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Interpretable machine learning
model for early morbidity risk
prediction in patients with
sepsis-induced coagulopathy:
a multi-center study
Ruimin Tan1,2, Chen Ge2, Jingmei Wang3, Zinan Yang2,
He Guo2,4, Yating Yan1,2 and Quansheng Du2*

1School of Clinical Medical, North China University of Science and Technology, Tangshan,
Hebei, China, 2Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China, 3Critical
Care Department, Handan Central Hospital, Handan, Hebei, China, 4School of Graduate, Hebei
Medical University, Changan, Shijiazhuang, Hebei, China
Background: Sepsis-induced coagulopathy (SIC) is a complex condition

characterized by systemic inflammation and coagulopathy. This study aimed to

develop and validate a machine learning (ML) model to predict SIC risk in patients

with sepsis.

Methods: Patients with sepsis admitted to the intensive care unit (ICU) between

March 1, 2021, and March 1, 2024, at Hebei General Hospital and Handan Central

Hospital (East District) were retrospectively included. Patients were categorized

into SIC and non-SIC groups. Data were split into training (70%) and testing (30%)

sets. Additionally, for temporal validation, patients with sepsis admitted between

March 1, 2024, and October 31, 2024, at Hebei General Hospital were included.

Feature selection was performed using least absolute shrinkage and selection

operator (LASSO) regression and multivariate logistic regression. Nine ML

algorithms were tested, and model performance was assessed using receiver

operating characteristic curve (ROC) analysis, including area under the curve

(AUC), calibration curves, and decision curve analysis (DCA). The SHaply Additive

Explanations (SHAP) algorithm was used to interpret the best-performing model

and visualize key predictors.

Results: Among 847 patients with sepsis, 480 (56.7%) developed SIC. The

random forest (RF) model with eight variables performed best, achieving AUCs

of 0.782 [95% confidence interval (CI): 0.745, 0.818] in the training set, 0.750 (95%

CI: 0.690, 0.809) in the testing set, and 0.784 (95% CI: 0.711, 0.857) in the

validation set. Key predictors included activated partial thromboplastin time,

lactate, oxygenation index, and total protein.
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Conclusions: This ML model reliably predicts SIC risk. SHAP enhances

interpretability, supporting early, individualized interventions to improve

outcomes in patients with sepsis.
KEYWORDS

machine learning, sepsis-induced coagulopathy, pathogenic factors, predictive model,
multi-center study
1 Introduction

Sepsis is a life-threatening condition characterized by organ

dysfunction organ resulting from dysregulated host response to

infection, involving a dysregulated immune response and organ

failure (1). Sepsis-induced coagulopathy (SIC) is a vascular

endothelial cell injury and coagulopathy caused by sepsis (2).

About 50% to 70% of patients with sepsis may develop

coagulation disorders, and nearly 35% have secondary

disseminated intravascular coagulation (DIC) (3, 4). Therefore,

early identification of risk factors for coagulopathy in patients

with sepsis to determine patients with SIC, and addressing the

underlying causes of coagulopathy through appropriate prevention

and treatment measures can significantly reduce mortality.

The concept of SIC was first proposed by the International

Society for Thrombosis and Hemostasis (ISTH) in 2017, and it was

previously used as one of the criteria for diagnosing sepsis (2). SIC is a

complex pathophysiological state triggered by sepsis, characterized by

a systemic inflammatory response with severe disturbances in the

coagulation system (5). Its pathogenesis includes endothelial cell

damage, release of inflammatory mediators, and excessive

activation of coagulation factors, which may lead to DIC, multiple

organ dysfunction syndrome, and even death (6–8). Inflammatory

and coagulation responses have a synergistic effect: when the

inflammatory response intensifies, the coagulation response is

accelerated as a result (9). Therefore, when sepsis is exacerbated, it

can lead to further activation of the coagulation system, causing

systemicmicrovascular thrombosis and ultimately DIC, characterized

by bleeding and microcirculatory failure (10, 11).

Machine learning (ML) is a branch of artificial intelligence that

identifies patterns and relationships by analyzing a large amount of

data (12). It has the advantages of self-learning, self-adaptation,

high fault tolerance, and high efficiency by using algorithms to train

models and analyze or predict new data using a trained model (13).

In medical data analysis, ML algorithms are able to process complex

high-dimensional datasets, identify potential disease risk factors,

build predictive models, and assist physicians in diagnosis and

treatment decisions (14). Recent studies have explored the role of

ML in the prediction, diagnosis, and treatment of SIC and found

that ML can enhance the early disease identification and diagnosis

of SIC, facilitate personalized treatment of SIC, and improve the

prognosis of patients with SIC (15).
02
The black-box feature of ML has limited its application in the

medical field (16). The emergence of the SHaply Additive

Explanations (SHAP) algorithm provides a new perspective to

observe the predictive ability of ML models for different features,

facilitating application and optimization (17). SHAP evaluates a

feature’s impact on model predictions, highlighting the positive and

negative effects of clinical variables on patient prognosis with

enhanced explanatory power.

This study aimed to construct a clinical prediction model for

early risk of patients with SIC using MLmethods and to evaluate the

optimal model using the SHAP algorithm. This approach seeks to

enable early identification of patients who may develop SIC, assist

clinicians in making clinical decisions faster, and facilitate

timely interventions.
2 Methods

2.1 Data source

This retrospective study included patients with sepsis admitted

to the intensive care unit (ICU) between March 1, 2021, and March

1, 2024, in the Hebei General Hospital and Handan Central

Hospital (East District) with relatively complete data. Statistical

software was used to randomly select 70% of the patient data as the

training set to construct the prediction model, and then the

remaining 30% of the patient data was used as the testing set. In

addition, patients with sepsis admitted to ICU with relatively

complete data from March 1, 2024, to October 31, 2024, in the

Hebei General Hospital were retrospectively included as the

temporal validation set. This study complied with the review and

approval criteria of the Ethics Committee of Hebei General Hospital

(No. 2024-LW-0223) and the Ethics Committee of Handan Central

Hospital (No. 2024038).
2.2 Study subjects

Inclusion criteria: (1) Patients admitted to ICU for the first time;

(2) Patients meeting the criteria for sepsis 3.0 as defined by the

Society of Critical Care Medicine and European Society of Intensive

Care Medicine in 2016.
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Exclusion criteria: (1) Age less than 18 years; (2) ICU admission

time less than 24 hours or death 24 hours after ICU admission; (3)

Patients with pre-existing coagulation abnormalities or

thrombocytopenia, such as thrombocytopenic purpura or hemophilia;

(4) Patients with coagulation abnormalities before admission, such as

pregnancy, hematopoietic malignancies, cardiopulmonary resuscitation,

or sequential organ failure assessment (SOFA) scores less than 2; (5)

Patients with missing clinical data or incomplete laboratory data. The

patient screening process is shown in Figure 1.

