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Pseudomonas aeruginosa-
derived metabolites and volatile
organic compounds: impact on
lung epithelial homeostasis and
mucosal immune response
Shanny Hsuan Kuo † and Gee W. Lau*

Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-
Champaign, Urbana, IL, United States
Pulmonary diseases, such as cystic fibrosis (CF), chronic obstructive pulmonary

disease (COPD), and ventilator-associated pneumonia (VAP), are attributed to the

prolonged infection of the airway and hypersecretion of mucus. Pseudomonas

aeruginosa (PA) is one of the most common nosocomial pathogens in these

diseased airways, secreting a wide spectrum of metabolites and volatile organic

compounds (VOCs) that significantly impact the respiratory epithelium, including

disruption of mucus homeostasis and inflammatory responses of the diseased

lungs. In this review, we highlighted the major metabolites and VOCs produced

by PA and the mechanisms by which they modulate inflammation, cellular injury,

and mucus hypersecretion in respiratory epithelium.
KEYWORDS
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1 Introduction

Pseudomonas aeruginosa (PA) is a common Gram-negative opportunistic bacterial

pathogen that colonizes the respiratory tracts of individuals suffering from chronic lung

diseases such as cystic fibrosis (CF), advanced stages of chronic obstructive pulmonary

disease (COPD), bronchiectasis, and chronic bronchitis (CB); as well as ventilator-

associated pneumonia (VAP) (1). Infections are most commonly associated with

increased morbidity, pulmonary function deterioration, and prolonged hospitalization

(2, 3). PA is extremely versatile metabolically, and is capable of producing a plethora of

virulence factors, volatile organic compounds (VOCs), and secondary metabolites, which

contribute to its pathogenicity in mammalian hosts, environmental adaptability, and

interactions with other microorganisms. The persistent presence of PA is often linked to

poor clinical outcomes. In this review, we describe the effects of various PA secondary

metabolites and VOCs on respiratory epithelial cells and local lung inflammation. In

particular, it examines how these metabolites participate in mucus imbalance, epithelial
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injury, and pneumonic inflammation, providing clues about the

disease pathogenesis during PA infections.
2 Pseudomonas aeruginosa-derived
volatile organic compounds

As is the case with all living creatures, bacteria emit a wide

variety of VOCs. Some of these VOCs are unique to specific

bacterial species and are useful biomarkers for pathogen

identification. These VOCs encompass a diverse range of

metabolites generated through microbial growth, serving as

indicators of cellular signaling and metabolic activities (4). PA

emits a list of unique VOCs during lung infections that are

identifiable through recently improved detection methodologies,

and have sparked growing interest in associating the presence of

specific VOC profiles for clinical applications (5–7), aiming to

improve diagnostic accuracy for disease detection and

monitoring. The swift and precise identification of the causative

pathogen is essential for the effective administration of targeted,

narrow-spectrum antimicrobial treatment. Additionally, early

diagnosis of PA infection, combined with appropriate antibiotic

treatment, may facilitate the eradication of the pathogen before the

infection progresses to a chronic state. However, current diagnostic

methods are primarily based on the microbiological culture of

respiratory specimens (8). This approach is often protracted,

typically requiring three days, invasive, and not routinely

performed following initial clinical suspicion of PA infection (9,

10). In fact, both the detection and monitoring of PA lung infections

traditionally rely on sputum cultures. However, with advancements

in highly effective modulator therapy in CF, sputum production has

decreased, even though the risk of lung infections remains. A

promising alternative to address these limitations is to monitor

shifts in the molecular phenotype of either the host or the bacterial

metabolism by analyzing distinct VOC profiles (11). Consequently,

many laboratories have attempted to identify such biomarkers by

analyzing VOCs released from in vitro PA cultures and in patients,

as detailed in Tables 1, 2. These investigations are largely based on

gas chromatography-mass spectrometry (GC-MS), frequently

coupled with solid-phase microextraction (SPME), and on

selected ion flow tube mass spectrometry (SIFT-MS) and proton

transfer reaction mass spectrometry (PTR-MS) (6, 7). Notably, the

assessment of VOCs from respiratory samples in human subjects,

such as bronchoalveolar lavage fluid (BALF), sputum, sinus mucus,

and exhaled breath, has been suggested as a minimally invasive

method for diagnosis and monitoring of PA lung and sinus

infections, particularly in conditions such as CF (12–22).
2.1 PA-derived VOCs detected in vitro and
in vivo

