting in the production of multiple autoantibodies, some with

high specificity for the disease and the SSc clinical phenotype (1–4).

The molecular mechanisms involved in the clinical and pathologic

manifestations of the disease are highly complex, and although

numerous studies have provided substantial information about its

intricate picture and clarified some of its early events, the precise

altered regulatory pathways involved have not been completely

elucidated. However, it has been well recognized that SSc involves

multiple alterations in various molecular pathways (5–9) that may

occur simultaneously or may develop sequentially. These events

include: 1) Fibroproliferative lesions of small arteries and arterioles

accompanied by severe structural and functional endothelial cell

alterations; 2) Severe oxidative and high reactive oxygen species;

3) Excessive and often progressive deposition of collagen and other

extracellular matrix (ECM) macromolecules in skin and various

internal organs; 4) Alterations of cellular and humoral immunity

with the production of numerous autoantibodies, some with high

disease and clinical phenotype specificity; 5) Establishment of a chronic

inflammatory process in affected tissues; 6) Cellular transdifferentation

resulting in the phenotypic conversion of various cell types including

resting fibroblasts, endothelial cells, epithelial cells, adipocytes, and

other cells into activated myofibroblasts, the cellular elements

ultimately involved in the exaggerated and excessive production and

accumulation of fibrotic tissue; 7) Production and release of increased

levels of various cytokines and growth factors causing profibrotic and

inflammatory effects; and 8) Epigenetic alterations including numerous
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changes mediated by non-coding RNAs. However, despite extensive

investigation of the numerous pathogenetic events in SSc, it has not

been established which of these processes is of primary importance or

how they are temporally related during the development and

progression of the disease.
Pathogenesis of Systemic Sclerosis
(SSc): overview

The current hypothesis of SSc pathogenesis proposes that the

disease is initiated by unknown etiologic factors that may include toxic

or chemical exposures, viral infections, microbial pathogens, or

other still not identified mechanisms (10, 11). More specifically, the

resemblance of SSc to fibrotic syndromes associated to toxic exposure

such as polyvinyl chloride (12), contaminated rapeseed oil (Spanish

toxic oil syndrome) (13), L-tryptophane contained products

(eosinophilia myalgia syndrome) (14), and gadolinium (nephrogenic

systemic fibrosis) (15), favors the implication of an environmental

trigger, whereas the presence of an early type I interferon signature and

activation of TLR8 by EBV genes found in monocytes from patients

with SSc, suggest a possible viral etiology (16). In both scenarios, the

activation of macrophages, monocytes and T-Cells are proposed to be

the main mediators for the abnormal activation of the immune system

(17). Another theory, states that under proper conditions and acting on

a genetically receptive host, the causative initial mechanism(s) induces

severe microvascular injury with profound structural and functional

endothelial cell abnormalities and cause the development of frequently

progressive cutaneous and internal organ tissue fibrosis. Although it is

well recognized that SSc is not a genetic or genetically transmitted

disease, the role of genetic factors is of crucial importance, as discussed

extensively in numerous recent publications (18–21).

The prominent vascular involvement in SSc was initially

described in early reports of SSc pathologic alterations that

demonstrated the presence of intimal sclerosis and vessel wall

hyperplasia in the arterioles of the kidneys and other affected

visceral organs (22–24). Numerous subsequent studies confirmed

the occurrence of vascular alterations as the earliest clinical

manifestations of the disease, leading to the hypothesis that SSc

was a vascular disease (25–27). The vascular alterations are

clinically manifested as Raynaud’s Phenomenon, small artery

vasculopathy, digital ulcers, multiple cutaneous and mucosal

telangiectasias, and the development of severe fibroproliferative

vasculopathy in multiple internal organs causing alterations in

their function and their eventual failure (28–31). A second

component of SSc pathogenesis is the recruitment of specific

cellular elements resulting in the establishment of a chronic

inflammatory process in the affected tissues. The participating

inflammatory cells include dendritic cells, macrophages, T- and

B- lymphocytes, and mast cells (32–36). The inflammatory cells

initiate the production and release of numerous cytokines,

chemokines, growth factors, and other molecular mediators that

allow the establishment of the fibrotic process through multiple

cellular interactions and cell-to-cell communications (37–41). The

molecular effects induced by the cytokines and growth factors also
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cause remarkable cellular transdifferentiation events, including the

phenotypic conversion of quiescent fibroblasts, epithelial cells,

endothelial cells, and other cells such as pericytes and adipocytes

into activated myofibroblasts, the cells ultimately responsible for the

establishment and progression of the fibrotic process (42–48). This

sequence of events (illustrated in Figure 1) results in the

development of a severe and often progressive fibroproliferative

vasculopathy, exaggerated and widespread accumulation of fibrotic

tissue in the skin and numerous internal organs, and the

establishment of a chronic inflammatory process in affected organs.

Here, we will review recent developments in the understanding

of SSc pathogenesis and the involvement of microRNA (miRNA)

alterations in SSc pathogenesis. Studies describing the role of

inflammatory, humoral and cellular immunological abnormalities

in SSc pathogenesis will not be discussed in detail here owing to the

large number of publications and extensive reviews about these

topics (18–21, 37, 44–50). We wish to emphasize, however, that the

numerous and extensive publications related to SSc pathogenesis,

preclude us from including in this review all the relevant studies on

this important subject and we truly wish to express our deepest

apologies to the investigators whose work was not specifically cited

or discussed.
Frontiers in Immunology 03
Vascular and endothelial cell
abnormalities in SSc
Vascular dysfunction is one of the earliest and most prominent

clinical manifestations of SSc, as indicated by the occurrence of

Raynaud’s Phenomenon and nailfold capillary microvascular

alterations often preceding the appearance of other signs or

symptoms of the disease. These early alterations are followed by

the development of a systemic vasculopathy that results in

abnormally dilated capillaries, microhemorrhages, vascular

rarefaction and capillary loss, tissue injury caused by ischemia

and hypoxia, cutaneous and mucosal telangiectasias, and

fibroproliferative/occlusive vascular lesions in multiple organs

(26–31). The visceral vasculopathy causes a spectrum of severe

and even fatal clinical manifestations including scleroderma renal

crisis (SRC), pulmonary arterial hypertension (PAH), interstitial

lung disease, gastric antral vascular ectasia (GAVE), gastrointestinal

dysmotility, myocardial dysfunction, erectile failure, and central

retinal artery occlusion (51–59).