Diagnostic criteria for SIC: The diagnostic criteria for SIC

proposed by the ISTH 2017 were met. It was evaluated in terms

of Prothrombin Time-International Normalization Ratio (PT-INR),

platelet count, and all SOFA scores. PT-INR ≤ 1.2 was scored as 0

points, > 1.2 was scored as 1 point, and > 1.4 was scored as 2 points;

platelet count ≥ 1.5×1011 was scored as 0, < 1.5×1011 was scored as

1, < 1.0×1011 was scored as 2; all SOFA scores were the sum of

respiratory SOFA, cardiovascular SOFA, hepatic SOFA, and renal

SOFA scores, which were scored as 0, 1, and 2, respectively, and

when all SOFA scores were > 2, the score was still scored as 2. The

diagnosis of SIC was made by the sum of the total scores of the

above three aspects (PT-INR, platelet count, and all SOFA scores) of

≥ 4 and the sum of the PT-INR and platelet count scores of >2.
2.3 Data extraction

Data from the day before patients were diagnosed with SIC were

extracted from electronic medical records at both hospitals.

Variables extracted for this study were: (1) Demographic data:

age and gender; (2) Underlying diseases: coronary atherosclerotic

heart disease, hypertension, diabetes, chronic obstructive

pulmonary disease, cerebrovascular disease, liver dysfunction,

chronic kidney disease, malignancy, and history of surgery within
Frontiers in Immunology 03
3 months; (3) Infection sites: pulmonary infection, abdominal

infection, bloodstream infection, urinary system infection, central

nervous system infection, skin and soft tissue infection, and other

infections; (4) ICU disease severity scores: Acute Physiology and

Chronic Health Evaluation II (APACHE II) and SOFA scores; (5)

Vital signs: temperature, heart rate, systolic blood pressure, diastolic

blood pressure, mean arterial pressure, and respiratory rate; (6)

Laboratory tests: pH, lactic acid, actual bicarbonate (AB),

oxygenation index (OI), base excess (BE), total protein (TP),

albumin, total bilirubin (TBIL), direct bilirubin (DBIL), alanine

aminotransferase (ALT), aspartate aminotransferase (AST),

potassium (K), sodium (Na), chloride (Cl), calcium (Ca),

phosphorus (PO4), magnesium (Mg), blood urea nitrogen (BUN),

creatinine (Cr), procalcitonin (PCT), prothrombin time (PT), PT-

INR, activated partial thromboplastin time (APTT), fibrinogen

content, thrombin time, white blood cells (WBC), neutrophils,

lymphocytes, monocytes, hemoglobin, red blood cell distribution

width, platelet; (7) Interventions: deep venous catheterization,

mechanical ventilation, anticoagulant drugs, hormones, vasoactive

drugs, continuous renal replacement therapy, and infusion of

human albumin.
2.4 Statistical analysis

The Shapiro-Wilk test was used to determine the normal

distribution of the continuous variables. Normally distributed

measurement data were expressed as mean (standard deviation),

and the independent sample t-test was used for comparison

between groups. Non-normally distributed measurement data

were expressed as median (interquartile range), and the Wilcoxon

rank sum test was used for comparisons between two independent

groups. Enumeration data were presented as percentages (%), and

the chi-squared test was used for group comparisons.
FIGURE 1

Patient screening flow.
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In order to exclude multicollinearity, variables with p-values

less than 0.05 were included in the least absolute shrinkage and

selection operator (LASSO) regression. Model complexity was

penalized by applying a regularization term, setting uncorrelated

or weakly correlated variable coefficients as 0. Large regression

coefficients were selected to construct independent variables and

dependent variable matrices. The LASSO regression model was

stabilized using the lowest prediction error in 10-fold cross-

validation (CV) to find the optimal l value and determine the

best predictor variables associated with the incidence of SIC in the

training set. The final selected variables were included in

multivariate logistic regression to identify independent risk

factors for the development of SIC.

In this study, we constructed a clinical prediction model based

on nine ML algorithms, including logistic regression (LR), naive

bayes, support vector machine (SVM), extreme gradient

enhancement (XGB), neural network (NN), random forest (RF),

gradient elevator (GBM), K-nearest neighbor (KNN), and decision

tree (DT). The selected independent risk factors were used to

construct ML models to predict the development of SIC during

hospitalization in patients with sepsis. In order to avoid model

overfitting, a 10-fold CV was used for model training. Following

successful model building, the performance of each model was

assessed. The predictive value of each model was evaluated by

plotting the receiver operating characteristic curve (ROC) and

calculating the area under the curve (AUC), sensitivity, specificity,

accuracy, F1 score, positive predictive value, and negative predictive

value (NPV). The accuracy of the model was assessed by a

calibration curve in which the horizontal coordinate is the

predicted probability, the vertical coordinate is the actual

occurrence probability. The ideal line is the diagonal line

representing a perfect prediction, where the predicted

probabilities exactly match the actual observed probabilities. The

clinical utility of the prediction model was evaluated using a clinical

decision curve analysis (DCA) curve. In the DCA plot, the None

line represents an extreme case where the model predicts that all

patients with sepsis will not develop SIC, indicating zero net clinical

benefit. The All line represents the other extreme, where all patients

with sepsis are predicted to develop SIC, at which point the slope of

the net clinical benefit is negative. The net clinical benefit is

determined by the range of threshold probabilities where the

model’s curve lies above both the None and All lines. If the

model curve is above the None and All lines, this suggests that

the model has a higher net benefit in practical clinical applications.

Finally, after a comprehensive evaluation of the AUC values,

calibration curves, and DCA curves, the best predictive model

was found, and the model was validated and evaluated again in

the test set and validation set.