Key VOCs identified for PA include hydrogen cyanide (HCN),

a well-known compound that has been consistently detected in the
Frontiers in Immunology 02
breath and sputum volatilome of individuals infected with PA (16,

17, 23, 24), as well as under specific bacterial culture conditions (25,

26). Consequently, it has been suggested as a potential non-invasive

diagnostic biomarker for PA colonization. Methyl thiocyanate has

emerged as an additional biomarker, exhibiting concentrations

ranging from 2 to 21 ppbv in the exhaled breath of CF patients

infected with PA, as well as in the bacterial culture headspace (18).

Notably, the observed parallel correlation between HCN levels and

methyl thiocyanate suggests that the synthesis of methyl

thiocyanate by PA strains is contingent upon the production of

HCN (18). Another VOC found in the breath of CF patients (13)

and in the headspace of bacterial cultures (22, 27–32), is 2-

aminoacetophenone (2-AA). This molecule, which imparts a

distinctive ‘grape-like’ fruity odor on PA cultures, is known to

modulate the virulence of PA by promoting a shift toward a chronic

infection phenotype in lungs (33). Methyl ketones, such as 2-

nonanone and 2-undecanone (30, 34) are likewise released by PA

cultures in vitro. 2-nonanone, in particular, can be detected in vitro

in bacterial cultures (30, 34–37) and in vivo as a marker for the

detection of PA in the breath of bronchiectasis and CF septum

samples (14).This detection sensitivity can be further enhanced by

19% when 2-nonanone is combined with 17 other detected VOCs in

a sputum library (14). Other VOCs associated with PA under in

vitro and in vivo conditions include hydrocarbons (e.g., 1-undecene

(20, 22, 30, 32, 34, 35), 1-dodecene (35)), ketones (e.g., acetone (22,

27, 31, 37–39)), aldehydes (e.g., 3-methyl-1-butanol (14, 30, 34–36,

38)), acids (e.g., acetic acid (22, 27, 39)), alcohols (e.g., ethanol (27,

28, 31, 35, 38, 39), 1-butanol (34)), sulfur compounds (e.g., dimethyl

sulfide (22, 32, 35, 37, 39), dimethyl disulfide (22, 30, 35, 37, 39),

dimethyl trisulfide (30, 35, 37)), terpenes (e.g., 1-a-pinene (20),

terpinen-4-ol (20)), and other compounds (e.g., 2,2,6-trimethyl-

octane (20), indole (22, 27)). The identification of overlapping

biomarkers among corroborating reports provides considerable

encouragement that these VOCs are potentially PA-specific. A

comprehensive list of core VOCs derived from PA has been

compiled in Tables 1, 2, incorporating both in vitro and in vivo

published literatures, with associated diseases listed alongside.
2.2 Discrepancies and confounding factors
between in vitro and in vivo findings on PA
volatilome profiles

Collectively, the above studies suggest that PA-related VOC

profiles may serve as sensitive and specific biomarkers for its

identification and detection in human specimens (in/ex vivo), as

well as in pure and mixed bacterial cultures. Despite these advances,

integrating these biomarkers into the clinical diagnosis of PA lung

infections remains challenging due to multiple confounding factors

including differences in culture conditions, bacterial strains and

phenotypes, host factors, the non-specific origins of many VOCs,

and discrepancies between in vitro and in vivo research findings.

Thus far, comprehensive translational research bridging in vitro and

in vivo studies in human patients—an essential step for biomarker
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validation—remains limited. In 2013, Zhu et al. made the first

attempt at comparing the in vivo and in vitro volatile profiles from

the same PA and Staphylococcus aureus strains using a murine

infection model (40). They showed a low similarity (25-34%)

between VOC profiles of PA and S. aureus cultures in vitro to in

vivo (40). Nevertheless, the VOC profiles were able to differentiate

between mice with and without infection, between mice infected by

PA versus S. aureus, and infection by different PA strains. In

addition, the host immune response has a significant impact on

the VOC profile. Bean et al., who reported the presence of unique

breath prints including host-derived volatiles of inflammation that

allow discrimination between healthy, active PA infection, and
Frontiers in Immunology 03
convalescent state (41). Furthermore, Fenn et al found that PA

emitted fewer pathogen-specific VOCs when co-cultured with

alveolar A549 human epithelial cells as compared to when PA

was grown alone (42). All together, these findings suggest that

VOC biomarkers are modulated by the availability of host

environment, an essential consideration for understanding their

biochemical origins.

