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In recent years, tumor immunotherapy has made significant breakthroughs in the

treatment of malignant tumors. However, individual differences in efficacy have

been observed in clinical practice. There is increasing evidence that gut microbial

metabolites influence the efficacy of distal tumor immunotherapy via the gut-

liver axis, the gut-brain axis and the gut-breast axis, a process that may involve

modulating the expression of immune cells and cytokines in the tumor

microenvironment (TME). In this review, we systematically explore the

relationship between gut microbial metabolites and tumor immunotherapy,

and examine the corresponding natural products and their mechanisms of

action. The in-depth exploration of this research area will provide new ideas

and strategies to enhance the efficacy of tumor immunotherapy and mitigate

adverse effects.
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1 Introduction

Tumor immunotherapy has recently emerged as a breakthrough approach to the

treatment of malignant tumors, and unlike traditional cancer treatments such as

radiotherapy and chemotherapy, immunotherapy harnesses the host's immune system to

target and eliminate cancer cells (1). In recent decades, with the continuous progress of our

understanding of the cancer immunosuppressive microenvironment, immunotherapy has

become the key pillar of cancer treatment, including immunosuppressive, chimeric antigen

receptor (CAR) therapy, cancer vaccination and oncolytic virus therapy (1). However,

long-term chronic stimulation of immune cells by tumor antigens and the uncontrolled

inflammation associated with carcinogenesis ultimately impairs anti-tumor immunity and
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promotes tumor progression (2), resulting in a situation where not

all patients benefit and some may even suffer serious immune-

related adverse events (3).

The gut flora is the most important metabolic organ in the

human body and consists of a wide range of microorganisms,

including bacteria, archaea, viruses, unicellular eukaryotes and

fungi (4). Numerous studies have shown that gut microbes

influence cancer development through a variety of mechanisms,

in which bacterial metabolites may play an important role (5, 6).

Bacterial metabolites such as short-chain fatty acids (SCFAs), bile

acids, lactic acid, spermidine, indole and retinoic acid have been

shown to link the gut microbiota to systemic immunity, which in

turn influences cancer development (7). For example, microbial

metabolites have been shown to influence the initiation and

progression of endocrine tumors by altering various signaling

pathways (8–10). Acetic acid improves pancreatitis and its

sequelae and may reduce the incidence of pancreatic cancer (11).

Lactate-mediated epigenetic reprogramming regulates the

formation of human pancreatic cancer-associated fibroblasts and

the ultrastructural differentiation of sodium butyrate-treated

human pancreatic cancer cell lines, alterations that have the

potential to increase the invasiveness of pancreatic cancer cells

(12, 13). It has also been shown that butyrate has an inhibitory effect

on the proliferation of pancreatic cancer cells by inducing a specific

secretory phenotype through structural changes (14). A study of

patients with pancreatic cancer showed that all diagnosed patients

had elevated bile acid levels (15). Other studies have shown that

patients with ovarian cancer have reduced blood levels of

tryptophan and indolepropionic acid, a trend that becomes more

pronounced as the disease progresses (16–19).

In recent years, microbial metabolites have been shown to play

an important role in tumor immunotherapy by activating the

immune system to eliminate tumor cells and prevent the

development of drug resistance (20). Therefore, in-depth

exploration of the crosstalk between gut microbial metabolites

and tumor immunotherapy, as well as the mining of related

natural products and their potential roles, is of great importance

to further alleviate the side effects of cancer therapies and improve

the cure rate. In this paper, we will systematically review the

relationship between gut microbial metabolites and tumor

immunotherapy, and mine related natural products to explore

their potential challenges and directions.
2 Sources and classification of gut
microbial metabolites

Depending on the food source, gut microbial metabolites can be

classified as SCFAs, bile acids, phenolics, vitamins, polyamines,

tryptophan and lipids (21), which play an important role in

tumorigenesis and progression (22–24). SCFAs are saturated fatty

acids with chain lengths of one to six carbon atoms, which are themain

product of fiber fermentation in the colon and are not absorbed in the

small intestine (25), and are metabolized mainly by the phylum Thick

Walled Bacteria, including Fusobacterium harryi, Fusobacterium
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rectum and E. fecalis prausnitzii, Clostridium sporotrichum,

Bifidobacterium bifidum, Propionibacterium sp, Pseudomonas sp and

Lactobacillus sp (26, 27). SCFAs include mainly acetate, propionate

and butyrate, with formate, valerate and hexanoate being the least

abundant (28, 29), of which butyrate is the most studied SCFA, which

not only maintains the balance of the intestinal flora, but also has an

inhibitory effect on tumorigenesis, which may reduce the risk of

colorectal cancer (30–33). Tryptophan is one of the essential amino

acids and the only amino acid with an indole structure, which is found

mainly in protein-rich foods such as poultry, fish, dairy products and

soya beans. Studies have shown that tryptophan can be metabolized by

the intestinal microflora to produce a variety of metabolites such as

lactic acid, propionic acid, acrylic acid, tryptamine, etc., which may be

involved in the immune response process (34). In addition, indole and

indole metabolites produced by bacterial pathways, including indole-3-

acetic acid (IAA), indole-3-aldehyde (IAld), indole-3-propionic acid

(IPA), indole-3-acetamide (34–36), which can act as activators of aryl

hydrocarbon receptor (AHR) or pregnane X receptor (PXR) signaling

and play an important role in the regulation of the host immune

response (37). AHR or PXR signaling activators play key roles in

regulating immune responses, metabolic processes, and cellular

responses to environmental signals (37, 38). Most of the intestinal

bacteria involved in metabolism are of the Bacillus genus. Escherichia

coli (E. coli) metabolizes tryptophan to indole and pyruvate (39), and

Bacillus sphaericus metabolizes tryptophan to indole, which is further

metabolized to form IAld, which can be oxidized to IAA by

oxidoreductases or converted to tryptamine by decarboxylases.

Inosine is mainly derived from endogenous purine nucleosides

formed from the deamination metabolism of the adenine portion of

nucleic acid by intestinal microorganisms and has the function of

regulating the intestinal microbiota and protecting the intestinal

mucosal barrier (40). Trimethylamine oxides are derived from the

large amounts of choline or carnitine present in foods such as fish, eggs

and meat products, which can be metabolized by the intestinal

microflora Fusobacterium, Anaplasma phagocytophilum, Aeromonas

phagocytophilum, Clostridium phagocytophilum and Aspergillus

phagocytophilum to produce trimethylamine (TMA), which passes

through the portal circulation to the liver where it is catalyzed to

produce trimethylamine oxide (TMAO) (41). Secondary bile acids are

converted from primary bile acids through metabolism by the gut

microbiota, whereas primary bile acids are synthesized in the liver and

are involved in fat metabolism in the hepatointestinal circulation (42,

43). Polyphenols are water-soluble organic compounds found in fruits,

vegetables and herbs, and metabolites of polyphenols in the gut flora,

such as phenolic acids and flavonoid derivatives, have been shown to

directly or indirectly influence cancer development by stimulating the

host immune response and reducing oxidative stress and

inflammation (44).
3 The basic principles of
tumor immunotherapy

The immune system plays a continuous role in surveillance and

protection in the human body. During the early stages of tumor
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development, a large number of white blood cells, including various

subsets of T cells and dendritic cells, typically accumulate in the

TME. These cells can specifically recognize and eliminate tumor

cells (45). However, during tumor development, multiple

mechanisms of immune evasion and suppression evolve,

including altering tumor antigens to prevent recognition by T

cells (46, 47), blocking T cell recruitment to the TME (48), and

utilizing immunosuppressive white blood cells such as Tregs and

macrophages (49). James Allison and Tasuku Honjo's discovery of

T-cell inhibitory signaling pathways has brought immunotherapy to

widespread attention. When these pathways are activated, they

prevent effective cancer immunization.
3.1 Immune checkpoint inhibitors

Immune checkpoint inhibitors (ICIs) can effectively restore or

enhance the reactivity of anti-tumor T cells, preventing immune

escape by cancer cells. The most prominent of these are cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) monoclonal antibodies