Following the vascular hypothesis to explain SSc pathogenesis

proposed by Norton and Nardo (24) and by Campbell and LeRoy
FIGURE 1

Systemic sclerosis pathogenesis. An unknown etiologic event (such as a virus or chemical substance) in a genetically predisposed host causes
activation of multiple cell types including endothelial cells, inflammatory cells and fibroblasts. This activation process triggers abnormalities of the
vascular tone causing vasospastic alterations, increases chemoattraction and adherence of monocytes/macrophages, promoting tissue inflammation
and abnormal oxidative stress. An additional effect is the conversion of endothelial cells into myofibroblasts through Endothelial Mesenchymal
Transdifferentiation (EndoMT) and the activation of other cells, including resident fibroblasts, circulating fibrocytes, epithelial cells (EMT), and
adipocytes (AMT) into myofibroblasts. Increased myofibroblast numbers and metabolic activation cause increased production and accumulation of
extracellular matrix molecules (ECM), which, coupled with microvasculopathy in multiple organs, and chronic inflammation are responsible for the
most prominent SSc clinical manifestations in multiple target organs.
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(25), this concept has been subsequently endorsed by numerous

investigators (26–29), and it has become generally accepted that

regardless of the putative SSc etiologic agent or event, microvascular

alterations and endothelial cell injury and activation are central to

the pathogenesis and the development of most of SSc clinical

manifestations (60–62).

The initial events responsible for the vascular and endothelial cell

injury in SSc are not fully known, although numerous putative factors

have been suggested (Reviewed in Refs 62,63). Among these, the

following have been most commonly considered: chemical and toxic

agents, vasculotropic viral pathogens (10, 11), endothelial cell

dysfunction (62), anti-endothelial cell antibodies (63, 64), and

oxidative stress caused by reactive oxygen species (ROS) generated

during episodes of ischemia/reperfusion (65). These factors either

alone or in combination result in the development of crucial vascular

and endothelial cell abnormalities that include: 1) Activation of

endothelial cells; 2) Endothelial cell transdifferentiation into

activated myofibroblasts, the cells responsible for the production of

elevated amounts of collagens and other fibrotic macromolecules

(48); 3) Production of increased levels of the potent profibrotic and

vasoconstrictor polypeptide, endothelin-1, that besides its vascular

effects, is a potent inducer of proliferation and ECM production by

fibroblastic cells that also causes an exaggerated vasoconstrictor

response resulting in further vascular hypoxia and endothelial

injury (66–68); and 4) A complex imbalance of pro- and anti-

angiogenic factors resulting in marked impairment of angiogenesis

(69–71). The activated endothelial cells may also directly stimulate

the profibrotic activities of various target cells such as vascular

smooth muscle cells and fibroblasts and participate in the

recruitment of other cells that may induce fibrotic alterations in the

affected tissues. Collectively, the extensive endothelial cell and

vascular alterations induce subsequent pathological events that

maintain the vicious cycle of vascular injury, inflammatory

response and tissue fibrosis that are the crucial components of SSc

pathogenesis (5–9).
Role of oxidative stress

Thirty years ago, Murrell proposed the hypothesis that elevated

reactive oxygen species (ROS) caused abnormally increased

systemic oxidative stress, which subsequently triggered cellular

and molecular alterations that were responsible for the

development of tissue fibrosis in SSc (65). Numerous subsequent

studies have pursued this hypothesis and have provided strong

support to the crucial role of oxidative stress in SSc pathogenesis.

Indeed, it has been shown that elevated oxidative stress caused by

ROS and reactive nitrogen species can stimulate the production of

pro-fibrotic cytokines and growth factors (such as PDGF and TGF-

b), induce proliferation and activation of fibroblasts, increase the

expression and synthesis of type I collagen, and promote

inflammatory changes and vascular dysfunction (72–77).

Furthermore, it has been demonstrated that fibroblasts from

affected SSc skin contain higher ROS levels and display markedly

elevated activity of NADPH oxidases (NOX), particularly of NOX2
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and NOX4 compared to fibroblasts cultured from skin from normal

controls (78–81). It has also been shown that hypoxia induces

alterations in the expression of several genes that participate in the

phenotypic conversion of endothelial cells into activated

myofibroblasts through a process of endothelial to mesenchymal

transition (82).

Several in vitro studies have shown that reversal or reduction of

the increased oxidative stress employing specific antioxidants or a

NOX4 small molecule inhibitor abrogated these effects (78, 83).

Furthermore, in vitro studies found a marked reduction in collagen

expression levels in SSc dermal fibroblasts and in lung tissues from

patients with SSc-associated ILD following treatment with

antioxidant compounds (84, 85). These observations have been

supported by several in vivo studies demonstrating that a decrease

of ROS-generation caused suppression of fibroblast activation and

abrogation of experimentally induced skin fibrosis (85). Several

studies examined the effects of the anti-oxidant generator N-acetyl

cysteine in SSc patients. One of these studies described a

retrospective analysis of pulmonary function tests in SSc patients

with pulmonary fibrosis following 24 months of intravenous N-

acetyl cysteine. The treatment resulted in significant improvement

in lung function, and the beneficial effects were greater in patients

with early SSc-lung involvement (86). Another study was a

randomized placebo-controlled trial on 25 patients with diffuse

SSc without lung involvement (87). In contrast to the previous study

(86), the results of this trial did not show any beneficial effects after

24 months of N-acetyl cysteine therapy (87).

Extensive experimental evidence has confirmed the occurrence of

increased oxidative stress in SSc including the demonstration of

elevated serum and plasma levels of various oxidative stress

metabolic products such as 8-isoprostane, F2-iosprostane,

malondialdehyde (MDA), and asymmetric dimethylarginine

(ADMA); as well as elevated concentrations of DNA oxidation

markers in the urine of SSc patients (Reviewed in Ref. 83).