Previous studies (29, 43) have also demonstrated how the

bacterial culture environment (e.g., pH, CO2/O2 ratio, nutrient

availability, and medium composition) influences the observed

VOC profiles, highlighting PA’s ability to produce diverse VOCs

while also posing a challenge in establishing a consensus panel of
TABLE 1 Summary of volatile organic compounds (VOCs) detected in in vitro studies involving P. aeruginosa.

In vitro Volatiles detected* References

Bacterial culture acetaldehyde, acetic acid, acetone, ammonia, ethanol, dihydrogen sulfide, dimethyl disulfide, dimethyl sulfide,
methyl mercaptan

Allardyce et al. (2006) (39)

Bacterial culture 3-methyl-1-butanol, ethanol, 2-butanol, 2-nonanone, 2-pentanone, 2-heptanone, 4-heptanone, 3-octanone, 2-
butanone, methyl isobutyl ketone, ethyl acetate, methyl
2-methylbutyrate, methyl methacrylate, ethyl 2-methylbutyrate, 2-methylbutyl isobutyrate, isoamyl butyrate, 2-
methylbutyl 2-methylbutyrate, amyl isovalerate, dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide,
methanethiol, mercaptoacetone, 2-methoxy-5-methylthiophene, 3-(ethylthio)-propanal, 1-undecene, 2-methyl-2-
butene, 1,10-undecadiene, 1-nonene, 1-decene, 1-dodecene, butane, isoprene, 10-methyl-1-undecene, pyrrole, 3-
methylpyrrole, 1-vinyl aziridine

Filipiak et al. (2012) (35)

Bacterial culture hydrogen cyanide, ammonia, methyl mercaptan Carroll et al. (2005) (25)

Bacterial culture hydrogen cyanide Gilchrist et al. (2011) (26)

Bacterial culture 2-aminoacetophenone, ammonia, ethanol, formaldehyde, hydrogen sulfide, isoprene, methyl mercaptan,
trimethylamine

Thorn et al. (2011) (28)

Bacterial culture 2-aminoacetophenone, 2-pentanone, 4-methylphenol, acetic acid, acetone, acetonitrile, ethanol, ethylene glycol,
indole

Zhu et al. (2010) (27)

Bacterial culture 1-butanol, 1-undecene, 2-butanone, 2-heptanone, 2-nonanone, 2-undecanone, 3-methyl-1-butanol, toluene Zechman et al. (1985) (34)

Bacterial culture 2-aminoacetophenone Cox et al. (1979) (29)

Bacterial culture 1-undecene, 2-aminoacetophenone, 2-butanone, 2-nonanone, 2-undecanone, 3-methyl-1-butanol, 4-methyl-
quinazoline, butanol, dimethyl disulfide, dimethyl trisulfide, methyl mercaptan, toluene

Labows et al. (1980) (30)

Bacterial culture 2-propanol Wang et al. (2006) (19)

Bacterial culture 2-aminoacetophenone, dimethyl disulfide, dimethylpyrazine, dimethyl sulfide, undecene Preti et al. (2009) (22)

Bacterial culture Methyl thiocyanate Shestivska et al. (2011) (18)

Bacterial culture ethanol, acetone, 2-butanone, 2-pentanone, isoprene, 2-aminoacetophenone, dimethyl sulphide, dimethyl
disulphide, dimethyl trisulphide, methyl thiocyanate, 3-methyl-butanone, acetophenone, methylthioacetate and
methyl thiobutanoate, hydrogen cyanide

Shestivska et al. (2012) (31)