and programmed cell death protein 1 (PD-1) monoclonal

antibodies. CTLA-4 is a protein receptor expressed on T cells,

which binds to CD80 and CD86 on dendritic cells with higher

affinity than CD28 (50). This binding triggers intracellular

inhibitory signaling that leads T cells into a state of non-

responsiveness (51). CTLA-4 monoclonal antibodies can block

the immunosuppressive effects of CTLA-4, reducing Treg cells

and increasing effector T cells (52). In several animal model

experiments, blocking CTLA-4 has been shown to effectively

enhance anti-tumor effects (53, 54). PD-1 is a surface receptor for

its homologous ligands programmed cell death ligand 1 (PD-L1)

and programmed cell death ligand 2 (PD-L2). It is primarily

expressed on activated T cells, but also present on other white

blood cell subsets, including activated B cells, dendritic cells (DC),

monocytes, and natural killer (NK) cell (55, 56). PD-L1 is found on

activated T cells, B cells, dendritic cells, macrophages, and many

tissue cells (57), whereas PD-L2 is only expressed on dendritic cells,

macrophages, and some specialized cells (57). PD-1 can inhibit T

cell activation through multiple pathways. In effector T cells, PD-1

activation leads to the dephosphorylation of key signaling molecules

downstream of the T cell receptor (TCR), thereby suppressing TCR-

mediated T cell activation (58). Other studies have shown that the

PD-1/PD-L1 interaction preferentially triggers dephosphorylation

of CD28, which is one of the main mechanisms of T cell suppression

(59). PD-1 also enhances T cell motility, hindering T cell

interactions with dendritic cells. Additionally, it has been reported

that PD-1 can bind to CD80 and potentially compete with CD28

like CTLA-4, thereby inhibiting T cell activation. Cancer cells can

utilize the PD-1 pathway to upregulate its ligands, PD-L1 and PD-

L2, to inhibit T cell-mediated apoptosis. Multiple studies have been

shown that upregulated PD-1 expression on tumor-infiltrating

lymphocytes is associated with poor prognosis in many human

cancers (60). CTLA-4 and PD-1 provide key physiological immune

regulatory mechanisms, and extensive experimental data have

shown that blocking these checkpoints with antibodies can

enhance anti-tumor immune responses in animal models. This
Frontiers in Immunology 03
discovery has led to the development of humanized monoclonal

antibodies targeting these molecules. These novel immunotherapies

are known as ICIs. In 2011, the U.S. approved the first CTLA-4

inhibitor, Ipilimumab, for the treatment of metastatic melanoma

(61). In a phase III clinical trial, 600 melanoma patients previously

treated with other therapies were divided into three experimental

groups: Ipilimumab combined with the gp100 vaccine, Ipilimumab

alone, and gp100 alone. The results showed that the combination

therapy group had the longest median overall survival (OS) (62).

Currently, ICIs are widely used in cancer immunotherapy and have

been approved for melanoma, non-small cell lung cancer (NSCLC),

renal cell carcinoma, bladder cancer, and head and neck squamous

cell carcinoma. Although ICIs can activate T cells and induce

durable anti-tumor responses, this treatment can also lead to

specific immune activation in non-tumor organs, causing

immune-related adverse events (irAEs). Some adverse events,

such as rashes, rheumatism, and others, are not life-threatening

but can reduce the patient's quality of life, while other irAEs, such as

pneumonia, myocarditis, hepatitis, and irAEs affecting the nervous

and hematologic systems, can be fatal (63). Kyoko et al. reported a

case of a metastatic breast cancer patient receiving combination

treatment with Atezolizumab and paclitaxel, who developed a rare

(1%) neurological irAE, leading to severe, permanent peripheral

neuropathy (64). Furthermore, ICIs largely rely on the pre-existing

presence of tumor-infiltrating cytotoxic T lymphocytes to exert

their anti-tumor effects. In some patients, the immune cell

concentration in the TME is low, and even when activated, the

immune response is minimal.
3.2 Chimeric antigen receptor–T
cell therapy

CAR T cell therapy has opened a new era in cancer treatment

(65). Synthetic CAR constructs typically include an extracellular

domain derived from the single-chain variable fragment of an

antibody, as well as a hinge and transmembrane domain (53).

The functional end of CAR usually contains activation and co-

stimulatory domains, known as intracellular domains (66, 67).

Commonly used co-stimulatory molecules include CD28 and 4-

1BB. When the antigen activates this receptor, it triggers TCR

signaling, co-stimulatory signaling, and cytokine signaling. The

synergistic transmission of these three signals fully satisfies T cell

activation and proliferation (68). CAR-T cell therapy has achieved

tremendous success in treating B cell malignancies, including

leukemia and lymphoma. The CAR-T cel l therapies

Tisagenlecleucel and Axicabtagene ciloleucel were approved by

the FDA and the European Medicines Agency in 2017 and 2018,

respectively, for the treatment of acute lymphoblastic leukemia,

targeting the CD19 antigen on B cells (69). In 2021, the FDA

approved the first cellular therapy for multiple myeloma (MM),

idecabtagene vicleucel (70). CAR-T cells have also shown

remarkable effects and prospects in lymphoma treatment. Axi-

Cel, a CD19+ CAR-T cell therapy, has demonstrated significant

efficacy in refractory large B cell lymphoma, showing good response

levels in 28 treated patients (71). This drug was approved for the
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treatment of follicular lymphoma (FL), as 94% of the 80 evaluable

FL patients in clinical trials showed a response, with 79% achieving

complete remission (CR) (72). The FDA approved the CAR-T cell

therapy Breyanzi® for the treatment of mantle cell lymphoma

(MCL), which has been shown to be effective and safe in phase II

clinical trials in patients with relapsed/refractory MCL (73). Despite

the significant progress has been shown in CAR-T cell therapy

clinical trials, the presence of adverse events during treatment has

affected its effectiveness. The most common is off-target effects,

where the same target antigen is expressed on normal cells, causing

CAR-T cells to attack healthy tissue, leading to adverse reactions.

Notably, most of these toxic reactions are reversible if the patient

receives timely intervention or treatment (74). Antigen escape is

another major challenge faced by CAR-T therapy. Tumor cells

escape killing by promoting mutations in genes encoding antigens,

leading to downregulation or loss of the alternative antigen that

lacks CAR-T cell targeting epitopes (75). For example, although

70% to 90% of relapsed or refractory ALL patients exhibit long-term

responses to CD19-targeting CAR-T cell therapy, recent follow-up

data indicate a common resistance mechanism, with 30% to 70% of

patients who relapse after treatment showing downregulation or

loss of the CD19 antigen (76). Furthermore, in the solid TME,

immune suppression and fibrosis greatly limit the targeted

therapeutic effects of CAR-T cells. To date, no CAR-T cell

therapy has been approved for solid tumors.
3.3 Therapeutic vaccines

Therapeutic cancer vaccination is an active immunization

strategy aimed at stimulating adaptive immune responses against

tumor antigens and generating tumor-specific functional immune

effector cells, such as cytotoxic T lymphocytes (77). Broadly, cancer

vaccines can be classified into cell-based vaccines, viral vector

vaccines, and molecular vaccines composed of peptides,

deoxyribonucleic acid (DNA), or ribonucleic acid (RNA). Cancer

vaccines targeting cells use non-replicating cancer cells or antigen-

presenting cells (APCs) carrying cancer antigens (78). Sipuleucel-T

(Provenge®) is the first FDA-approved therapeutic cancer vaccine,

which improved OS in patients with metastatic castration-resistant

prostate cancer in the Phase 3 trial (79). Cancer vaccines can mimic

natural immune processes, demonstrating good safety and

therapeutic efficacy in numerous clinical trials (80). In an early

study, Hoover et al. showed survival benefits of autologous tumor

cell vaccines in colon cancer, highlighting the broad potential of

cancer vaccines (80). In melanoma, Mackiewicz et al. observed the

highest proportion of complete responders in a trial using

allogeneic whole-cell vaccines (81). In 2020, Lv et al. conducted a

Phase II randomized controlled trial of DC vaccines glioblastoma

multiforme (GBM) and observed improved survival rates (82).