SHAP is based on the concept of Shapley values from

cooperative game theory and uses an additive approach to

compute the contribution of each feature to the predicted

outcome. The SHAP method can provide an explanatory value

for each feature that indicates the degree of influence of that feature

on the predicted outcome of the model. It also provides a

visualization tool for intuitively displaying the degree of influence

of each feature on each data point, as well as for detecting
Frontiers in Immunology 04
interactions and non-linear relationships between features, further

improving the explanatory and predictive power of the model.

In order to provide a global interpretation of the model, the

SHAP algorithm generates a summary plot and a feature

importance plot. In the summary plot, the x-axis (SHAP values)

shows the magnitude of each feature’s impact on the predicted

results, with points further away from the centerline (zero)

indicating that the feature has a greater impact on the model’s

output. The y-axis (feature ordering) ranks the features according to

the magnitude of their impact on the target variable, from top to

bottom. Pink dots indicate that the feature positively affects the

target variable, while blue dots indicate that the feature has a

negative impact on the target variable. The darker the color, the

stronger the feature’s impact on the target variable.

The feature importance plot ranks features in order of their

contribution to model predictions to provide insight into the

relevance of each predictor variable. The top features with longer

bars have a greater impact on the model predictions, while the

bottom features with shorter bars have less influence.

For local model interpretation, the SHAP algorithm generates

dependency graphs. These graphs show the impact of individual

features on the predicted results of a ML model, with the x-axis

representing the feature value and the y-axis representing the SHAP

value (a measure of the importance of the feature on the predicted

results). Each point in the dependency plot represents a patient. The

position of each point indicates the SHAP value of a feature in that

sample, with SHAP values greater than 0 indicating an increased

risk in patients.

All statistical analyses were performed in SPSS (version: 27.0), R

(version: 4.3.1), and Python (version: 3.12.7). P-values less than 0.05

were considered statistically significant. Data splitting was done

using the initial_split function of the “rsample” package in R.

Machine learning models, including logistic regression and

random forests, were built using the “caret” package and cross-

validated (10 times). Model calibration using the calibrate function

of the “rms” package and DCA using the “dcurves” package.
3 Results

3.1 Baseline characteristics

A total of 847 patients with sepsis were screened, and 480

(56.7%) developed SIC. The patients were randomly divided into a

training set and a testing set in a 7:3 ratio using R statistical

software. The training set included 592, with 336 (56.8%) in the

SIC, while the testing set comprised 255 patients, with 144 (56.5%)

in the SIC group. The baseline data of patients in both sets are

shown in Supplementary Table S1. Compared with the testing set, a

larger proportion of patients in the training set had malignant

tumors (P < 0.05). The rest of the indicators showed no statistical

differences between the two data sets (P > 0.05), demonstrating that

the data in the training and testing sets were well-balanced

and comparable.

Table 1 shows the baseline information for all patients with

sepsis in the training set. A total of 592 patients with sepsis were
frontiersin.org
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included: 336 patients with SIC and 256 patients with non-SIC.

Compared with patients with sepsis alone, patients with SIC had a

greater proportion of underlying diseases, higher SOFA scores, and

faster heart rate. Meanwhile, patients with SIC had higher

concentrations of lactate, TBIL, DBIL, ALT, AST, Na, Cl, BUN,

Cr, and PCT, as well as longer PT, APTT, and PT-INR, and a higher

probability of deep venous cannulation. In contrast, patients with

SIC have low pH, AB, OI, BE, TP, albumin, K, Ca, Mg, WBC,

neutrophils, lymphocytes, monocytes, hemoglobin, platelet, and are

less likely to be on anticoagulant medications. For other variables,

no statistically significant differences were observed between the

two groups (P > 0.05).
3.2 Feature selection

The training set was initially screened for relevant features using

LASSO regression. LASSO regression included a total of 33 study

variables with statistical significance in univariate LR. The

regression model used the lowest prediction error in tenfold CV

for screening analysis. LASSO regression was used to draw a

dynamic process diagram of screening variables (Figure 2A) and a

selection process diagram of cross-validated optimal parameter l
(Figure 2B). Finally, 19 variables were identified as being strongly

associated with SIC: liver dysfunction, HR, pH, lactate, OI, TP,

TBIL, AST, K, Cl, Mg, BUN, Cr, PCT, APTT, lymphocyte count,

monocyte count, hemoglobin, and deep venous catheterization.

Significant predictive variables in LASSO regression were

included in multivariate LR to identify independent risk factors

for SIC. In order to construct a predictive model with good

predictive performance and practical operability, the results

showed that lactate, OI, TP, TBIL, BUN, PCT, APTT, and

monocyte count were all independent risk factors for SIC. These

variables were statistically significantly correlated with the

occurrence of SIC (P < 0.05), as shown in Table 2.
3.3 Model performance comparisons

The eight independent risk factors (lactate, OI, TP, TBIL, BUN,

PCT, APTT, and monocyte count) screened in multivariate LR were

imported into nine ML algorithms to construct a model for

predicting in-hospital occurrence of SIC in patients with sepsis.

Figure 3 shows the performance of the nine models in terms of ROC

curves. All models showed good predictive performance for the

onset of SIC, with the RF model performing best. The AUC value of

the RF model was 0.782 [95% confidence interval (CI): 0.745,

0.818], followed closely by the GBM model with a comparable

AUC value of 0.778 (95% CI: 0.741, 0.815). These models were

superior to the other algorithms, although the other models still

demonstrated good predictive ability. The remaining models were

ranked in descending order of performance as follows: XGB (AUC

= 0.773, 95% CI: 0.736, 0.810), LR (AUC = 0.769, 95% CI: 0.731,

0.807), SVM (AUC = 0.768, 95% CI: 0.730, 0.806), NB (AUC =

0.763, 95% CI: 0.724, 0.801), NN (AUC = 0.757, 95% CI: 0.718,
Frontiers in Immunology 05
0.795), KNN (AUC = 0.690, 95% CI: 0.647, 0.732), and DT (AUC =

0.681, 95% CI: 0.637, 0.726).

Table 3 shows the detailed performance metrics for the nine

models. The RF model showed superior overall performance

(sensitivity: 0.780, specificity: 0.656). Notably, RF achieved the

highest F1 score (0.764) and accuracy (0.726) while possessing the

highest NPV (0.694) among all assessed models.