Bacterial culture acetone, dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, methyl isobutyl ketone, 3-methyl-2-pentanone,
methyl vinyl ketone, 2-butanone, 3-methyl-2-butanone, 3-methyl-3-buten-2-one, 2-pentanone, 2,4-dimethylfuran,
2,3-pentanedione, 2,3-hexanedione, pyrrole, 2,4-dimethyl-1-heptene, 3-methyl-3-penten-2-one, 3-heptanone, 2-
heptanone, decane, 3-octanone, 2,4,6-trimethylpyridine, 2-nonanone, acetophenone, 2-decanone

Bean et al. (2016) (37)

Bacterial culture 3-methylbutanal, thiocyanic acid, methyl ester, 3-methyl-1-butanol, pyridine, 3-penten-2-one, 3-methyl-1-buten-1-
ol, 4-methyl-3-penten-2-one, hexanal, heptanal, 2,5-dimethylpyrazine, 2-nonanone, 4-ethyl-1,2-dimethylbenzene,
1,3,3-trimethyl-(bicyclo)-heptan-2-ol, 1-(4-ethylphenyl)-ethanone

Davis et al. (2020) (36)

Bacterial culture 1-undecene, methyl thiocyanate, dimethyl sulfide, 2-aminoacetophenone Ahmed et al. (2023) (32)

Cell culture
(A549 epithelial
cells co-culture)

3-methyl-1-butanol, acetone, ethanol, ethylidenecyclopropane, tert-butyl ethyl ether, methyl tert butyl ether Oluwasola et al. (2018) (38)
*The volatile molecules highlighted in bold are specifically suggested as potential biomarkers for P. aeruginosa infection among all the VOCs listed in that study.
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biomarkers for reliable in vivo detection. Moreover, it’s important

to note that the VOC profile of PA can shift longitudinally,

correlating with the adaptation of infection phenotypes (early vs.

chronic), thus indicating the diagnostic potential for monitoring

chronic CF lung infections through breath analysis (36). Overall,

various confounding factors, including PA strains (31), bacterial

culture media (29, 43), growth stage (biofilm vs. planktonic) (44),

bacterial phenotypes (mucoid vs. non-mucoid) (45), and individual

patient’s factors such as the stage of infection (36), diet (13, 46), and

smoking (35), have all been shown to influence the composition of

volatilome of PA.
2.3 Recent advances and concepts in PA
volatilome profiling

As discussed above, many in vitro studies aimed at identifying

distinct PA VOC biomarkers have not successfully translated into

in vivo contexts for the identification of analogous volatilomes in

clinical patients. The variability in VOC species observed in

different studies, as outlined in Tables 1, 2, raises the question of

whether a single VOC is indicative of PA presence or if a distinct

“pattern” of collective VOCs is, in fact, more reflective of this

pathogen. Due to the limited success in developing clinical

diagnostics based on selected in vitro volatile biomarkers, several

techniques are now being explored to capture more comprehensive

bacterial volatilomes for diagnostic purposes. Volatile profiling, also

known as fingerprinting, is being explored through the application

of chemical sensors along with gas chromatography (GC) and mass

spectrometry (MS) techniques (12, 47–50). Since then, there has

been notable success in utilizing the entire volatilome fingerprint for

PA detection in both human (51) and murine models (40). The

literature on this topic converges on the fact that volatile
Frontiers in Immunology 04
metabolites are related to infection pathogenesis as a whole,

which may include both physiological and host response factors.

Hence, it is generally a “pattern” of VOCs that signifies the presence

of PA in clinical specimens, rather than the detection of an

individual compound. The combination of multiple GC or GC-

MS breath biomarkers, along with the use of the entire volatilome

fingerprint, has proven to be a reliable strategy for diagnosing PA

lung infections (12, 14, 52–54). Advances in analysis-methods and

particularly in small and VOC-specific sensor-arrays resulted in

cost-effective, miniaturized ‘eNose’ sensors. These devices, among

other possible applications, have been used in pilot clinical studies

to detect bacterial colonization in CF patients with bronchiectasis

(55, 56), representing non-invasive diagnostic and monitoring tools

for PA lung infections.
3 PA-derived secondary metabolites

In addition to the aforementioned VOCs, PA produces numerous

important exoproducts and secondary metabolites that play a role in

its pathogenicity and in the persistence of PA in the lung. These

comprise the redox-active tricyclic phenazines, the quorum sensing

(QS) molecules, siderophores, and exopolysaccharides that all have

essential functions in the modulation of host cell behaviors. Some of

the essential metabolites are listed below:
3.1 Phenazines

Phenazines represent a substantial category of nitrogen-

containing heterocyclic compounds, which include the redox-active

pyocyanin (PYO), phenazine-1-carboxylic acid (PCA), phenazine-1-

carboxamide (PCN), 1-hydroxyphenazine, and 5-methylphenazine-
TABLE 2 Literature overview of volatile organic compounds (VOCs) detected in in vivo studies involving P. aeruginosa.