Yamanaka et al., Cho et al., and Yao et al. compared the effects of

dendritic cell vaccines and conventional therapies in glioblastoma

patients, with the vaccine treatment group showing significant

survival benefits (83). However, it must be acknowledged that the

anticipated efficacy of cancer vaccines has not been perfectly

realized in clinical settings. Despite extensive preclinical and
Frontiers in Immunology 04
clinical work, their effectiveness remains unpredictable, and there

are significant negative feedbacks.
4 Crosstalk between gut microbial
metabolites and tumor immunity

Gut microbial metabolites can diffuse across the epithelium and

lamina propria into the somatic circulation, and studies have shown

that a large number of microbial molecules have been detected in

the human bloodstream, of which 5-10% are derived from the gut

microbiota, and that these microbial molecules may act as

regulators of cellular functions in distal organs (84, 85). In

addition, gut microbial metabolites can enter the circulation along

the gut-X axis to reach other target organs or target cells, act as

human hormone-like signaling mediators to influence the

homeostasis of the local environment (86–90), participate in the

release of cytokines in the TME and in the development and

differentiation of immune cells, thereby inhibiting immune escape

from tumors and indirectly influencing the response to various

classical immunotherapies (91–95) (Figure 1).
4.1 Immunoregulation of the gut-liver axis

Studies have shown that the gut microbiome of patients with

liver pathology differs significantly from that of healthy individuals

(96), and gut microbiology and liver function have been found to

be linked to physiological anatomy. Fecal microbiota

transplantation (FMT) using fecal samples from patients with

hepatitis C virus-associated chronic liver disease was found to

promote liver tumor growth in mice (97). Ponziani et al.

investigated the changes in microbial populations in patients

with hepatocellular carcinoma (HCC) as well as in healthy

patients and found that the abundance of Eosinophilus spp.,

Enterococcus spp., Streptococcus spp., Dictyococcus spp. and

Cholera spp. were higher in HCC patients than in controls, and

that there was a decrease in Bifidobacterium Akerman ,

Bifidobacterium bifidum and Bifidobacterium minutissimus spp.

and an increase in plasma interleukin-8 and interleukin-13 (98).

Interestingly, gut microbes and their metabolites play a crucial role

in maintaining the physiological state and metabolic homeostasis

of the host. For example, Clostridium difficile metabolically alters

the balance of primary and secondary bile acids, which in turn

induces the production of C-X-C motif chemokine ligand 16

(CXCL16) in liver sinusoidal endothelial cells, and CXCL16 can

induce NK cells to accumulate in the liver and generate anti-tumor

immunity (99). In addition, deoxycholic acid (DCA) induces

hepatic stellate cells to express a senescence-associated secretory

phenotype, which promotes immune expression to eliminate

senescent cells and induces fibrosis and carcinogenesis (100,

101). In addition, inulin can produce anti-inflammatory SCFAs

through intestinal microbial metabolism, and oral inulin

administration promotes CD8+ T-cell expression and enhances

the therapeutic effect of PD-1 checkpoint immunosuppressants

(102). Lee et al. (103) conducted a fecal analysis of 41 patients with
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unresectable liver cancer, including 20 ICI responders and 21 non-

responders. The results revealed that the concentration of

ursodeoxycholic acid (UDCA) in the feces of ICI responders was

significantly higher, while the concentration of lithocholic acid was

increased in the feces of patients. This suggests that bile acids are

associated with the response of HCC patients to ICI treatment.

Han et al. (104) found that the intestinal microbial metabolite D-

lactic acid (DL) reaches the liver via the portal vein and converts

tumor-associated macrophages (TAMs) from M2 to M1,

enhancing the phagocytic function of Kupffer cells. The

mechanism involves the inhibition of the phosphoinositide 3-

kinase (PI3K)/protein kinase B (Akt) pathway and the activation

of the nuclear factor kappa B (NF-kB) pathway. Zheng et al. (105)
performed dynamic analysis of HCC patients receiving anti-PD-1

immunotherapy in the 6th week and found significant differences

in the gut microbiome diversity between immune responders and

non-responders. The fecal samples of immune responders showed

higher taxonomic richness and gene counts, enriched in

Myxobacteria and Ruminococcaceae, which influenced the

efficacy of anti-PD-1 immunotherapy and disease prognosis in

HCC patients. Dysbiosis of the gut microbiome can also impact

resistance to immunotherapy. Arielle et al. (106) demonstrated that

antibiotic-induced dysbiosis reduces ICI activation of the immune

system, leading to resistance and poor treatment response. Vetizou

(107) showed that Bacteroides fragilis and Bacteroides

thetaiotaomicron can regulate specific T cell responses. FMT
Frontiers in Immunology 05
from ICI responders helped non-responders recover the anti-

cancer effects of PD-1 and CTLA-4 immune checkpoint

blockade (108).
4.2 Immunomodulation of the gut-
endocrine axis

The gut microbiota is recognized as an endocrine organ capable

of influencing distal organs and related biological pathways.

Dysbiosis of the gut microbiome can lead to diseases such as

breast, cervical and ovarian cancer in women, and gut microbial

metabolites are important mediators of associated diseases (109).

Gastrointestinal flora can influence non-ovarian estrogen levels via

the hepatointestinal cycle (110), for example, butyrate has been

shown to regulate luteinizing hormone and estradiol secretion via

the cyclic adenosine monophosphate (cAMP) signaling pathway

(111). Liu et al. showed that butyrate supplementation alleviated

non-alcoholic fatty liver disease in ovariectomized mice (112).

Another study showed higher levels of Prevotella in healthy

women compared to breast cancer patients (113). James et al.

(114) also demonstrated that the diversity of the gut microbiome

is reduced in breast cancer patients, with an increased relative

abundance of Clostridia. Miko and Luu et al. (115, 116) found that

the reduction in microbial diversity is most pronounced in early-

stage breast cancer (Stage 0 and Stage 1). The reduction in gut
FIGURE 1

Metabolites in the intestine are circulated to other parts of the body along with the bloodstream.
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microbiome diversity directly affects the levels of metabolic

products and increases the incidence of breast cancer (117). In a

mouse study, the use of ampicillin exacerbated the reduction in gut

microbiome diversity and induced tumor formation, which may be

related to the decreased abundance of Odoribacter and

Anaeotruncus, both of which are bacteria that produce butyrate

(118). In addition, Mikoah et al. found that lithocholic acid (LCA)

inhibited the proliferation of MCF7, SKBR3, and 4T1 breast cancer

cells, and tested the cytostatic properties of LCA in mice

transplanted with 4T1 breast cancer cells, and found a significant

reduction in the ability of the primary tumors to infiltrate the

surrounding tissues and metastasize after LCA treatment, which

suggests that LCA can be transferred through the bloodstream to

the breast and may play an important role in promoting the

antiproliferative effects of breast cancer (119). In addition to

affecting tumor progression, gut microbiome metabolites also

influence the responsiveness to immunotherapy. In a human

study, strains were extracted from the feces of breast cancer

patients who responded and did not respond to trastuzumab

treatment. Mice receiving FMT from responders also showed a

response to trastuzumab, whereas those receiving FMT from non-

responders did not. This was associated with a higher abundance of

Clostridia in the gut of trastuzumab responders, which is capable of

producing SCFAs (120).
4.3 Immunomodulation of the gut-
brain axis

The complex relationship between the gut microbiota and host

health can be further understood through the gut-brain axis (GBA)

and its associated biological activities. Gut microbial metabolites

can cross the blood-brain barrier through the body's circulation

and, because of their smal l molecular s ize , play an

immunomodulatory role in the gut-brain axis. Gut microbial

tryptophan metabolites can signal to the brain, suggesting a

potential role for metabolites in communication between gut

microbes and the central nervous system (CNS) (121, 122), and

indole derivatives act as AHR ligands, including IPA and IAA, and

have the ability to cross the blood-brain barrier, giving them a key

role in the GBA. For example, indole, IPA and IAld can activate

AHR signaling in astrocytes and suppress inflammation in the CNS

(123). IPA has a strong free radical scavenging and antioxidant

capacity, protecting primary neurons and neuroblastoma cells from

oxidative damage (124). Circulating SCFAs produced by gut

microbiota metabolism affect the integrity of the blood-brain

barrier by increasing the production of tight junction proteins,

and increased blood-brain barrier integrity reduces the entry

of unwanted metabolites into brain tissue and enhances blood-

brain barrier defense mechanisms (125). Compounds produced

by gut microbiota metabolism, such as lipoproteins and

lipopolysaccharides, affect autoimmune function by stimulating

immune cells to release cytokines that can cross the blood-brain

barrier and activate neurons, altering neurological function and

leading to mood and behavioral changes (126). Zhou et al. used an

in situ GBM model and found that gut dysbiosis leads to an
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increased proportion of M2-like macrophages in the TME. They