Calibration curves for the nine models are shown in Figure 4,

providing important insights into their predictive reliability. We

also calculated the Brier score and calibration error to compare the

degree of calibration of each model. The results show that the RF,

GBM, and XGB models have lower Brier scores, with the RF model

having the best prediction; in terms of calibration error, the NN,

NB, and RF models have lower calibration errors, with the NN

model having the most accurate prediction probability. The Brier

scores and calibration errors of each model are shown in

Supplementary Table S3. Thus, overall, all nine models showed

better agreement between predicted probabilities and observations,

but the RF model was better.

Regarding clinical utility, DCA curves were plotted in this study

to assess the clinical utility of the model (Figure 5). Comparing the

DCA curves, the RF model demonstrated the highest clinical utility

in the high-risk range of 80% to 89% net benefit intervals. The use of

the RF model to predict can increase more net benefits and is more

clinically useful. In contrast, LR and XGB models showed better net

benefit in the lower high-risk range (e.g., 0.6 to 0.8 or 0.7 to 0.9).

After a comprehensive comparison of comparative AUC values,

calibration curves, and DCA curves, the RF model was selected as

the best model for predicting the occurrence of SIC.
3.4 Testing set

In the testing set, the LR, SVM, and RF models performed

better. The LR model performed best, with an AUC value of 0.768

(95% CI: 0.710, 0.826). The SVM model followed with an AUC

value of 0.765 (95% CI: 0.707, 0.823). The RF model ranked third

with an AUC value of 0.750 (95% CI: 0.690, 0.809), which was

superior to the remaining algorithms (Supplementary Figure S1).
3.5 Validation set

To validate the applicability of each model to a different dataset,

this study systematically reviewed patients admitted to the Hebei

General Hospital ICU with a diagnosis of sepsis from March 1,

2024, to October 31, 2024. The validation set flowchart is shown in

Supplementary Figure S2, and the prediction items for the

validation set are shown in Supplementary Table S2.

In the validation set, the XGB, RF, and SVM models performed

better. The XGB model had the best performance, with AUC values

of 0.785 (95% CI: 0.711, 0.858). The RF model closely followed with

an AUC value of 0.784 (95% CI: 0.711, 0.857), which was superior to

the remaining algorithms (Supplementary Figure S3).
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TABLE 1 Baseline comparison of SIC and non-SIC in training set.

Variables SIC (n=336) Non-SIC (n=256) P

Demographic data

Male, n(%) 210 (62.50) 166 (64.84) 0.557

Age, SD 70.01 (14.73) 71.01 (14.83) 0.415

Underlying diseases, n(%)

Coronary atherosclerotic heart disease 71 (21.13) 56 (21.88) 0.827

Hypertension 142 (42.26) 119 (46.48) 0.305

Diabetes 87 (25.89) 72 (28.12) 0.544

Chronic obstructive pulmonary disease 37 (11.01) 32 (12.50) 0.576

Cerebrovascular disease 114 (33.93) 102 (39.84) 0.139

Liver dysfunction 151 (44.94) 84 (32.81) 0.003

Chronic kidney disease 91 (27.08) 57 (22.27) 0.18

Malignancy 36 (10.71) 37 (14.45) 0.17

History of surgery within 3 months 158 (47.02) 127 (49.61) 0.533

Infection sites, n(%)

Pulmonary 220 (65.48) 178 (69.53) 0.298

Abdominal 142 (42.26) 101 (39.45) 0.491

Blood 44 (13.10) 33 (12.89) 0.942

Urinary system 53 (15.77) 55 (21.48) 0.075

Central nervous system 4 (1.19) 9 (3.52) 0.056

Skin and soft tissue 8 (2.38) 4 (1.56) 0.484

Other 17 (5.06) 7 (2.73) 0.155

ICU disease severity scores, M (Q1, Q3)

APACHE score 24.00 [19.00, 29.00] 23.00 [18.00, 28.00] 0.063

SOFA score 9.00 [7.75, 12.00] 9.00 [7.00, 10.00] <0.001

Vital signs, M (Q1, Q3)

Temperature(°C) 36.50 [36.00, 37.20] 36.50 [36.00, 37.00] 0.137

HR(times/min) 100.00 [84.00, 113.00] 93.00 [82.00, 113.00] 0.047

SBP(mmHg) 121.00 [105.00, 140.00] 121.00 [105.00, 138.25] 0.997

DBP(mmHg) 66.00 [56.00, 76.00] 67.00 [57.00, 78.00] 0.308

MAP(mmHg) 85.00 [75.17, 94.67] 85.83 [75.92, 94.67] 0.601

RR(times/min) 21.00 [16.00, 28.00] 20.00 [16.00, 25.00] 0.281

Laboratory tests, M (Q1, Q3)

pH 7.36 [7.29, 7.42] 7.39 [7.31, 7.44] 0.004

lactate(mmol/L) 2.68 [1.70, 4.70] 1.94 [1.40, 3.10] <0.001

AB(mmol/L) 20.25 [16.50, 23.70] 22.00 [18.50, 25.52] <0.001

OI 202.50 [135.12, 281.82] 245.20 [166.65, 354.35] <0.001

BE(mmol/L) -4.85 [-8.00, -1.50] -2.88 [-6.30, 0.64] <0.001

TP(g/L) 48.85 [42.90, 55.12] 53.90 [47.08, 61.28] <0.001

ALB(g/L)(mmol/L) 26.70 [23.17, 30.92] 28.65 [24.98, 32.60] <0.001

(Continued)
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TABLE 1 Continued

Variables SIC (n=336) Non-SIC (n=256) P

Laboratory tests, M (Q1, Q3)