Furthermore, elevated levels of F2-isoprostane have been shown to

correlate with the extent and severity of the SSc fibrotic process,

particularly with lung fibrosis (88). A detailed mechanistic study

assessed the molecular markers of oxidative stress in the serum of 36

diffuse SSc patients in comparison with 26 healthy controls

performing quantitative measurement of reactive oxidative

metabolites, including MDA and ADMA, total antioxidant

capacity, lipid peroxidation, and evaluation of DNA oxidative

damage (89). The results confirmed that total oxidative capacity

and oxidative stress index were significantly increased in SSc

patients as compared to healthy control subjects and demonstrated

a correlation between these oxidative stress abnormalities and the

presence of SSc pulmonary and gastrointestinal involvement. A

remarkable observation in this study was that the oxidative stress

abnormalities were also associated with the presence of anti-

topoisomerase antibodies. Thus, this study confirmed the presence

of molecular alterations indicative of excessive oxidative stress in the

serum of SSc patients. However, it should be emphasized that the

results did not show evidence of extensive lipid or DNA molecular

oxidative damage and, therefore, it was suggested that SSc patients
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may have increased antioxidant capacity, although this possibility

should require confirmation and validation in further studies (89).

Despite the published evidence of a strong association between

fibrosis and oxidative stress/ROS, the pathways responsible are

highly complex and have not been clearly delineated although

there has been extensive investigation to elucidate the

mechanisms involved. Among these studies, it was recently

demonstrated that a novel oxidative stress pathway results in the

induction of premature fibroblast senescence causing a marked

increase in the production of inflammatory cascade mediators (90).

Another recently identified mechanism was the demonstration that

oxidative stress caused stabilization of specific kinase-phosphatase

complexes that mediate activation of the SSc fibrotic process (91).
Myofibroblasts: the effector cells in
SSc tissue fibrosis

The progressive fibrotic process affecting the skin and numerous

internal organs is one of the most distinctive clinical and pathological

features of SSc. It has been generally accepted that this crucial

pathologic alteration results from the accumulation in skin and

other affected tissues of activated myofibroblasts. Myofibroblasts

are mesenchymal cells first described in granulation tissue and

were considered to be modified fibroblasts (92, 93). These cells

display a markedly fibrogenic phenotype that is characterized by a

persistent and exaggerated increase in the expression of genes

encoding various interstitial collagens and other ECM proteins,

the downregulation of genes for matrix-degrading enzymes, and

the initiation of expression of contractile proteins such as a-SMA

(43, 94). Myofibroblasts are considered the crucial cellular elements

responsible for developing tissue fibrosis in SSc (95). The

accumulation of activated myofibroblasts in affected tissues and the

uncontrolled persistence of their elevated biosynthetic functions are

considered to be crucial determinants of the extent, severity, and rate

of progression of the fibrotic process in SSc (96–100).
Cellular origins of myofibroblasts

There are multiple cellular sources responsible for originating the

activated myofibroblasts present in affected SSc tissues. These include:

1) Proliferation and activation of tissue resident fibroblasts or

perivascular and vascular adventitial fibroblasts and the selection of

ECM over-producer and apoptosis resistant cells in response to

specific signals from infiltrating inflammatory cells (101–103); 2)

Recruitment of bone marrow fibrocytes, a unique class of fibroblast

precursor cells expressing the CD34 hematopoietic/stem cell surface

marker and able to produce type I procollagen and other ECM

proteins typically expressed by fibroblastic cells (104, 105); 3)

Transdifferentiation of endothelial cells to myofibroblasts, a process

known as endothelial to mesenchymal transition (EndoMT) in which

endothelial cells lose their phenotypic characteristics and acquire a

myofibroblast phenotype and play a crucial role in the vasculopathy

and fibrotic process in SSc (106–111); 4) Epithelial to mesenchymal
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transition (EMT), is another cellular phenotypic transition process

(112–114) that has been postulated to contribute to the accumulation

of myofibroblasts in SSc affected tissues (115–117); and 5) An

additional source of myofibroblasts in affected SSc tissues are

adipocytes and adipocyte precursor cells that may undergo a

reverse differentiation process and acquire fibroblastic or

myofibroblastic phenotype (118, 119). This process has been

named “adipocyte myofibroblast transition” (AMT). The most

important sources of activated myofibroblasts in SSc will be briefly

described in the following sections.
Increased proliferation of tissue fibroblasts

An increased number of cells capable of expression and

production of ECM and other profibrotic macromolecules is a

very important mechanism involved in the development and

extension of the SSc fibrotic process. The crucial molecular

pathways responsible cause an increase in the rate of proliferation

of these cells and an increase in their viability and survival (95–97).

Soluble mediators, either transported through the circulation or

released by activated inflammatory cells present within the affected

tissue infiltrates, induce a marked increase in the number of cells

capable of producing excessive amounts of the molecular

components of the fibrotic tissue. These effects may result from a

direct action of the soluble mediators on the target cells or may be

mediated by an autocrine stimulation of the production of

profibrotic mediators from other cells. However, there is also an

important, although less extensively studied, contribution of a

reduction of cellular apoptosis and other cell death pathways,

resulting in the prolongation of the cellular lifespan and in

increased cellular survival (120–123).
Migration of circulating fibrocytes

Fibrocytes are another important source of myofibroblasts.

Fibrocytes are fibroblast precursor cells that play an important

role in the development of tissue fibrosis (104, 105). These cells

migrate from the bone marrow in response to specific chemokines

released from the infiltrating inflammatory cells present in the

affected tissues. These circulating bone marrow fibroblast precursor

cells represent a unique cell population that is characterized by the

expression of hematopoietic/stem cell surface markers, such as

CD34 protein, coupled with the ability to synthesize type I

procollagen and other ECM molecules typically produced and

secreted by fibroblastic cells (103, 105).
Cellular transdifferentiation

Cellular transdifferentiation is a highly complex biological process

that results in the phenotypic conversion of fully differentiated somatic

cell types into cells of another lineage. The molecular alterations

involved in this highly complex transdifferentiation process have not
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been fully elucidated, although extensive investigation has shown that it

is mediated by distinct mechanisms. These include changes in the

expression and activity of specific protein transcription factors,

involvement of complex protein interaction cascades, and the

regulatory effects of various species of RNAs, including microRNAs

(miRNAs) and long non-coding RNAs (lncRNAs). The main cellular

transdifferentiation processes that may play a role in SSc-associated

tissue fibrosis have been recently reviewed (48) and include: 1)

Epithelial-Mesenchymal Transition, 2) Endothelial-Mesenchymal

Transition, and 3) Adipocyte-Myofibroblast Transition. These

processes will be briefly reviewed in the following sections.
Epithelial-mesenchymal transition (EMT)

Epithelial-mesenchymal transition (EMT) is a complex cellular

trans-differentiation process in which stationary and fully differentiated

epithelial cells undergo profound changes in their cellular phenotype.