also observed reduced levels of SCFAs in the blood and glioma

tissues of the brain. Oral supplementation with SCFAs induced the

differentiation of macrophages into the M1 type in the TME,

enhancing the immune response. The mechanism may be related

to SCFA activation of glycolysis in macrophages (127).In a study

investigating the changes in the gut microbiota of brain tumor

patients and the association between the two, 16S rRNA gene

amplicon sequence sequencing was used to characterize the gut

microflora in 158 patients, and the results showed that the

abundance and homogeneity of the gut microbial ecosystem in

brain tumor patients was significantly lower than that in healthy

controls, as evidenced by an increase in the abundance of

pathogenic bacteria and a decrease in the abundance of

probiotic bacteria.
4.4 Others

Several studies have shown that gut microbial metabolites also

play a critical role in immune modulation in many other types of

tumor disease. For example, in one study, supplementation of mice

with long-chain fatty acid metabolizing enzymes to reduce levels of

butyrate metabolites reduced prostate cancer (PCa) growth and

worsening of PCa in mice prior to prostatectomy, demonstrating a

cross-talk between the gut microbial metabolite butyrate and

prostate cancer (128). Butyrate, as one of the main components

of SCFAs, can reduce the risk of pancreatic ductal adenocarcinoma

(PDAC), inhibit the proliferation of pancreatic cancer cells, and

induce their differentiation into a secretory phenotype with

ultrastructural changes. Studies have shown that hyaluronic acid

conjugates of butyrate can significantly inhibit cell proliferation in

pancreatic cancer cell cultures (129).Another study showed that

inosine improved the efficacy of monoclonal antibodies against

CTLA-4 and against PD-L1 in mouse models of bladder and small

bowel cancer (130). Liu et al. (131) conducted gut microbiome

analysis, including metagenomic and metabolomic sequencing, on

54 lung cancer patients who initially received PD-1/PD-L1

treatment. They found that patients with higher levels of acetate,

propionate, and butyrate had longer progression-free survival and

lower tumor progression risk, suggesting a crosstalk between gut

microbial metabolites and the lungs. Andrea et al. (132)

characterized the metabolic features of the gut microbiome in 11

NSCLC patients treated with the PD-1 monoclonal antibody,

nivolumab. They found that 4 patients with early progression

were significantly associated with the gut metabolites 2-pentanone

and tridecane, whereas propionate and butyrate in SCFAs were

linked to long-term beneficial outcomes in the remaining 7 patients.

Motoo Nomura et al. (133) measured SCFA concentrations in feces

and plasma from 52 patients with solid tumors receiving PD-1

treatment and found that high concentrations of acetate,

propionate, butyrate, and valerate in feces were significantly

associated with longer progression-free survival. SCFAs exhibited

immune-modulatory functions in the host, possibly through the

inhibition of histone deacetylases (HDAC) (134). Two phase I

clinical trials showed that FMT could improve response to ICIs in
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resistant metastatic melanoma (91). Additionally, choline

metabolites TMAO and TMA were found to enhance PDAC

response to immune checkpoint blockade and improve survival in

tumor-bearing mice. Gauri Mirji et al. treated PDAC model mice

with macrophages induced by TMAO and found that tumor burden

was reduced by more than 2.4 times compared to mice receiving

control macrophage treatment, with significant upregulation of

Interferon-g, CD103, and CD44 on CD8+ and CD4+ cells. This

suggests that TMAO induces macrophages to differentiate into a

phenotype that enhances T-cell effects and suppresses PDAC

growth. Similar effects were observed in human macrophages.

The authors then used TMAO in combination with PD-1 or

Tim-3 antibodies to treat PDAC model mice and found that,

compared to the PD-1 and TMAO monotherapy groups, the

combination therapy enhanced the immune activation status in

the PDAC TME, with stronger activation of bone marrow cells and

T cells (135). Gut microbial metabolites not only improve cancer

immunotherapy prognosis by enhancing immune responses, but

also alleviate immune-related adverse effects. For example, CTLA-4

antibody treatment is often associated with gut-related side effects,

such as diarrhea or colitis, while PD-1/PD-L1 antibodies are more

commonly associated with thyroid dysfunction or pulmonary

toxicity. As a result, many patients can only use these treatments

for a short period of time. SCFAs, as nutrients for intestinal

epithelial cells, can help repair the gut mucosa, reduce

gastrointestinal adverse effects, and help extend the treatment

cycle of CTLA-4. Oral probiotics such as Bacteroides fragilis and

Burkholderia cepacia can also help alleviate adverse effects (108).

The impact of gut microbial metabolites on tumor immunity is not

always beneficial and can sometimes promote the occurrence and

progression of cancer. For example, secondary bile acids such as

DCA and LCA, which are metabolized by gut microbes, are

associated with the proliferation, survival, and metastasis of

cancer cells (129). In rodent model experiments, it has been

shown that elevated serum concentrations of DCA and LCA

increase the risk of liver cancer (136). The mechanism is related

to the activation of nuclear receptors such as FXR and PXR, which

lead to changes in gene expression (137). Cleĺia Coutzac et al. (138)

used a CT26 tumor model in mice treated with intraperitoneal

CTLA-4 antibody and administered sodium butyrate in their

drinking water to observe the effects of SCFAs on the anti-tumor

effect of CTLA-4. The results showed that there was no significant

reduction in tumor growth compared to the control group,

suggesting that butyrate may inhibit the anti-tumor efficacy of

CTLA-4 in mice. The underlying reason may be related to its impact

on dendritic cell maturation and T-cell function, although the exact

mechanism still needs further exploration. Gut microbes and their

metabolites have a double-edged sword effect on tumor

immunotherapy. Under the influence of factors such as diet,

medication, and disease, the balanced distribution of gut

microbiota is disrupted, leading to an imbalance in the types of

metabolites. This change can affect gut mucosal function, increase

intestinal permeability, and allow a large number of small molecular

metabolites to pass through the intestinal wall, enter the

bloodstream, and accumulate in the TME. These metabolites then

regulate immune function, potentially having either positive or
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negative effects on tumor immunotherapy. Numerous metabolites

have been confirmed to play a role in tumor development. By orally

supplementing or transplanting isolated strains, it is possible to

artificially intervene in metabolite levels and influence the

effectiveness of tumor immunotherapy. This also opens up new

avenues for cancer drug development.
5 Mechanisms by which gut microbial
metabolites influence tumor immunity

5.1 Regulation of the innate
immune response

The gut microbial tryptophan metabolite indole and its

derivatives can directly regulate the growth and differentiation of

non-specific immune cells through activation of the AHR pathway

(139). For example, it has been shown that IAld and IAA promote the

differentiation of monocytes into dendritic cells and enhance the

phagocytic activity of neutrophils and macrophages (140, 141), and

that tryptophan activates the AHR pathway in NK cells, which

enhances cytotoxicity against tumor cells (8, 142, 143). Gut

microbial tryptophan metabolites can also mediate the

inflammatory response by regulating cytokine expression, in

particular stimulating a key role for macrophages. A study in

mouse liver showed that IAA attenuated high fat diet-induced

hepatotoxicity and inhibited interleukin-1b (IL-1b), interleukin-23
(IL-23) and tumor necrosis factor-a (TNF-a), monocyte

chemoattractant protein-1 (MCP-1) in a dose-dependent manner,

interleukin-17A (IL-17A), interleukin-6 (IL-6), and other

inflammatory factors, while increasing the levels of the anti-

inflammatory factor interleukin-10 (IL-10) and decreasing the pro-

inflammatory factor/anti-inflammatory factor ratio (37, 144, 145).

Indole also has a similar function in attenuating the expression of key

proteins in the NF-kB pathway, thereby inhibiting the expression of

inflammatory factors while increasing the expression of anti-

inflammatory factors (146, 147), inhibiting the inflammatory

response and promoting tumor cell growth and metastasis (148).