TBIL(mmol/L) 21.30 [12.50, 38.17] 14.40 [9.50, 21.83] <0.001

DBIL(mmol/L) 9.55 [5.20, 20.45] 5.40 [3.20, 10.40] <0.001

ALT(U/L) 32.10 [16.00, 78.93] 24.00 [13.00, 49.07] 0.001

AST(U/L) 61.50 [31.88, 134.73] 33.00 [21.00, 70.25] <0.001

K(mmol/L) 4.00 [3.60, 4.50] 4.15 [3.70, 4.68] 0.038

Na(mmol/L) 140.40 [135.45, 145.00] 138.00 [135.00, 142.57] 0.014

Cl(mmol/L) 106.00 [101.60, 111.00] 104.00 [99.00, 108.28] <0.001

Ca(mmol/L) 1.96 [1.83, 2.16] 2.02 [1.89, 2.16] 0.014

PO4(mmol/L) 1.14 [0.80, 1.51] 1.14 [0.82, 1.40] 0.72

Mg(mmol/L) 0.82 [0.70, 0.92] 0.86 [0.73, 0.99] 0.004

BUN(mmol/L) 13.69 [8.72, 21.33] 11.50 [7.24, 19.33] 0.01

Cr(mmol/L) 130.45 [81.80, 205.22] 98.90 [63.02, 158.32] <0.001

PCT(ng/mL) 16.59 [2.90, 59.87] 3.90 [0.86, 26.38] <0.001

PT(s) 16.10 [14.20, 18.10] 13.70 [12.40, 15.20] <0.001

PT-INR 1.45 [1.31, 1.60] 1.16 [1.06, 1.30] <0.001

APTT(s) 36.90 [32.70, 44.90] 32.30 [28.80, 36.62] <0.001

FIB(g/L) 5.23 [3.42, 12.70] 5.91 [4.16, 11.92] 0.09

TT(s) 15.60 [5.63, 17.30] 15.40 [6.06, 17.20] 0.817

WBC(109/L) 11.26 [5.95, 17.57] 12.95 [9.10, 18.56] 0.002

NEU(109/L) 9.63 [4.98, 16.46] 11.46 [7.36, 16.64] 0.012

LYM(109/L) 0.52 [0.32, 0.82] 0.80 [0.46, 1.30] <0.001

MON(109/L) 0.31 [0.14, 0.51] 0.47 [0.26, 0.84] <0.001

Hb(g/L) 102.00 [88.00, 123.00] 109.50 [91.00, 128.00] 0.011

RDW(fL) 48.30 [45.00, 54.00] 48.70 [45.10, 52.85] 0.64

PLT(109/L) 92.00 [52.00, 125.25] 232.50 [189.00, 299.50] <0.001

Interventions, n(%)

deep venous catheterization 279 (83.04) 190 (74.22) 0.009

anticoagulant drugs 147 (43.75) 137 (53.52) 0.018

mechanical ventilation 295 (87.80) 231 (90.23) 0.351

hormones 240 (71.43) 185 (72.27) 0.823

vasoactive drugs 319 (94.94) 247 (96.48) 0.364

CRRT 188 (55.95) 139 (54.30) 0.688

infusion of human albumin 256 (76.19) 177 (69.14) 0.055
F
rontiers in Immunology
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Z, Mann-Whitney test; c², Chi-square test.
M, Median; Q1, 1st Quartile; Q3, 3st Quartile.
SIC, sepsis-induced coagulopathy; APACHE, acute physiology and chronic health evaluation II; SOFA, sequential organ failure assessment; HR, heart rate; SBP, systolic blood pressure; DBP,
diastolic blood pressure; MAP, mean arterial pressure; RR, respiratory rate; AB, actual bicarbonate; OI, oxygenation index; BE, base excess; TP, total protein; ALB, albumin; TBIL, total bilirubin;
DBIL, direct bilirubin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; K, potassium; Na, sodium; Cl, chloride; Ca, calcium; PO4, phosphorus; Mg, magnesium; BUN, blood urea
nitrogen; Cr, creatinine; PCT, procalcitonin; PT, prothrombin time; PT-INR, prothrombin time-international normalisation ratio; APTT, activated partial thromboplastin time; FIB, fibrinogen;
TT, thrombin time, WBC, white blood cells; NEU, neutrophils; LYM, lymphocytes; MON, monocytes; Hb, hemoglobin; RDW, red blood cell distribution width; PLT, Platelet.
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3.6 Model visualization

After comparing AUC values, calibration curves, and DCA

curves across models, the RF model showed the best

performance. Hence, we used the SHAP algorithm to analyze the

interpretability of the RF model and SHAP plots were generated.

The summary plot (Figure 6A) and feature importance plot

(Figure 6B) show the (positive or negative) influence of features

on the RF model. The top five factors influencing the risk of SIC in

patients with sepsis were APTT, TBIL, monocyte count, TP, and OI.

For instance, in the case of APTT, the coloring was deeper with

increasing SHAP values, indicating that extreme values of this score

can significantly increase the risk of developing SIC.

Additionally, a partial interpretation of the model was made,

and the present study generated dependency plots for these eight

clinical variables affecting the outcome (Figure 6C). The figure

shows that longer APTT, higher TBIL, lower monocyte counts,

lower TP, lower OI, higher blood lactate, higher procalcitonin, and
Frontiers in Immunology 08
higher BUN were associated with the risk of developing SIC in

patients with sepsis. This graphical representation helps personnel

better understand the specific contribution of each variable to the

risk of developing SIC in patients with sepsis, thereby aiding in the

prediction of disease progression and improving treatment options

for patients.
4 Discussion

SIC is a vascular endothelial cell injury and coagulation disorder

caused by sepsis (2). Globally, SIC occurs in 24.0% to 60.0% of

patients with sepsis, while in China, the incidence is as high as

67.9%. Without proper management, SIC can develop into DIC,

doubling morbidity and mortality rates (18, 19). The incidence of

SIC in this study was about 56.7%, consistent with the global

reported rate, although the figure remains considerably high. The

ISTH and the European Society of Cardiology have issued
B

A

FIGURE 2

Lasso regression-based variable screening. (A). Variation characteristics of variable coefficients; (B). The process of selecting the optimal value of the
parameter l in the lasso regression model is carried out by the cross-validation method.
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diagnostic criteria and treatment guidelines for SIC. However, no

diagnostic or therapeutic guidelines for SIC have been formulated in

China so far (20, 21). There are also fewer studies related to SIC,

which is related to the lack of attention to this disease by clinicians.

Therefore, it is important to establish a prediction model for early

identification and screening of patients with SIC.
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With the rapid advancement of artificial intelligence, ML

algorithms may reduce human assistance and improve

classification accuracy (22). Compared to traditional models, ML

can handle more complex, higher-dimensional datasets and achieve

better accuracy than traditional models. However, many ML report

AUC values for ROC curves when evaluating models, but AUC

values do not fully reflect the predictive value of the model in

clinical practice (23). Therefore, in addition to evaluating ML

models, multiple metrics, such as calibration curves and DCA

curves, should be integrated to comprehensively assess model

performance and actual clinical utility value.