These changes are characterized by the acquisition of mesenchymal cell

features including the loss of cell-cell adhesion and apical-basal

polarity, profound modifications in gene expression levels, marked

morphological and cell shape alterations, and development of

migratory capacity (112–114). Although EMT was extensively

studied as an important mechanistic pathway involved in wound

healing and cancer development and progression, extensive

experimental evidence has demonstrated that this phenotypic cellular

conversion participates in a large number of pathological processes,

including a prominent role in the pathogenesis of SSc (115, 116), and of

other autoimmune diseases (123).

The relevance of EMT to the pathogenesis of the SSc fibrotic

process has been extensively demonstrated (115–117). Additional

evidence includes the presence of increased nuclear translocation of

myocardin-related transcription factor-A (MRTF-A), a factor

responsive to mechanical stimuli that are key for EMT

transformation in SSc patients (124). Furthermore, the secreted

frizzled receptor protein 4 (SFRP4), a protein recently associated

with EMT development, has been shown to be increased in the

epidermis of SSc patients, and its serum concentration appeared to

correlate with the degree of skin and lung fibrosis. These

observations have suggested that SFRP4 should be considered as a

biomarker of skin and lung fibrosis in SSc (123).
Endothelial-mesenchymal
transition (EndoMT)

EndoMT is a complex biological process in which endothelial

cells lose their specific phenotype and progressively evolve into cells

expressing mesenchymal characteristics acquiring a fusiform and

elongated cell shape, cellular motility capabilities, and contractile

properties (106, 107). At the molecular level, EndoMT results in the

loss of endothelial cell-specific proteins including von Willebrand
Frontiers in Immunology 06
factor (vWF), CD31/platelet-endothelial cell adhesion molecule-1

(CD31/PECAM-1), and vascular-endothelial cadherin (VE-

cadherin). There is a concomitant initiation of expression and

production of mesenchymal cell-specific proteins including a-
smooth muscle actin (a-SMA), extra domain A (EDA) fibronectin,

N-cadherin, vimentin, fibroblast-specific protein-1 (FSP-1; also

known as S100A4 protein), fibroblast activating protein (FAP), and

fibrillar collagens type I and type III (106, 107). There has been

extensive recent interest in the role of EndoMT in the pathogenesis of

various human malignant, vascular, inflammatory and fibrotic

disorders, and it has been demonstrated that it may play a very

important role in the pathogenesis and in the development of the SSc-

associated fibrotic process (108, 109) as well as in the vascular

manifestations of numerous diseases (Reviewed in Ref. 110).

Although most studies on EndoMT are related to the phenotypic

conversion of arterial, venous, or capillary endothelial cells, recent

studies have shown that lymphatic endothelial cells may also be able

to trans-differentiate into myofibroblasts (125).

Extensive studies have shown that TGF-b1 and other TGF-b
related growth factors, are the main inducers of EndoMT (126–129)

and that these effects may be mediated by the nuclear translocation of

the transcription factor Snail1 (127). Other studies have identified

additional molecules that participate in the initiation, development

and progression offibrotic processes. One of these molecules is SOX9,

a multifunctional transcription factor that plays a crucial role in

chondrogenesis and skeletal tissue development and differentiation

(130). SOX9 has also been shown to participate in numerous other

regulatory functions in various tissues and organs and to play a role in

various fibrotic diseases including idiopathic and SSc-associated

pulmonary fibrosis (131). The mechanisms mediating the pro-

fibrotic SOX9 effects have been recently examined. One extensive

analysis provided evidence that SOX9 expression in human

endothelial cells induced these cells to undergo EndoMT (132). It

was further shown that these effects were mediated by alterations in

the chromatin structure of the cells allowing histone modifications at

previously silent binding sites causing a phenotypic change of the

endothelial cells resulting in the initiation of expression of

mesenchymal genes (132). These results allow to suggest the

hypothesis that the initiation of EndoMT mediated by SOX9

expression in endothelial cells may play a crucial role in the

development of various SOX9-mediated pathological fibrotic

processes including pulmonary fibrosis, and SSc.

It should be emphasized, however, that given the great

complexity of EndoMT and of the multiple and often redundant

molecular mechanisms involved in its regulation, the overall effects

of SOX9 may be quite variable, and highly dependant on the tissues

affected as well as on the various pathophysiological conditions

responsible for initiation and development of this process.

A highly relevant mechanism for the induction of EndoMT is

tissue hypoxia (82, 133, 134). Although the molecular alterations

involved have not been studied in detail, it has been shown that

endothelial cells cultured under hypoxic conditions loose the

expression of molecules that regulate the endothelial cell
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phenotype and acquire typical mesenchymal cell morphology and

initiate the production of interstitial fibroblast macromolecules.
Adipocyte and lipofibroblast to
myofibroblast transition

Adipocyte-mesenchymal transition (AMT) is another cellular

phenotype change that causes the conversion of mature adipocytes

into pro-fibrotic myofibroblasts (135, 136). This process can be

induced by exposure of adipocytes to TGF-b in vitro, resulting in

the loss of the adipose specific markers (including PPAR-g,
perilipin, and FABP4), and promoting expression of fibrotic and

mesenchymal proteins characteristic of the myofibroblast

phenotype. Of remarkable importance to SSc pathogenesis were

the observations that serum from SSc patients was able to induce

the conversion of adipose tissue-derived stem cells into profibrotic

myofibroblasts (118).

An additional cellular component related to ATM involves

lipofibroblasts. Lipofibroblasts are fibroblast-like cells characterized

by the content of abundant lipid storage deposits and the expression

of adipose differentiation-related protein markers. These cells are

abundant in the lungs and they also may undergo transdifferentiation

into myofibroblasts, contributing to the activated profibrotic

myofibroblast population during the initiation and development of

SSc-associated lung fibrosis (136).
Role of pericytes

Pericytes have an important role in vessel stabilization during

angiogenesis (137), and have shown an increased expression of

RGS5, an inhibitor of vessel maturation (138), and PDGFRb along

with decrease expression of aSMA. These activated immature

pericytes are more abundant in the dermis of SSc patients (139)

and can explain the defective angiogenesis seen in SSc despite of the

presence of pro-angiogenic factors such as VEGF. In addition, it has

been postulated that pericytes expressing PDGFb+, NG2+,

ADAM12+ can be precursors of myofibroblasts in skin from SSc

patients (140).
Role of inflammatory cells in tissue
fibrosis in SSc

Besides tissue fibrosis, the presence of chronic inflammatory

cells in affected SSc skin is one of the earliest and most consistent

pathological alteration of the disease (32–34, 47). Numerous studies

have shown that these cells, especially monocytes and macrophages,

are capable of production and release of numerous profibrotic

macromolecules including various cytokines and growth factors.