Tryptophan reduces TNF transcription by mediating a decrease in

IL-6 signaling capacity via AHR targets (149), whereas IAA

neutralizes free radicals, thereby attenuating the inflammatory

response of RAW264.7 macrophages to lipopolysaccharide (LPS)

and increasing interleukin-8 (IL-8) signaling (150), and similarly,

indole-3-methanol inhibited LPS-mediated inflammatory cytokine

production in mouse bone marrow-derived macrophages (BMM)

(151). Studies have shown that propionic acid and butyric acid in

SCFA can inhibit HDAC and increase histone acetylation to play an

anti-inflammatory and anti-cancer role (126). In HCC, gut microbial

metabolites, including lipoteichoic acid (LTA) and DCA, upregulate

cyclooxygenase-2 (COX-2) expression via toll-like receptor 2 (TLR2)

on the membrane surface of tumor cells, which increases

prostaglandin E2 (PGE2) expression. Activation of the COX2-

PGE2 pathway inhibits DCs, NK and T cells, which promotes

immune escape and affects the efficacy and prognosis of tumor

immunotherapy. TAMs are the major type of infiltrating immune

cells in the TME (152). In a study by Parida S et al. in a mouse model
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of breast cancer, the number of pro-tumorigenic M2-like

macrophages was significantly increased in advanced tumors of

mice with gut microbiota dysbiosis compared to non-ecological

dysbiosis controls with the same tumor burden (153), suggesting

that gut microbes can induce macrophage polarization to either M1

or M2, thereby altering the TME and promoting or hindering the

effects of tumor immunotherapy. LPS, a metabolite of E. coli, can

induce M2 polarization of TAMs, thus leading to rapid cancer

development, for example, in the colorectal cancer (CRC) mouse

model, with the increase of E. coli, its metabolite LPS can upregulate

the secretion of cathepsin K by CRC cells, which can induce M2

polarization of TAMs, leading to rapid CRC development (154),

while a high-fat diet can induce gut microbiota dysbiosis, reduce

SCFA levels, activate the MCP-1/C-C motif chemokine receptor 2

(CCR2) axis, and promote TAMs recruitment and polarization

towards M2, ultimately leading to CRC development (155).
5.2 Regulation of adaptive
immune responses

Numerous studies have shown that the gut microbial tryptophan

metabolite indole and indole derivatives can regulate Treg/T helper cell

17 (Th17) differentiation and thereby suppress the inflammatory

response (156). For example, indole-3-carbinol (I3C) treatment

reduces colorectal cancer by decreasing Th17 cells and increasing

Treg (109). In addition, I3C increased the production of

CD4+Foxp3+ cells and ultimately reduced CD4+IL-17+ cells that

induce neuroinflammation in mice, and IAA and IPA promote Treg

differentiation and function by upregulating the expression of Foxp3

(Forkhead Box P3) and other Treg-related genes (37, 41, 157). IAA

promotes Treg differentiation by activating the AHR pathway (37). In

addition, tryptamine has been shown to activate the mechanistic target

of rapamycin (mTOR) in Treg cells in vitro, to increase the expression

of phospho-eukaryotic translation initiation factor 4E binding protein 1

(P4EBP1), and to increase the expression of phosphorylated ribosomal

protein S6 kinase 1 (P-S6K1) in Tem cells (158), suggesting that

exogenous tryptophan promotes cytotoxic T cell glycolysis, thereby

affecting the regulation of CD4+ T cell function (159). In addition to the

effects of IPA on T lymphocytes, indole derivatives have been shown to

inhibit and stimulate B cells. I3C can regulate B cell function by

inhibiting the production of the immunoglobulins immunoglobulin M

(IgM) and immunoglobulin G (IgG) and decreasing the expression of

the cell surface antigen CD69. CD69, inducing B cell apoptosis and

inhibiting B cell proliferation (160, 161). Tryptamine has been shown

to stimulate IgA production by B cells and activate the transcription

factor AHR to regulate B cell function (162). Although several studies

have demonstrated the inhibitory and stimulatory effects of indole

derivatives on B cells, further research into the mechanism of action of

these compounds is needed before they can be used in the potential

treatment of immune diseases.

Gut microbial bile metabolites also play an important role in T

cell expression. DAC has been shown to inhibit the Ca2+-nuclear

factor of activated T cells-2 (NFAT2) signaling pathway by targeting

the plasma membrane Ca2+ATPase (PMCA), and in CRC patients,

the effective function of CD8+ T cells is negatively correlated with
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DCA concentration and expression (163). Another study showed

that the tryptophan metabolite indole activates the AHR and also

promotes the conversion of TAMs to an immunosuppressive

phenotype in pancreatic ductal adenocarcinoma and inhibits the

accumulation of CD8+ T cells in the tumor (9). Researchers have

found that selective depletion of TAMs in a mouse model of breast

cancer increases CD8+ T cell infiltration into the TME and

stimulates anti-tumor immune responses (164, 165).

Specific types of gut metabolites, including SCFA, tryptophan,

etc., show a compelling role in cancer inhibition. This is because

these compounds show significant activity on immune signaling

and cell division processes (95). SCFA recognizes specific G protein-

coupled receptors (GPCRs) on the surface of immune cells,

including GPR41 and GPR43, which leads to an increase in the

total number of regulatory T cells, transforming growth factor-b1
(TGFb1) and levels of the anti-inflammatory cytokine IL-10 in the

host (166). An inhibitory effect on T-cell mediated autoimmune

responses was also found with diets high in SCFA. In contrast,

another study found that Lactobacillus metabolizes dietary

tryptophan to indole, which activates the AHR and inhibits the

accumulation of CD8+ T cells in tumors. In human CRC, the gut

microbiota stimulates tumor cells to produce chemokines to recruit

anti-tumor T cells into tumor tissue and play an immune role (167).

Indole derivatives can regulate T cell differentiation by

modulating the expression of cytokines and transcription factors.

For example, the indole derivative I3C has been shown to promote

Th1 cell differentiation by upregulating interferon gamma and Tb
transcription factors (161). In addition, I3C inhibits T helper 2 cell

(Th2) differentiation by downregulating the expression of IL-4 related

genes and the transcription factor GATA binding protein 3 (GATA3)

(161). Another indole derivative, Indoxyl sulfate (IS), has also shown

the ability to regulate T cell activation and proliferation. IS inhibits

the expression of CD25 and CD69 surface markers (162), which are

key indicators of early T cell activation (168, 169). In addition, IS

reduced the frequency of IL-4-producing CD4+ T cells and inhibited

Th2 differentiation. This effect was attributed to inhibition of

phosphorylation of signal transducer and activator of transcription

5 (STAT5) and signal transducer and activator of transcription 6

(STAT6), transcription factors involved in Th2 differentiation.

Indoxyl 3-sulfate (I3S) can also induce T cell apoptosis or

programmed cell death by upregulating the expression of pro-

apoptotic proteins (170). Other indole derivatives IAld and IPA

have also been shown to modulate the immune response by

regulating T cell function (171, 172). IAld induces T-cell apoptosis

and inhibits T-cell activation by regulating the expression of pro- and

anti-apoptotic proteins (173) (Figure 2).
6 Potential application of natural
products to microbial metabolites in
tumor immunotherapy

Natural products have unique advantages such as a wide range of

sources, low side effects and diverse biological activities. Natural

products not only have broad anti-tumor activity (174). They also
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have the ability to modulate complex host-microbe interactions.

Furthermore, an increasing amount of evidence indicates that

natural products can influence the immune microenvironment of

tumors by regulating microbial metabolites. Natural products can

also target the microbiome to improve the efficacy of chemotherapy,

overcome drug resistance and provide new therapeutic ideas and

strategies for tumor immunotherapy (Table 1).
6.1 Alkaloids

In recent years, alkaloid chemicals extracted from plants have been

found to have good anti-tumor activity, high efficacy, good tolerability

and few toxic side effects (175). Berberine (BBR) is an isoquinoline

alkaloid extracted from the roots and bark of plants in the Coptis

chinensis Franch. Dextran sulfate sodium (DSS) can break down the

intestinal mucosal barrier, leading to intestinal inflammation and

ulcers. Previous studies have shown that BBR can ameliorate the bile

acid imbalance induced by DSS in both the liver and the intestine. It

achieves this by restoring the perturbed gut microbiota and activating

the FXR and TGR5 signaling pathways, thereby alleviating DSS-

induced ulcerative colitis in mice (176). Prolonged ulcerative colitis

causes high levels of pro-inflammatory cytokines to accumulate in the

colonic mucosa, and this accumulation, which in turn leads to

proliferative lesions, is considered to be a major risk factor for the
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development of colorectal cancer (177). BBR was further investigated