Zhao et al. used a dynamic prediction method using time series

data modeling to predict the incidence of patients with SIC (15).

They found that MLmodels predicted the incidence of patients with

SIC more accurately than LR and SIC scores, with AUC values of

0.746 and 0.709 for LR and SIC scores, respectively. The Categorical

Boosting (CatBoost) was the model with the highest AUC value

among the ML models. The study relied heavily on continuous

physiological and laboratory data and incorporated a missing value

estimation strategy, highlighting the clinical utility of ML models

for dynamic monitoring. In contrast, our RF model combined

baseline and early-stage clinical characteristics, focused on key

laboratory findings and vital signs on the day before SIC

diagnosis, and did not require estimation due to rigorous data

preprocessing. Additionally, our study used only eight variables,
TABLE 2 Multivariate logistic regression analysis of incidence related
variables in patients with SIC.

Variables b SE Wald P OR(95% CI)

lactate 0.078 0.039 4.072 0.044 1.081(1.002-1.167)

OI -0.002 0.001 6.881 0.009 0.998(0.997-0.999)

TP -0.032 0.01 10.757 0.001 0.969(0.951-0.987)

TBIL 0.017 0.004 15.548 <0.001 1.017(1.008-1.025)

BUN 0.021 0.008 6.916 0.009 1.021(1.005-1.036)

PCT 0.008 0.003 7.003 0.008 1.008(1.002-1.015)

APTT 0.061 0.011 29.657 <0.001 1.063(1.040-1.086)

MON -0.628 0.195 10.338 0.001 0.534(0.364-0.783)

Constant -0.702 0.673 1.089 0.297
b, Partial regression coefficient; SE, Standard Error; OR, Odds Ratio; CI, Confidence Interval.
SIC, sepsis-induced coagulopathy; OI, oxygenation index; TP, total protein; TBIL, total
bilirubin; BUN, blood urea nitrogen; PCT, procalcitonin; APTT, activated partial
thromboplastin time; MON, monocytes.
FIGURE 3

ROC curves for the machine learning models. ROC, receiver operating characteristic; LR, logistic regression; SVM, support vector machine; GBM,
gradient elevator; NN, neural network; RF, random forest; XGB, extreme gradient enhancement; KNN, K-nearest neighbor; DT, decision tree; NB,
naive bayes.
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making the model relatively simpler. Furthermore, our study

identified the optimal model by comprehensively evaluating

metrics such as calibration curves and DCA curves and

visualizing SHAP plots, demonstrating the efficacy of the RF

model in the prediction of early-stage SICs and providing

guidance for timely intervention.

Cui et al. (24) designed eight MLmodels to detect SIC and sepsis-

associated DIC 8n (1 ≤ n ≤ 6) hours before SIC onset. The study
Frontiers in Immunology 10
developed an interpretable real-time sequential early warning model

for real-world clinical data. The novel ODE-RNN model enabled

continuous prediction at any time point, with predictions up to 8

hours in advance for SIC and DIC, achieving AUC values of 0.962

and 0.936 for SIC and DIC, respectively. They used a time-varying

modeling approach, focused their study on clinical progression, and

provided detailed SHAP-based feature significance. In contrast, our

study focused on snapshot prediction using static data at an early
TABLE 3 Performances of the machine learning models for predicting SIC.

Models AUC 95% CI Sensitivity Specificity PPV NPV Accuracy F1 Score

LR 0.769 0.731-0.807 0.619 0.816 0.816 0.620 0.704 0.704

SVM 0.768 0.730-0.806 0.768 0.664 0.750 0.686 0.723 0.759

GBM 0.778 0.741-0.815 0.640 0.793 0.802 0.627 0.706 0.712

NN 0.757 0.718-0.795 0.723 0.688 0.752 0.654 0.708 0.738

RF 0.782 0.745-0.818 0.780 0.656 0.749 0.694 0.726 0.764

XGB 0.773 0.736-0.810 0.622 0.805 0.807 0.619 0.701 0.703

KNN 0.690 0.647-0.732 0.646 0.676 0.723 0.593 0.659 0.682

DT 0.681 0.637-0.726 0.655 0.691 0.736 0.604 0.671 0.693

NB 0.763 0.724-0.801 0.744 0.672 0.749 0.667 0.713 0.746
SIC, sepsis-induced coagulopathy; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value;
LR, logistic regression; SVM, support vector machine; GBM, gradient elevator; NN, neural network; RF, random forest; XGB, extreme gradient enhancement; KNN, K-nearest neighbor; DT,
decision tree; NB, naive bayes.
FIGURE 4

Calibration curves for the machine learning models. LR, logistic regression; NN, neural network; RF, random forest; GBM, gradient elevator; SVM,
support vector machine; XGB, extreme gradient enhancement; KNN, K-nearest neighbor; DT, decision tree; NB, naive bayes.
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stage, aiming for a simpler but effective approach. Although our study

did not explicitly address disease progression, our results highlight

the early predictive ability of RF models, which could complement

the sequential modeling of Cui et al. Their study provides a sequential

view of SIC progression, whereas our model prioritizes early risk

stratification, providing a unique and synergistic perspective.

In this study, we used multi-center real-world clinical data to

construct models using nine ML algorithms to predict the risk of SIC

in patients with sepsis and applied the SHAP algorithm to perform an

interpretable analysis of the optimal model. The results showed that

the RF model exhibits good predictive performance with

discriminatory and calibrated capabilities while providing

substantial net benefits in clinical practice. Results from the

validation set further confirmed the stability and accuracy of the

model. In the RF model, APTT, TBIL, monocyte count, TP, and OI

may be strongly associated with the risk of SIC in patients with sepsis.

The emergence of the SHAP algorithm provides a new

perspective on the predictive ability of a model for different

features and also facilitates the application and optimization of

the model. The SHAP algorithm evaluates the significance of

individual input features to the prediction of a given model and

demonstrates the positive and negative impact of each clinical

variable on the prognosis of a patient, with enhanced explanatory

power. The present study generated predictive models that identify

key risk factors but also made the models “interpretable,”

successfully overcoming the black-box nature of ML. Good
Frontiers in Immunology 11
interpretability is essential not only for researchers to validate the

reliability of new models but also for clinicians to gain confidence in

sharing clinical decisions with ML models (25).