These profibrotic cellular products induce quiescent fibroblasts in

affected tissues to become active myofibroblasts and initiate their

production of exaggerated amounts of interstitial collagens and

other ECM macromolecules that result in pathologic and excessive
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fibrotic tissue accumulation (49, 50, 141, 142). Indeed, a detailed

study employing coculture experiments of B cells and fibroblasts

demonstrated that B cells were capable of direct stimulation of

collagen and ECM protein synthesis by fibroblasts in vitro (143).

This study also showed that B cell stimulation was further enhanced

by BAFF (B cell activating factor), and it was suggested that these

effects may be mediated by two distinct mechanisms, one resulting

from cell-cell contact and the other induced by the B cell production

of profibrotic molecules including IL-6 and TGF-b (143). Of

substantial relevance to SSc pathogenesis are recent studies

demonstrating that the products released by inflammatory cells

also participate in the fibroproliferative vasculopathy characteristic

of the disease (144).

Other studies have demonstrated that T cells secrete numerous

cytokines, including IL-4, IL-6, IL-13, IL-17, and IL-31, that play an

important role in SSc pathogenesis, including the stimulation of

exaggerated synthesis and deposition of collagens and other fibrotic

proteins by fibroblasts (46–50). IL-13 is an important product of

CD8+ T cells, and its serum levels in SSc-affected patients were

found to correlate with the presence and extent of skin fibrosis.

Furthermore, it has been shown that IL-13 was able to stimulate

collagen production in cultured SSc fibroblasts in vitro, and,

therefore, it has been suggested to play a pathogenetic role in SSc-

associated tissue fibrosis (145, 146). IL-31, is another cytokine that

is also elevated in the serum of SSc patients. Recent studies have

shown that IL-31 also stimulates collagen synthesis in dermal

fibroblasts isolated from patients with SSc, and it has been

strongly implicated in the development of SSc-associated

Pulmonary Fibrosis (147–149). Indeed, it has been described that

there is a highly significant negative correlation between serum IL-

31 levels and the reduction of DLCO values in SSc patients (149).
Role of growth factors in SSc
tissue fibrosis

Numerous polypeptide growth factors play a crucial role in

developing and extending the fibrotic process in SSc. The

experimental evidence supporting the role of these growth factors

in the pathogenesis of tissue fibrotic responses and the molecular

mechanisms involved is very large and has been reviewed

extensively in numerous publications (150–153). Therefore, we

will only briefly discuss a few relevant recent studies related to

the pathogenetic role of growth factors in the fibrotic process of SSc.
Transforming growth factor beta (TGF-b)

It has become well recognized that TGF-b plays a crucial role in

the initiation and progression of a large number offibrotic processes

(153, 154), and extensive studies have shown that it is of great

relevance to the fibrotic process associated with SSc (151–153).

These effects are mediated by multiple mechanisms including a

potent stimulation of expression of genes encoding various

interstitial collagens and other ECM macromolecules by
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fibroblasts and other mesenchymal cells (155–157), and the

induction of cellular transdifferentiation of various types of cells

into cells displaying very high expression of various collagens

(Reviewed in Ref. 48).

The production and activation of TGF-b are highly regulated

and involve numerous complex pathways. TGF-b is initially

produced in a latent form in which the polypeptide is bound to a

latency-associated peptide (LAP) and is subsequently secreted to

the extracellular compartment as a large complex with a carrier

protein called latent TGF-b binding protein (LTBP). Once released

from the LTBP, the TGF-b molecules become a bioactive dimeric

complex that is able to bind to different isoforms of TGF-b
receptors (TbR) located in the cell membrane of TGF-b-
responsive cells and initiate intracellular signaling pathways that

are context dependent and transduce the signal from the cell surface

to the nucleus resulting in a potent modulation of expression of

multiple genes (158–164). The intracellular molecular cascades

initiated following TGF-b binding and receptor activation have

been extensively described in multiple publications (155–161) and

will not be discussed here in further detail.

Extensive research studies have shown that the main signal

transducer of TGF-b fibrotic signaling is a family of proteins known

as Smad proteins that play an essential role in the regulation of the

TGF-b-induced fibrotic response (164–166). Other regulatory

pathways of TGF-b effects involve various non-receptor tyrosine

kinases (167, 168), including the cytoplasmic Abelson kinase (c-

Abl) and protein kinase C-d (PKC-d), to contribute to the fibrosis

and vasculopathy of the skin and internal organs in SSc. These

effects are most likely mediated by the crucial participation of c-Abl

in TGF-b-induced EndoMT, an effect mediated by the cooperative

interaction with PKC-d (169, 170).
Connective tissue growth factor (CTGF)

CTGF, also known as CCN2, is a cysteine-rich protein

with pleotropic effects that has recently been recognized as

an important mediator of normal and pathological tissue fibrotic

responses (171–173). Numerous studies have demonstrated

the potent profibrotic effects of CTGF (172), and it has been

considered to play a crucial role in the SSc fibrotic process and to

correlate with the extent and severity of tissue fibrosis (174–177).

Some of these effects are of substantial relevance to SSc pathogenesis

owing to the fact that vascular wall smooth muscle cells are the main

targets of these effects (178), and therefore, it is possible that CTGF

may contribute to the development of Raynaud’s Phenomenon and

other vascular alterations characteristic of SSc.
Platelet-derived growth factor (PDGF)

The PDGF family of growth factors plays an important role in

the development and maintenance of normal connective tissue, and

abnormalities of their signaling pathways may be involved in the

pathogenesis of multiple diseases (Reviewed in Ref. 183). Numerous
Frontiers in Immunology 08
studies have described the involvement of PDGF and related

molecules in the pathogenesis of fibrotic diseases, including SSc

(179–182). Elevated expression of PDGF and its receptors has been

found in SSc skin and lung tissues and there is evidence that TGF-b
stimulates the expression of the PDGF receptor, PDGFRa, in SSc

cells suggesting that cross-talk between TGF-b and PDGF pathways

may regulate tissue fibrosis in SSc (180) and it has been suggested

that PDGF/PDGF receptor may represent a novel molecular target

for SSc (182). Indeed, pharmacologic inhibition of these pathways

has been shown to halt the SSc associated fibrotic process (182).
Fibroblast growth factors (FGFs)

The FGFs comprise a family of twenty two polypeptide growth

factors grouped in seven subfamilies collectively characterized by

their ability to induce potent mitogenic effects that play important

roles in development, angiogenesis and wound healing (183, 184).