by Wang et al. and found to be therapeutically useful for potential

protection against oxidative azomethane (AOM)/DSS-induced colitis

and tumors in mice. Transcriptome analysis revealed that BBR

regulates colonic epithelial cell signaling pathways in colitis-

associated colon cancer mice through tryptophan metabolism and

Wnt signaling pathways, which may affect fecal metabolites and SCFA

metabolism (178). In addition, BBR also synergized with exercise to

slow the progression of breast cancer in 4T1 hormone mice, and this

synergistic effect was able to enhance the body's immune function,

significantly increase levels of SCFAs, and activate the mitochondrial

apoptotic pathway as well as the Fas death receptor apoptotic pathway,

resulting in an anti-cancer effect (179). Furthermore, it has also been

shown that Matrine increases SCFA levels in the gut and prevents

intestinal damage through the Toll-like receptor 4 (TLR4)/NF-kB/
mitogen-activated protein kinase (MAPK) signaling pathway,

demonstrating its great potential as a potential therapeutic agent for

the treatment of cancer (180).
6.2 Glycosides

Glycosides, as a class of natural products widely found in plants,

have a variety of biological activities, mainly through the interaction

with intestinal flora and metabolites to exert a medicinal effect,
FIGURE 2

Mechanisms by which gut microbial metabolites influence tumor cell.
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especially in the antitumor and immunomodulatory aspects

showing significant potential (181). Furthermore, Pulsatilla

chinensis saponin (PRS) is a natural saponin analogue isolated

from Pulsatilla chinensis (Bunge) Regel. PRS protects against DSS-

induced inflammatory bowel disease by increasing the levels of

SCFAs, activating the GPR 43-NOD-like receptor thermal protein
Frontiers in Immunology 10
domain associated protein 3 (NLRP 3) signaling pathway and

decreasing the levels of pro-inflammatory factors IL-1b, IL-6 and

TNF-a in vivo (182). Among these, Panax ginseng C. A. Mey. has

been widely used as a functional food and medicine. Ginseng

glucosyl oleanolate (GGO) was enzymatically prepared from

ginsenoside Ro. GGO inhibited the proliferation of Hep G2 cells
TABLE 1 Mechanisms of tumor therapy by natural products and their active ingredients via gut microbial metabolites.

Natural
product

Active
ingredient

Microbial
metabolites

Mechanism References

Coptis
chinensis

Berberine SCFAs

Inhibits intestinal inflammatory response and modulates colon epithelial cell
signaling pathways in CAC mice via tryptophan metabolism and Wnt
signaling pathway. Regulates intestinal microbiota imbalance, improves
intestinal mucosal barrier function.
Increases NK cell infiltration, increases levels of SCFAs, and activates
mitochondrial apoptosis pathway as well as Fas death receptor apoptosis
pathway for breast cancer.

(178)

(179)

Sophora
flavescens

Matrine SCFAs
Increased SCFA levels in the intestine via the TLR4/NF-kB/MAPK
signaling pathway.

(180)

Pulsatilla
chinensis

Pulsatilla
chinensis saponin

SCFAs
Increased levels of colonic SCFAs, activation of the GPR43-NLRP3 signaling
pathway, and decreased levels of IL-1b, IL-6, and TNF-a pro-
inflammatory cytokines.

(182)

Panax
ginseng

Ginseng
glucosyl
oleanolate

SCFAs
Regulation of the MAPK signaling pathway inhibits Hep G2 cell proliferation,
rebalances the intestinal flora, increases the level of total SCFAs improves
intestinal inflammation and inhibits tumor growth.

(183)

Gynostemma
pentaphyllum

Jiaogulan
saponins

SCFAs

Improvement of the inflamed intestinal barrier, polarization of colonic M1
macrophages to M2 macrophages, positive restoration of the E-calmodulin/N-
calmodulin ratio and down-regulation of oncogenic signaling molecules, and
promotion of SCFAs-producing bacteria in a time-dependent manner.

(186)

Brown algae Fucoidan SCFAs

Regulate tryptophan metabolism and SCFAs to enhance CD8+ T cell function,
increase the production of IFN-g and TNFa, reduce the inhibitory effect of
Treg in the circulatory system, remodel the intestinal microbiota, and
cooperate with PD-1 monoclonal antibody to exert anti-tumor effects.

(187)

Cichorium
glandulosum

Inulin SCFAs
Regulation of intestinal flora, production of SCFAs, and inhibition of EMT
transition processes.

(189)

Tetrastigma
hemsleyanum

Tetrastigma
hemsleyanum
polysaccharide

SCFAs
Increased ileal secretion of immunoglobulin A and SCFAs restored tumor-
induced intestinal microflora disturbances and promoted macrophage
phagocytic index, NK cell activation.

(191)

Tremella
fuciformis

Tremella
fuciformis
polysaccharides

Tryptophan metabolites
(xanthurenic acid and
kynurenic acid), Bile
acids (DCA)

Stimulation of Foxp 3 + T cells promoted the production of anti-inflammatory
cytokines, significantly increased intestinal flora diversity, and modulated
tyrosine biosynthesis, tryptophan metabolism, and bile acid
metabolism pathways.

(192)

Kaempferia
galanga

Kaempferol
Bile acids
(chenodesoxycholic acid)

Reducing tumor load, restoring the damaged intestinal barrier, down-
regulating the secondary bile acid synthesis pathway, and increasing the
protein expression of FXR to inhibit the activation of the Wnt/b-catenin
pathway lead to the inhibition of CRC.

(194)

Dioscorea
esculenta

Sitosterols SCFAs

Decreases PI 3K/Akt expression, promotes Bad activation, decreases Bcl-xl,
and increases cyto-c release, leading to caspase-9 and caspase-3 activation,
PARP cleavage, and apoptosis. Increased levels of SCFAs led to apoptosis of
cancer cells in vitro.

(195)

Houpoea
officinalis

Magnolol

Tryptophan metabolites
(kynurenic acid, 5-
hydroxyindoleacetic acid,
IAA, indolelactic acid and
indoxylsulfuric acid)

Anti-inflammatory, restores tryptophan metabolites and enhances AHR
activation inhibited by colonic inflammation thereby inhibiting
colonic inflammation.

(196)

Vaccinium
macrocarpon

Proanthocyanidins
Bile acids
(chenodesoxycholic acid)

Targeting the gut microbiome-esophageal metabolome axis, modulating the
TLR/NF-kB/TP 53 signaling pathway to inhibit EAC, and specifically
reversing reflux-induced bacterial, inflammatory, and immune-related proteins
and genes.

(198)
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through phosphorylation of the MAPK signaling pathway,

rebalanced the intestinal flora, increased the concentration of

total SCFA, and increased the levels of acetic and propionic acids

in the colon, thereby delaying the progression of liver tumors (183).

Jiaogulan saponins are extracted from the dried above-ground part

of Cucurbitaceae gynostemma, with hypoglycemic and anti-tumor

effects (184, 185). Imran Khan et al. found that the combination of

jiaogulan saponin and Ganoderma lucidum polysaccharides to

improve the inflamed intestinal barrier in ApcMin/+ mice

polarized colonic M1 macrophages to M2 macrophages, positively

restored the E-calmodulin/N-calmodulin ratio and downregulated

oncogenic signaling molecules, and increased the production of

SCFAs in bacteria in a time-dependent manner (186).
6.3 Polysaccharides

Polysaccharides are macromolecular compounds widely found in

plants, fungi, marine organisms and other natural sources, usually

consisting of monosaccharides or oligosaccharides linked by

glycosidic bonds, with diverse structures and rich biological

activities. Polysaccharides can influence the tumor immune

microenvironment by regulating the metabolic activity of the gut

microbiota and increasing the synthesis of microbial metabolites.

Fucoidan, mainly derived from marine brown algae and marine

invertebrates, is a sulfate -rich functional polysaccharide unique to the

oceans that may enhance anti-PD-1 immunotherapy by modulating

breast cancer-induced alterations in tryptophan metabolism and

glycerophospholipid metabolism pathways, which are significantly

increased by SCFAs, particularly acetic acid and butyric acid (187).