According to the SHAP algorithm, APTT was the most

important predictive feature. In SIC, inflammatory mediators

activate the coagulation system in a state of inflammation and

coagulation disorders, and abnormal activation of endogenous

coagulation pathways consumes large amounts of coagulation

factors, resulting in prolonged APTT. Additionally, in sepsis,

elevated levels of the thrombin-antithrombin complex indicate

increased thrombin production, which further depletes

coagulation factors and affects APTT (26). SIC is also

accompanied by impaired anticoagulant mechanisms, such as

decreased function of the protein C system and decreased

antithrombin (27). Protein C insufficiency reduces factor Va and

VIIIa inactivation and enhances coagulation, and APTT may be

shortened or close to the lower limit but prolonged after factor

depletion (28). In early SIC, the fibrinolytic system is transiently

activated, increasing fibrinolytic enzymes to degrade fibrinogen and

prolonging APTT. However, in later stages, fibrinolysis is inhibited,

resulting in uncontrolled coagulation, with APTT affected by the

complication (29). In summary, APTT is an important index for

assessing coagulation function in patients with SIC. Prolonged

APTT may suggest depletion of coagulation factors, activation of

the fibrinolytic system, or impaired anticoagulation mechanisms.

For therapeutic decision-making, the results of APTT can help
FIGURE 5

DCA curves for the machine learning models. DCA, decision curve analysis; LR, logistic regression; SVM, support vector machine; NN, neural
network; GBM, gradient elevator; RF, random forest; XGB, extreme gradient enhancement; KNN, K-nearest neighbor; DT, decision tree; NB,
naive bayes.
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physicians determine whether coagulation factor supplementation,

anticoagulation therapy, or regulation of the fibrinolytic system

is needed.

In SIC, inflammation involves the liver, and systemic inflammatory

response syndrome causes hepatic dysfunction, which affects bilirubin

uptake, binding, and excretion, leading to elevated TBIL levels (30).

Impaired liver function also reduces coagulation factor synthesis,

leading to coagulation abnormalities. In sepsis, oxygen free radicals
Frontiers in Immunology 12
are generated to induce oxidative stress, and bilirubin scavenges free

radicals. Elevated levels may be a compensatory response, but

excessively high levels reflect severe inflammation and oxidative

stress, which damage endothelial cells, activate the coagulation

system, and initiate the endogenous coagulation pathway (31). SIC

triggers microcirculatory disturbances, which are manifested by

thrombosis and inadequate perfusion. Changes in bilirubin levels

may be associated with alterations in the microcirculation, which can
B

C

A

FIGURE 6

Visually interpret machine learning models using SHAP. (A). SHAP summary plot. (B). SHAP feature importance plot. (C). SHAP dependency plots.
APTT, activated partial thromboplastin time; TBIL, total bilirubin; MON, monocytes; TP, total protein; OI, oxygenation index; PCT, procalcitonin; BUN,
blood urea nitrogen.
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further exacerbate hepatic injury and metabolic disturbances, resulting

in malignant coagulation and metabolic disorders, forming a vicious

circle (32). Monitoring TBIL levels in patients with sepsis is helpful in

assessing the severity and prognosis of the disease in clinical practice.

Persistent elevation of TBIL may signal ongoing liver dysfunction,

worsening coagulation dysfunction, and an increased risk of multi-

organ failure. From a treatment perspective, improving liver function

and reducing inflammatory response and oxidative stress are

important aspects of treating SIC. Monitoring changes in TBIL levels

can provide a reference basis for adjusting therapeutic regimens.

Monocytes are a type of leukocyte, generated from bone

marrow hematopoietic stem cells, which can differentiate into

macrophages. Their functions include phagocytosis of pathogens,

antigen presentation and secretion of cytokines, participation in

sepsis-related immune responses, and regulation of inflammation

(33) . In SIC, monocyte counts may decrease due to

myelosuppression caused by inflammatory mediators that inhibit

bone marrow hematopoiesis (34). Decreased monocytes impair

pathogen phagocytosis and inflammatory mediator secretion,

leading to the spread of infection, which sustains activation of the

coagulation system, depletes coagulation factors, and triggers

coagulation disorders (35). Additionally, monocytes regulate T

and B cell function, and their reduction triggers an immune

imbalance that makes it difficult to clear pathogens and terminate

excessive inflammation, exacerbating coagulation disorders. Hence,

decreased monocyte count is usually a sign of severe disease. In

patients with SIC, a persistent decrease in monocyte count often

signals a poor prognosis, as it may indicate severe bone marrow

suppression and a persistent decline in the body’s immune function

and ability to regulate the inflammatory response. This increases the

patient’s risk of multi-organ failure and makes it more challenging

to correct coagulation dysfunction, as restoration of normal

inflammatory response and immune function is one of the most

important prerequisites for improving coagulation status.

Coagulation factors (e.g., II, VII, IX, X) are proteins synthesized

by the liver. Liver dysfunction caused by sepsis leads to reductions in

TP and coagulation factors, promoting the development of SIC.

Hypoproteinemia reduces colloid osmotic pressure, leading to

blood concentration, activation of coagulation, and weak resistance

to inflammation, further aggravating coagulation disorders (36). The

protein C system, which regulates coagulation, is dependent on TP

levels, and its abnormalities can disrupt anticoagulant homeostasis,

leading to uncontrolled coagulation (37). Thus, a decrease in TP level

could indicate poor prognosis in patients with sepsis, as it is

associated with a variety of adverse conditions such as coagulation

dysfunction and uncontrolled inflammatory response. Correcting

hypoproteinemia may help improve coagulation status, reduce

inflammatory response, and improve survival.

In patients with sepsis, acute lung injury or acute respiratory

distress syndrome can result from systemic inflammatory response.

This inflammatory response increases pulmonary capillary

permeability, promotes alveolar exudation, and decreases lung

compliance, leading to impaired gas exchange and decreased OI.