Numerous studies have demonstrated the mitogenic effects of FGF

during inflammatory and fibrotic responses often potentiating the

pro-fibrotic effects of TGF-b, although some recent studies have

described that some of the members of the FGF family may cause

antifibrotic effects that may be mediated by inhibition of TGF-b
pathways (185, 186). Regarding the role of FGF in SSc pathogenesis,

it has been shown that basic FGF is increased in the skin of SSc

patients (187). However, the precise role of FGFs in the initiation of

progression of the fibrotic process in SSc has not been completely

elucidated and further studies will be required to conclusively

determine the contribution of these potent growth factors to the

pathogenesis of fibrosis in SSc.
Vascular endothelial growth factor (VEGF)

VEGF is an endothelial cell specific growth factor mediating key

signals for angiogenesis including stimulation of endothelial cell

proliferation and differentiation, and modulation of endothelial

permeability (188–190). Quantitative analysis of serum levels of

VEGF in patients with SSc and healthy controls showed that serum

VEGF levels were significantly higher in SSc patients and correlated

with the extent and severity of skin fibrosis and nailfold capillary

loss, suggesting that high VEGF levels may promote in the capillary

damage in SSc and may correlate with the extent and severity of the

fibrotic process and with disturbed angiogenesis (191–193).
Insulin-like growth factors (IGFs)

Although early studies identified IGFs as the main stimulators of

sulfate incorporation into cartilage (194, 195), several recent studies

have shown that IGFs display strong profibrotic effects. Studies

related to their role in the SSc fibrotic process have shown elevated

levels of serum IGF-I and IGFBP-3 in SSc patients that correlated

with the extent of skin involvement and the presence of pulmonary

fibrosis (196). Furthermore, IGF-I mRNA was found to be
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upregulated in the affected skin tissues of patients with SSc.

Subsequent extensive studies demonstrated that IGF-II is involved

in SS-associated pulmonary fibrosis and is a potent inducer of

collagen production and other fibrotic pathways and that these

effects are mediated by multiple mechanisms, including an increase

in the expression of pro-fibrotic signaling molecules, a decrease in the

expression of several collagen degradation enzymes, and an increase

in the differentiation of fibroblasts into myofibroblasts (197, 198).
Role of miRNAs in the regulation of
SSc-associated fibrosis

MicroRNAs (miRNAs) are small (~22 nucleotides),

evolutionarily conserved non-coding RNA, which play important

roles in the regulation of the expression of a large number of

protein-coding genes at the post-transcriptional level (199). The

mechanisms involved in post-transcriptional miRNA regulation of

gene expression are complex and require the sequence-specific

complementary binding to the 3’ untranslated region (UTR) of

target mRNAs, suppressing their expression by either inhibiting

mRNA translation or facilitating mRNA degradation of their

corresponding mRNA (199, 200). Non-coding RNAs can also

induce potent cellular transdifferentiation effects (201).

Several non-coding RNAs have been shown to be involved in

SSc tissue fibrosis, displaying either profibrotic or antifibrotic effects

(202–204). Among the most extensively studied miRNAs in the

pathogenesis of SSc are miR-21 and miR-29 (201–203) and it has

been shown that elevated expression of miR-21 is associated with

stimulation of fibroblast proliferation and increased production and

accumulation of various ECM proteins. Furthermore, it has been

demonstrated that miR- 21 expression is upregulated by TGF-b1
and may represent one of the profibrotic molecular effects of the

growth factor on dermal fibroblasts. The miR-29 family comprises

several distinct miRNAs that play a crucial role in the regulation of

the fibrotic process and are capable of potent anti-fibrotic effects

including regulatory modulation of several fibrosis-related genes

such as the genes encoding collagens type I, II and IV, fibronectin,

and laminin, as well as various enzymes involved in tissue

remodeling, including TIMP and other matrix metalloproteinases.

Indeed, it has been shown that miR-29 inhibits the TGF-b1/Smad

signaling pathway and suppresses the TGF- b1-induced pro-fibrotic
process. The expression of several members of the miR-29 family is

reduced in SSc and in other tissue fibrosis diseases and the extent of

their reduction has been shown to inversely correlate with the

extent and severity of the fibrotic process (205, 206).

Recent studies have found the scaffold long non-coding RNA

(lncRNA), HOTAIR, was found to be overexpressed in SSc in

dermal fibroblasts, inducing a histone EZH2-dependent increase

in collagen production and the expression of the myofibroblast

marker a-SMA in vitro. In addition, histone-mediated repression of

miRNA-34A expression was also observed, with the subsequent

activation of the NOTCH pathway (207).

Another lncRNA that has been associated with the strong IFN-I

signature in SSc is the X-inactive specific transcript (XIST), which is
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involved in X chromosome inactivation (XCI) in female mammals.

Plasmocytic dendritic cells (pDC) in SSc overexpress TLR8,

contributing to keeping a strong IFN-I signature in skin and lung

tissues. Escaping from silencing by incomplete XCI in inflammatory

cells from women may affect TLR7/8 signaling. The decreased

expression of XIST and of the transcriptional repressor SPEN in

SSc pDCs, suggests that an altered XCI at the TLR7/8 locus may,

indeed, contribute to IFN-I chronic activation mediated by pDCs

(208). In addition to that effect, TSIX, the XIST antisense, can also

play a more direct role in SSc fibroblasts, activating endogenous

TGF-b signaling and may play a role in stabilizing collagen RNA

and upregulating collagen in these cells (209).