They act as metabolic immunomodulators. They enhance the function

of the T-lymphocyte immune response and anti-tumor immunity

against breast cancer (188). Inulin increases the relative abundance of

Bifidobacterium, Lactobacillus and Leptospira and restores the levels of

acetic, propionic, isobutyric and butyric acids, thereby inhibiting the

process of epithelial-mesenchymal transition (EMT) and inhibiting

metastasis of colorectal cancer (189). Inulin is a natural soluble

functional fructan. It has been found that inulin produces SCFA and

exerts anti-tumor effects through the action of the intestinal microbiota

(190). Zhou et al. evaluated the antitumor effects of Tetrastigma

hemsleyanum polysaccharide (THP) using a lung tumor model. THP

was able to increase the levels of secretory immunoglobulin A (SIgA) in

the ileum and SCFAs in the cecum, and to improve the diversity of the

intestinal microbial community, thereby restoring tumor-induced

intestinal dysbiosis (191). Tremella fuciformis polysaccharides (TPs)

are acidic heteropolysaccharides extracted from Tremella fuciformis.

Berk. TPs exert a palliative effect on DSS-induced colitis by modulating

tyrosine biosynthesis, tryptophan metabolism, and bile acid

metabolism, while restoring the balance of the intestinal flora and

the normal level of its microbial metabolites (192).
6.4 Flavonoids

Kaempferol is mainly derived from the ginger plant Kaempferia

galanga L., which has received widespread attention for its
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anticancer and antioxidant properties (193). Kaempferol regulates

intestinal flora by significantly increasing the abundance of

beneficial bacteria and inhibiting the growth of potentially

pathogenic bacteria, downregulating the secondary bile acid

synthesis pathway, increasing the activity of G-protein-coupled

receptors, and decreasing NOD-like receptor activity (194).
6.5 Terpenoids

Sterols maintain a diverse gut microbial environment and

enrich the beneficial bacterium Lactobacillus pentosus .

Significantly increased levels of SCFAs were found in fecal

samples analyzed from mice treated with sterols. In addition,

sterols reduced the transactivation effects of the PI3K/Akt

signaling pathway, which regulated the expression levels of several

apoptosis-related proteins, ultimately inducing apoptosis in colon

cancer tumor cells (195).
6.6 Phenolic compounds

Inflammation is one of the most important factors in the

development of intestinal tumors, and the close relationship

between inflammation and tumors has made inflammation one of

the important targets for anticancer therapy. Magnolol exhibits a

significant anti-inflammatory effect on DSS-induced colitis, and the

mechanism may be related to the restoration of tryptophan

metabolites that inhibit colonic inflammation (196). Cranberries

are rich in polyphenolic compounds, one of the most important

being proanthocyanidins (C-PACs). Among other things, cranberry

has been shown to attenuate animal diet-induced increases in

secondary bile acids and decreases in SCFAs (197), suggesting

that cranberry compounds have a positive effect on the regulation

of intestinal microbial metabolites. C-PAC targeted the gut

microbiome-esophageal metabolome axis to inhibit esophageal

adenocarcinoma (EAC) progression by increasing the abundance

of the beneficial bacteria Lactococcus, Lactobacillus and

Bifidobacterium. C-PAC has been shown to reverse reflux-

induced microbial dysregulation, attenuate bile acid metabolism

and transport, and ultimately significantly inhibit EAC via the TLR/

NF-kB/TP 53 signaling cascade (198).
6.7 Natural product extracts

Patchouli Essential Oil (PEO), derived from Pogostemon cablin

(PC), and its derivatives, patchouli alcohol (PA) and pogostone

(PO), stimulate SCFA producers in ApcMin/+ colon cancer mouse

models and activate key SCFA-sensitive receptors (GPR 41, GPR 43

and GPR 109a). The gut microbiota of PEO-treated mice changed,

with a significant reduction in the abundance of the Bacteroidetes

phylum and a notable increase in the abundance of the Firmicutes

phylum (199). In addition, PA and PO significantly promoted the

growth of a probiotic, eosinophilic Ackermannia, which has anti-

inflammatory effects and protects the host intestinal mucosa (200).
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6.8 Traditional Chinese medicine
compound prescription

Phytopharmaceuticals have shown broad application prospects

in the field of tumor therapy due to their multi-target and multi-link

synergistic regulatory properties. Currently, the specific mechanism

of this process has become a hot topic of research regarding how

botanicals mediate tumor therapy by regulating the function of the

gut flora and its microbial metabolites. (Table 2).

For example, some conventional drugs such as Astragalus

mongholicus Bunge.-Curcuma aromatica Salisb. (ACE), which

effectively delayed tumor progression in CT26 colon cancer-

bearing mice, increased levels of SCFAs such as the gut microbial

metabolites propionic acid and butyric acid in colon cancer cells

and mediated the gut-derived stromal cell-derived factor-1 (SDF-

1)/C-X-C chemokine receptor type 4 (CXCR 4) signaling pathway

to inhibit tumor growth and metastasis (201). Xianlian Jiedu

Decoction (XLJDD) treatment was effective in reducing the level

of inflammatory response in a mouse model of colorectal cancer,

the ability to reduce serum levels of inflammatory cytokines, and the

ability to reduce levels of b-conjugated proteins, COX-2 and

inducible nitric oxide synthase (iNOS) protein expression in

colorectal tissue. Mechanistically, XLJDD improved gut dysbiosis

and associated metabolic levels of SCFAs, sphingolipids and

glycerophospholipids. It also increased the abundance of

Enterobacteriaceae and Zeylococcus-like probiotics, as well as

butyric and isovaleric acid levels (202). Shen-Bai-Jie-Du-

Decoction (SBJDD) may promote the production of SCFAs by

modulating the composition of intestinal flora, a process that

further induces the polarization of M2-like macrophages,

attenuates intestinal inflammation, restores intestinal barrier

function and inhibits colorectal cancer cell proliferation (203).

PRM 1201 inhibits CRC metastasis by regulating the abundance

and metabolism of SCFA-producing bacteria, effectively

suppressing histone deacetylation and inhibiting EMT in

metastatic lesions (204). Zhu et al. used 16 S rRNA sequencing

and gas chromatography-mass spectrometry (GC-MS) to detect

changes in intestinal flora and fecal SCFAs after Huangqin

Decoction (HQD) administration, respectively. The results

showed that HQD improved intestinal flora dysbiosis, increased

Clostridium abundance and fecal butyric acid levels, and inhibited

the activity of PI3K/Akt pathway (205). Jianpi Yangzheng decoction

(JPYZ) inhibi ts the formation of the pre-metastat ic

microenvironment of gastric cancer (GC) by remodeling the

intestinal flora and increasing the production of its metabolite

SCFA, which inhibits the infiltration of myeloid-derived

suppressor cells (MDSC) and the production of inflammatory

factors (206). Moreover, Jianpi Jiedu Decoction (JPJDF) inhibits

the secretion of tryptophan metabolites, effectively reduces

inflammation and significantly restores intestinal barrier function

in colon cancer mice. It inhibited the expression of AhR and M2-

type tumor associated macrophages polarization, thereby

promoting tumor immunity and inhibiting the growth of colitis-

associated colorectal cancer (CAC) caused by colonic inflammation

(207). Wumei Wan(WMW) can restore the balance between

pathogenic and probiotic bacteria in the intestinal tract. Early
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administration of WMW significantly regulated serum 3-indole

propionic acid levels in mice with colon cancer and prevented colon

cancer by inhibiting MDSCs by decreasing the PI3K/Akt signaling

pathway (208). Pien-Tze-Huang (PZH) dose-dependently inhibited

colorectal tumorigenesis in AOM/DSS-treated and Apcmin/+ mice,

promoted the production of beneficial metabolites such as taurine

and hypotaurine, increased the levels of bile acids and unsaturated

fatty acids, and significantly enhanced intestinal barrier function.

Transcriptomic analysis further revealed that PZH inhibited

signaling pathways such as PI3K-Akt, IL-17, TNF and cytokine-

chemokines, effectively blocking oncogenic and pro-inflammatory

pathways, which in turn inhibited colorectal carcinogenesis (209).

Bile acids are mainly synthesized in the liver and secreted into the

intestine, and the conversion of primary bile acids into secondary

bile acids occurs with the help of the intestinal microbiota.