In sepsis, endotoxins and inflammatory mediators can activate the

coagulation system, leading to extensive microthrombosis within

the microcirculation (38). These microthrombi affect blood
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perfusion to vital organs such as the lungs, further exacerbating

lung injury and decreasing the OI. The inflammatory response can

also cause vascular endothelial cell damage, promote platelet

aggregation and coagulation factor activation, aggravate

coagulation dysfunction, and affect the gas exchange function of

the lungs, which decreases the OI (39). Additionally, patients with

SIC often suffer from multiple organ dysfunction, with impaired

lung function being particularly common. Severe coagulation

dysfunction can lead to complications such as pulmonary

hemorrhage and pulmonary infarction, further reducing the OI.

Thus, the OI is closely related to SIC, with the two conditions

influencing each other and collectively reflecting the severity of

patients with sepsis. Clinically, monitoring the OI helps to assess the

pulmonary functional status and prognosis of patients with SIC.

Hyperlactatemia is closely associated with the development of

patients with SIC, with two primary mechanisms underlying this

association. First, elevated lactate damages endothelial cells and

alters endothelial cell permeability, which in turn initiates

exogenous coagulation and leads to coagulation dysfunction (40,

41). Second, elevated lactate can also cause acidosis, which has been

found to inhibit thrombin generation. This coagulation dysfunction

may result in the formation of microthrombi, which further

aggravates peripheral circulatory hypoperfusion. Worsening

hypoperfusion promotes lactate elevation, creating a vicious cycle

of metabolism and coagulation that adversely affects patients (42,

43). Therefore, monitoring the change of lactate in patients with

sepsis is critical for early identification of SIC, determining the stage

of coagulation, understanding the degree of tissue hypoperfusion

and organ hypoxia, and guiding interventions such as fluid

resuscitation to maintain the homeostasis of the internal

environment, prevent SIC, and improve prognosis.

In SIC, elevated PCT stimulates the release of von Willebrand

factor from the vascular endothelium, which promotes

microthrombosis and exacerbates coagulation disorders (44).

Elevated PCT is indicative of an infectious or inflammatory stress

state, which activates the coagulation and fibrinolytic systems.

Activation of the coagulation system predisposes the blood to

coagulation and microthrombosis while inhibiting early activation

of the fibrinolytic system, further exacerbating coagulation

abnormalities (45). Coagulation factors such as V and VIII are

activated and depleted, leading to abnormal function. Studies have

shown that higher levels of PCT in patients with SIC are associated

with higher morbidity and mortality rates, and the level of PCT in

patients with SIC is higher than that in patients with sepsis without

coagulation disorders (46, 47). In patients with SIC, the

combination of PCT levels and coagulation tests allows for a

more comprehensive assessment of the disease. Adjusting the

anti-infective regimen and coagulation modification therapy (e.g.,

anticoagulation or coagulation factor supplementation) according

to changes in PCT is a crucial clinical strategy to improve the

prognosis of patients.

SIC is often accompanied by renal impairment, as sepsis causes

inadequate renal perfusion and decreased filtration rate, leading to

BUN accumulation and elevated BUN (48). Renal injury also

reduces the clearance of coagulation factors and fibrin

degradation products and decreases erythropoietin levels, causing
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anemia and increased blood viscosity, which exacerbate

coagulopathy (49, 50). Sepsis causes hypercatabolism, increases

BUN production, and affects coagulation factor synthesis. The

liver may reduce coagulation factor synthesis due to metabolic

disturbances, leading to coagulopathy (51). Inflammatory

mediators are released in sepsis, constricting the renal vasculature

and decreasing BUN excretion while activating the coagulation

system and initiating exogenous coagulation pathways. The

interaction between elevated BUN and coagulation abnormalities

aggravates the condition (38). Hence, monitoring BUN levels is

important for assessing renal function and disease progression in

patients with SIC. Persistently elevated BUN levels may indicate

continued deterioration of renal function and may also signal

worsening of coagulation dysfunction. By monitoring BUN levels,

physicians can make timely adjustments to the treatment plan, such

as adjusting the strategy of fluid resuscitation to improve renal

perfusion and control the inflammatory response.

This study has several advantages. It used an innovative

approach to build an interpretable ML prediction model for SIC

risk in patients with sepsis. The model was developed from multi-

center clinical data and validated to ensure it is representative.

Additionally, the SHAP algorithm enhanced the model’s

interpretability. The RF model showed good generalizability in

the validation set, and the selected variables were common

clinical indicators, making it easy to promote the model.

This study also has some limitations. First, this study is a

retrospective study, which may be subject to selection bias and

information bias, and future large-scale prospective studies are

needed to further determine the robustness and value of the

predictors and analyze the potential predictors to improve the

inferential power of the results. Second, although this was a

multi-center study and was internally and externally validated,

the overall sample size was less than 2,000 cases from two

hospitals in China with the same level of medical care. Patients

with sepsis from other countries and different healthcare

institutions were not included or discussed in this study. Hence,

the applicability and generalizability of the model to different

populations and settings may be limited. Future studies may

consider using data from international public databases and

multiple healthcare organizations to evaluate the performance of

these models in a wider range of settings. In addition, although the

time period validation used in this paper is one of the types of

external validation, in practice external validation usually involves

evaluating models in completely different environments. Therefore,

the current validation method has some limitations, and there is a

strong need for true external validation in future work. For the

treatment of missing values, the proportion of assessed missing

values was so small (< 5%) that it was unlikely to cause significant

bias, and thus cases with missing values were excluded to maintain

the integrity of the analysis. However, we recognize that the

exclusion of missing values may introduce bias, especially in cases

where the missing data mechanisms were missing at random

(MAR) and missing not at random (MNAR). In future studies,

we will explore advanced techniques such as inverse probability

weighting or Bayesian methods for MNAR data and further validate

our findings. Finally, all the data in this study were collected
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manually, and some missing clinical variables could not be

analyzed during the collection process due to the differences in

the medical conditions in each hospital, such as various culture

results. Therefore, additional data support and in-depth analysis are

needed. Despite these limitations, we believe that the RF model can

help early identification of patients with SIC by clinicians.
5 Conclusion

We developed an ML model to predict the risk of SIC in patients

with sepsis and validated its potential as a clinically reliable tool. The

SHAP algorithm can improve the interpretability of ML model, help

clinicians to better understand and apply the model, identify the main

risk factors for SIC, and assist clinicians in implementing individualized

and precise interventions at an early stage to prevent and reduce poor

prognosis in patients with sepsis.
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