Upregulation and downregulation of multiple non-coding RNAs

have been described in SSc (205–234), and it is very likely that

although the evidence is not conclusive, these RNAs may be shown to

be highly relevant to the SSc fibrotic process. A list of the non-coding

RNA associated with SSc fibrosis is shown in Table 1. Multiple other

miRNAs have been implicated in SSc vasculopathy and immune

dysregulation. Although the scope of this review is focused on

fibrosis, this subject has been recently reviewed (202, 235).
Concluding remarks

SSc is a highly complex autoimmune disease of unknown

etiology, causing severe clinical and pathological alterations in

affected individuals that often manifest as progressive cutaneous

and multiple organ fibrosis and associated generalized obstructive
TABLE 1 MicroRNA implicated in SSc fibrosis.

miRNA Target Levels in SSc References

21 SMAD7 Overexpressed (219)

26a-5p Collagen Underexpressed (220)

27a-3p SPP1 and ERK Underexpressed (221)

29a COL3A1 Underexpressed (222)

30b PDGFR-b Underexpressed (223)

31 EndoMT, TGF-b Overexpressed (224)

33a-3p DDK-1 Overexpressed (225)

92a MMP-1 Overexpressed (226)

129-5p
Connective Tissue
Growth Factor

Underexpressed (227)

142-3p Integrin aV Overexpressed (228)

150 Integrin b3 Underexpressed (229)

155 EndoMT Wnt, Overexpressed (230)

196a Collagen Underexpressed (231)

202-3p MMP1 Overexpressed (232)

483-5p Collagen Overexpressed (214)

4458 ? Overexpressed (233)

Let-7a Collagen Underexpressed (234)
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vasculopathy. Despite the severity of the disease, there is no curative

therapy at the present time, however, it is expected that further

knowledge about its pathogenesis may provide effective therapeutic

approaches. This review outlines the current understanding of the

disease pathogenesis and may be of value to the development of

effective treatment for this serious autoimmune pathologic condition.
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50. Jiménez SA. Cellular immune dysfunction and the pathogenesis of scleroderma.
Semin Arthritis Rheumatol. (1983) 13:104–13. doi: 10.1016/0049-0172(83)90029-X

51. Scheen M, Dominati A, Olivier V, Nasr S, De Seigneux S, Mekinian A, et al.
Renal involvement in systemic sclerosis. Autoimmun Rev. (2023) 22:103330.
doi: 10.1016/j.autrev.2023.103330

52. Cole A, Ong VH, Denton CP. Renal disease and systemic sclerosis: an update on
scleroderma renal crisis. Clin Rev Allergy Immunol. (2023) 64:378–91. doi: 10.1007/
s12016-022-08945-x

53. Denton CP, Black CM. Pulmonary hypertension in systemic sclerosis. Rheum
Dis Clin North Am. (2003) 29:335–49. doi: 10.1016/S0889-857X(03)00024-3

54. Perelas A, Silver RM, Arrossi AV, Highland KB. Systemic sclerosis-associated
interstitial lung disease. Lancet Respir Med. (2020) 8:304–20. doi: 10.1016/S2213-2600
(19)30480-1

55. Liakouli V, Ciancio A, Del Galdo F, Giacomelli R, Ciccia F. Systemic sclerosis
interstitial lung disease: unmet needs and potential solutions. Nat Rev Rheumatol.
(2024) 20:21–32. doi: 10.1038/s41584-023-01044-x

56. McMahan ZH, Kulkarni S, Chen J, Chen JZ, Xavier RJ, Pasricha PJ, et al.
Systemic sclerosis gastrointestinal dysmotility: risk factors, pathophysiology, diagnosis
and management. Nat Rev Rheumatol. (2023) 19:166–81. doi: 10.1038/s41584-023-
00929-1

57. Moysidou GS, Dara A, Arvanitaki A, Skalkou A, Pagkopoulou E, Daoussis D,
et al. Understanding and managing cardiac involvement in systemic sclerosis. Expert
Rev Clin Immunol. (2023) 19:293–304. doi: 10.1080/1744666X.2023.2171988

58. Lally EV, Jimenez SA. Erectile failure in systemic sclerosis. N Engl J Med. (1990)
322:1398–9. doi: 10.1056/NEJM199005103221918

59. Busquets J, Lee Y, Santamarina L, Federman JL, Abel A, Del Galdo F, et al. Acute
retinal artery occlusion in systemic sclerosis: a rare manifestation of systemic sclerosis
fibroproliferative vasculopathy. Semin Arthritis Rheumatol. (2013) 43:204–8.
doi: 10.1016/j.semarthrit.2012.12.025

60. Müller-Ladner U, Distler O, Ibba-Manneschi L, Neumann E, Gay S. Mechanisms
of vascular damage in systemic sclerosis. Autoimmunity. (2009) 42:587–95.
doi: 10.1080/08916930903002487

61. Mostmans Y, Cutolo M, Giddelo C, Decuman S, Melsens K, Declercq H, et al.
The role of endothelial cells in the vasculopathy of systemic sclerosis: A systematic
review. Autoimmun Rev. (2017) 16:774–86. doi: 10.1016/j.autrev.2017.05.024

62. Patnaik E, Lyons M, Tran K, Pattanaik D. Endothelial dysfunction in systemic
sclerosis. Int J Mol Sci. (2023) 24:14385. doi: 10.3390/ijms241814385

63. Corallo C, Franci B, Lucani B, Montella A, Chirico C, Gonnelli S, et al. From
microvasculature to fibroblasts: Contribution of anti-endothelial cell antibodies in
systemic sclerosis. Int J Immunopathol Pharmacol. (2015) 28:93–103. doi: 10.1177/
0394632015572750

64. Akbarzadeh R, Müller A, Humrich JY, Riemekasten G. When natural antibodies
become pathogenic: autoantibodies targeted against G protein-coupled receptors in the
pathogenesis of systemic sclerosis. Front Immunol. (2023) 14:1213804. doi: 10.3389/
fimmu.2023.1213804

65. Murrell DF. A radical proposal for the pathogenesis of scleroderma. J Am Acad
Dermatol. (1993) 28:78–85. doi: 10.1016/0190-9622(93)70014-K

66. Kahaleh MB. Endothelin, an endothelial-dependent vasoconstrictor in
scleroderma. Enchanced production and profibrotic action. Arthritis Rheumatol.
(1991) 34:978–83. doi: 10.1002/art.1780340807

67. Shi-Wen X, Renzoni EA, Kennedy L, Howat S, Chen Y, Pearson JD, et al.
Endogenous endothelin-1 signaling contributes to type I collagen and CCN2
overexpression in fibrotic fibroblasts. Matrix Biol. (2007) 26:625–32. doi: 10.1016/
j.matbio.2007.06.003

68. Argentino G, Barbieri A, Beri R, Bason C, Ruzzenente A, Olivieri O, et al.
Profibrotic effects of endothelin-1 on fibroblasts are mediated by aldosterone in vitro:
relevance to the pathogenesis and therapy of systemic sclerosis and pulmonary arterial
hypertension. Biomedicines. (2022) 10:2765. doi: 10.3390/biomedicines10112765