Secondary bile acids are also able to be reabsorbed into the liver

via the enterohepatic circulation and participate in the process of

bile acid resynthesis and excretion (210). Certain secondary bile

acids (e.g., DCA and lithocholic acid) are thought to have pro-

cancer effects. They can alter gene expression by activating nuclear

receptors, promote cell proliferation and survival, and may even

induce cancer cell invasion and metastasis. Xianglian Pill (XLP) can

be used for the treatment of gastrointestinal disorders of the damp-

heat type, and Ye et al. assessed the protective effect of XLP using

AOM and DSS-induced CRC models in mice exposed to high-fat

diet. XLP significantly reduced a microbial-derived metabolite of

bile acids called fecal DCA by restoring ecological dysbiosis in the

gut microbiota, thereby inhibit ing the TLR4/Myeloid

Differentiation Primary Response Protein 88 (MyD88) pathway

and reducing M1 macrophage infiltration (211). Sanhuang xiexin

decoction (SXD) was able to modulate the gut-liver axis

immunomodulation to ameliorate DSS-induced colitis secondary

to hepatic injury, and attenuate hepatic inflammation and

cholestasis by improving TLR4-NF-kB and bile acid metabolic

pathways (212). Treatment of feed-induced methionine- and

choline-deficient diet-induced nonalcoholic steatohepatitis

(NASH) mice with Qiang-Gan formula (QGE) showed that QGE

treatment altered the gut microbiota of NASH mice and led to an

increase in fecal lithocholic acid content (213). In addition, the

ability of Siwu-Yin (SWY) to improve the intestinal flora of rats

with esophageal precancerous lesions is also related to the

regulation of bile acid synthesis and secretion (214) (Figure 3).

Phytopharmaceuticals have demonstrated significant efficacy

and benefits in the treatment of tumors, and their actions involve a

variety of complex mechanisms. However, research into the role of

phytopharmaceuticals in regulating microbial metabolites is still at

a preliminary stage and more in-depth studies are needed to clarify

their mechanism of action and precise efficacy.
7 Challenges and perspectives

The relationship between microbial metabolites and tumor

immunotherapy is complex. Several studies have shown that

microorganisms and their metabolites have a non-negligible

impact on tumorigenesis and development, as well as on the
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efficacy and prognostic ability of tumor immunotherapy, and that

their role includes regulation of immune cells and modulation of

anti-inflammatory pathways. At the same time, several studies

have shown that microbial metabolites not only affect the

development of gastrointestinal tumors, but also influence the
Frontiers in Immunology 13
TME outside the gastrointestinal tract via the gut-X axis,

which in turn affects tumor immunotherapy. Therefore, many

researchers have also actively explored the use of the positive

aspects of microbial metabolites in conjunction with tumor

immunotherapy, including probiotic supplementation therapy,
TABLE 2 Mechanisms of traditional Chinese medicine compounding for the treatment of tumors via intestinal microbial metabolites.

Chinese medicine
compound prescription

Microbial metabolites Mechanism References

Astragalus mongholicus Bunge-
Curcuma aromatica Salisb.

SCFAs

Increasing the content of SCFAs such as propionic acid and butyric acid
in colon cancer cells, mediating the intestinal-derived SDF-1/CXCR 4
signaling pathway to repair the integrity of the intestinal barrier,
decreasing the expression of Cyclin D1 and C-myc, and inhibiting tumor
growth and metastasis.

(201)

Xianlian Jiedu Decoction SCFAs

Reduced levels of inflammatory cytokines and decreased expression of b-
conjugated proteins, COX-2, and iNOS proteins in colorectal tissues.
Improves gut microbes and metabolic levels of associated SCFAs,
sphingolipids and glycerophospholipids.

(202)

Shen-Bai-Jie-Du decoction SCFAs

Increased production of SCFAs, activated G protein-coupled receptors,
and inhibited HDAC. Decreased the proportion of M1-type macrophages,
increased M2-type macrophages, down-regulated the expression levels of
IL-1b, IL-6 pro-inflammatory factors, and up-regulated the expression
levels of IL-10 anti-inflammatory factors.

(203)

PRM 1201 SCFAs

Regulates the composition of intestinal flora, increases the number of
SCFA-producing bacteria and SCFA production, inhibits histone
deacetylation and inhibits EMT in metastatic lesions thereby inhibiting
CRC metastasis.

(204)

Huangqin Decoction SCFAs

Improvement of intestinal dysbiosis, increase of Clostridium abundance
and fecal butyric acid level, inhibition of microbial butyric acid-mediated
PI3K/Akt pathway, induction of apoptosis, attenuation of intestinal
inflammation, and reduction of tumor load in CRC.

(205)

Jianpi Yangzheng decoction SCFAs

Remodeling the structure of intestinal flora, enhancing the production of
SCFAs, inhibiting the recruitment of MDSCs and reducing the
production of inflammatory inhibitory factors thereby inhibiting the
formation of pre-metastatic microenvironment of gastric cancer.

(206)

Jianpi Jiedu decoction

Tryptophan metabolites (indole-3-
acetaldehyde, 3-methylindole, 5-
hydroxyindoleacetic acid,
kynurenine, 5-
methoxyindoleacetate, and
L-tryptophan.)

Altering the composition of the intestinal flora, increasing the abundance
of beneficial intestinal bacteria, decreasing tryptophan metabolites,
decreasing inflammation inhibiting the expression of AhR and M2-type
tumor-associated macrophages, and enhancing anti-tumor immunity.

(207)

Wumei Wan
Tryptophan metabolites (3-
indolepropionic acid)

Modulation of 3-indolepropionic acid in serum of CAC mice reduces the
PI3K/Akt signaling pathway thereby inhibiting MDSCs

(208)

Pien-Tze-Huang
Bile acids (cholic acid,
taurocholic acid)

Promotes the production of taurine and taurine, increases the content of
bile acids and unsaturated fatty acids, and strengthens the function of the
intestinal barrier. Inhibits PI 3 K-Akt, IL-17, TNF and cytokine-
chemokine signaling

(209)

Xianglian Pill Bile acids (DCA)

Reducing IL-6 and TNF-a expression and infiltration of pro-
inflammatory macrophages, remodeling gut microbiota composition and
bile acid metabolism to inhibit the TLR4/MyD 88 pathway, and thereby
inhibiting colorectal cancer associated with a high-fat diet.

(211)

Sanhuang xiexin decoction Bile acids
Reduced hepatocyte swelling in mice with colitis, inhibited IL-1b and
TNF-a expression, and attenuated hepatic inflammation and cholestasis
by regulating TLR4 NF-kB and bile acid metabolic pathways.

(212)

Qiang-Gan formula
Bile acids (Cholic Acid,
Chenodeoxycholic Acid, DCA
and LCA)

Decreased hepatic and serum bile acid concentrations, increased fecal
lithobionic acid production, improved the structure of intestinal flora,
promoted TGR5 expression, and inhibited NF-kB activation.

(213)

Siwu-Yin Bile acids
Improvement of the intestinal flora in precancerous esophageal lesions
and modulation of bile acid synthesis and secretion, thereby modulating
macrophage polarization.

(214)
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fecal microbiota transplantation methods etc., with the aim of

increasing bacterial diversity, attenuating acute and long-term

treatment-related toxicity, and achieving amazing results in

improving immunotherapy response and prognosis, and

individualizing treatment. However, we should also be aware of

the increasing interest in the relationship between gut flora and

anti-tumor immunotherapy, the essence of which is that the flora

modulates the immune response through metabolic pathways,

while the mechanisms of action between identified microbial

metabolites and tumors are unclear, especially for tumors

outside the gastrointestinal tract, leading to an inability to

explain the differences in the number of species of gut microbial

metabolites in different types of cancer. For example, studies have

shown that butyrate in SCFA maintains gut integrity, preserves

normal metabolic immune function and is beneficial for
Frontiers in Immunology 14
immunotherapeutic response, but a study showed that serum

butyrate and juxtate concentrations did not significantly correlate

with longer progression-free survival in French and Italian

melanoma patients. Current studies of gut microbiota regulation

of anti-tumor immunity have focused on the regulation of immune

cells and inflammatory factors outside tumor cells, and there are

no reports of gut microbes causing changes inside tumor cells

to evade immune surveillance. On the other hand, most studies

have focused on the relationship between the gut microbiota

and cancer development, and metabolites have not been

sufficiently studied; many microbial metabolites have not yet

been identified. Meanwhile, the role of the gut microbiota in

other immunotherapies, such as cytokine therapy and

immunovaccine therapy, remains understudied. With further

elucidation of the mechanism of influence of gut flora
FIGURE 3

Mechanisms of natural product active ingredients and complexes in the treatment of tumors via gut microbial metabolites.
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metabolites on tumor immune escape, targeted drug therapy and

individualized anti-tumor therapy will be further developed, and

gut flora modulation will become an effective and necessary

adjuvant anti-tumor immunotherapy.
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