69. Manetti M, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M. Mechanisms in
the loss of capillaries in systemic sclerosis: angiogenesis versus vasculogenesis. J Cell
Mol Med. (2010) 14:1241–54. doi: 10.1111/j.1582-4934.2010.01027.x

70. Sun X, Nkennor B, Mastikhina O, Soon K, Nunes SS. Endothelium-mediated
contributions to fibrosis. Semin Cell Dev Biol. (2020) 101:78–86. doi: 10.1016/
j.semcdb.2019.10.015

71. Rokni M, Sadeghi Shaker M, Kavosi H, Shokoofi S, Mahmoudi M, Farhadi E.
The role of endothelin and RAS/ERK signaling in immunopathogenesis-related fibrosis
in patients with systemic sclerosis: an updated review with therapeutic implications.
Arthritis Res Ther. (2022) 24:108. doi: 10.1186/s13075-022-02787-w

72. Sambo P, Baroni SS, Luchetti M, Paroncini PM, Dusi S, Orlandini G, et al.
Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by
the constitutive up-regulation of reactive oxygen species generation through the
NADPH oxidase complex pathway. Arthritis Rheumatol. (2001) 44:2653–64.
doi: 10.1002/1529-0131(200111)44:11<2653::AID-ART445>3.0.CO;2-1
frontiersin.org

https://doi.org/10.1038/s41584-018-0099-0
https://doi.org/10.1016/0002-9343(57)90324-8
https://doi.org/10.1016/0002-9343(57)90324-8
https://doi.org/10.1016/0002-9343(69)90044-8
https://doi.org/10.7326/0003-4819-73-2-317
https://doi.org/10.1016/0049-0172(75)90017-7
https://doi.org/10.1016/0049-0172(75)90017-7
https://doi.org/10.1016/j.rdc.2007.12.004
https://doi.org/10.1002/art.37988
https://doi.org/10.1002/art.37988
https://doi.org/10.1016/j.autrev.2006.12.006
https://doi.org/10.2147/JIR.S18145
https://doi.org/10.1038/s41584-020-0386-4
https://doi.org/10.1016/j.biopha.2023.115282
https://doi.org/10.1002/art.1780200410
https://doi.org/10.1002/art.1780270607
https://doi.org/10.1159/000163933
https://doi.org/10.1159/000163933
https://doi.org/10.1136/ard.2004.027094
https://doi.org/10.1186/s13075-018-1569-0
https://doi.org/10.1016/j.semarthrit.2007.10.010
https://doi.org/10.1007/s00281-015-0511-7
https://doi.org/10.1016/j.imlet.2017.12.001
https://doi.org/10.1111/cei.13238
https://doi.org/10.1016/j.jaut.2020.102526
https://doi.org/10.1016/j.mehy.2006.07.053
https://doi.org/10.1186/ar2188
https://doi.org/10.1016/j.rdc.2007.11.002
https://doi.org/10.1097/01.bor.0000139310.77347.9c
https://doi.org/10.1016/j.autrev.2010.09.015
https://doi.org/10.1097/BOR.0000000000000217
https://doi.org/10.2174/0115733971261932231025045400
https://doi.org/10.1016/0049-0172(82)90055-5
https://doi.org/10.1016/0049-0172(82)90055-5
https://doi.org/10.1016/0049-0172(83)90029-X
https://doi.org/10.1016/j.autrev.2023.103330
https://doi.org/10.1007/s12016-022-08945-x
https://doi.org/10.1007/s12016-022-08945-x
https://doi.org/10.1016/S0889-857X(03)00024-3
https://doi.org/10.1016/S2213-2600(19)30480-1
https://doi.org/10.1016/S2213-2600(19)30480-1
https://doi.org/10.1038/s41584-023-01044-x
https://doi.org/10.1038/s41584-023-00929-1
https://doi.org/10.1038/s41584-023-00929-1
https://doi.org/10.1080/1744666X.2023.2171988
https://doi.org/10.1056/NEJM199005103221918
https://doi.org/10.1016/j.semarthrit.2012.12.025
https://doi.org/10.1080/08916930903002487
https://doi.org/10.1016/j.autrev.2017.05.024
https://doi.org/10.3390/ijms241814385
https://doi.org/10.1177/0394632015572750
https://doi.org/10.1177/0394632015572750
https://doi.org/10.3389/fimmu.2023.1213804
https://doi.org/10.3389/fimmu.2023.1213804
https://doi.org/10.1016/0190-9622(93)70014-K
https://doi.org/10.1002/art.1780340807
https://doi.org/10.1016/j.matbio.2007.06.003
https://doi.org/10.1016/j.matbio.2007.06.003
https://doi.org/10.3390/biomedicines10112765
https://doi.org/10.1111/j.1582-4934.2010.01027.x
https://doi.org/10.1016/j.semcdb.2019.10.015
https://doi.org/10.1016/j.semcdb.2019.10.015
https://doi.org/10.1186/s13075-022-02787-w
https://doi.org/10.1002/1529-0131(200111)44:11%3C2653::AID-ART445%3E3.0.CO;2-1
https://doi.org/10.3389/fimmu.2025.1551911
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jimenez et al. 10.3389/fimmu.2025.1551911
73. Gabrielli A, Svegliati S, Moroncini G, Luchetti M, Tonninic C, Avvedimento EV.
Oxidative stress and the pathogenesis of scleroderma; The Murrell’s hypothesis
revisited. Semin Immunopathol. (2008) 30:329–37. doi: 10.1007/s00281-008-0125-4

74. Beyer C, Schett G, Gay S, Distler O, Distler JH. Hypoxia. Hypoxia in the
pathogenesis of systemic sclerosis. Arthritis Res Ther. (2009) 11:220. doi: 10.1186/
ar2598

75. Vona R, Giovannetti A, Gambardella L, Malorni W, Pietraforte D, Straface E.
Oxidative stress in the pathogenesis of systemic scleroderma: An overview. J Cell Mol
Med. (2018) 22:3308–14. doi: 10.1111/jcmm.2018.22.issue-7

76. Abdulle AE, Diercks GFH, Feelisch M, Mulder DJ, van Goor H. The role of
oxidative stress in the development of systemic sclerosis related vasculopathy. Front
Physiol. (2018) 9:1177. doi: 10.3389/fphys.2018.01177
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