In vivo (human) Volatiles detected* Diseases associated References

Breath hydrogen cyanide cystic fibrosis Enderby et al. (2009) (16)
Gilchrist et al. (2013) (17)
Smith et al. (2013) (23)

Breath methyl thiocyanate cystic fibrosis Shestivska et al. (2011) (18)

Breath 2-aminoacetophenone cystic fibrosis Scott-Thomas et al. (2010) (13)

Breath 2-propanol cystic fibrosis Wang et al. (2006) (19)

Sinus mucus 2-aminoacetophenone, 2-methylbutyric acid, 3-hydroxy-2-butanone,
acetamide, acetic acid, acetone, dimethyl disulfide,
dimethyl sulfide, dimethyl sulfone, hydrogen sulfide, indole, isovaleric,
phenol, propanoic acid

sinusitis Preti et al. (2009) (22)

Sputum 1-heptene, 2-nonanone, 2,4-dimethyl-heptene, 3-methyl-1-
butanol, limonene

bronchiectasis and
cystic fibrosis

Savelev et al. (2011) (14)

Sputum 1-undecene, 1-a-pinene, dodecane, terpinen-4-ol, 2,2,6-trimethyl-octane bronchiectasis Goeminne et al. (2012) (20)

Sputum hydrogen cyanide cystic fibrosis and non-cystic
fibrosis bronchiectasis

Ryall et al. (2008) (24)

Bronchoalveolar lavage 2-butanone, 3-methyl-2-butanone cystic fibrosis Nasir et al. (2018) (21)
*The volatile molecules highlighted in bold are specifically suggested as a potential biomarker for Pseudomonas aeruginosa infection in that study.
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1-carboxylic acid betaine (57, 58). These compounds are recognized

as critical virulence factors of PA, playing significant roles in quorum

sensing, biofilm formation, virulence expression, iron acquisition,

oxidative stress, competition against other microbes within the same

niche, and modulation of host responses (58–60). Through these

multifaceted activities, phenazines greatly enhance the pathogenic

potential and ecological adaptability of PA. Their detection in clinical

specimens correlates with heightened virulence and adverse patient

outcomes, particularly in cases of CF (61, 62).
3.2 Quorum sensing molecules

The QS systems in PA are a hierarchical network that

orchestrates virulence factor expression and biofilm formation.

This regulation is mediated by a variety of signaling molecules,

including N-3-oxo-dodecanoyl homoserine lactone (3-oxo-C12-

HSL), N-butanoyl-L-homoserine lactone (C4-HSL), Pseudomonas

quinolone signal (PQS), 2-heptyl-4-hydroxyquinoline (HHQ), 2-

(2-hydroxyphenyl)-thiazole-4-carbaldehyde (IQS), and 2-heptyl-4-

hydroxyquinoline N-oxide (HQNO). Two acyl-homoserine lactone

(AHL) QS systems, the Las and Rhl, are closely connected, and are

involved in the synthesis of a variety of virulence factors such

elastases, alkaline protease, rhamnolipids, phenazines, lectins,

superoxide dismutase, and biofilm formation (63). The more

recently identified PQS and IQS systems contribute additional

layers of complexity to PA’s QS network (64). Notably, PQS,

along with its precursor HHQ and the derivative HQNO, is

frequently found in the sputum, bronchoalveolar fluid, and

mucopurulent secretions of people with CF (65). In brief, QS

systems allow PA to modulate gene expression in response to cell

density, thus controlling important functions such as virulence,

antibiotic resistance, and biofilm formation (64, 66). This intricate

communication network significantly enhances the adaptability and

pathogenic potential of PA in diverse environments.
3.3 Siderophores

The siderophores pyoverdine and pyochelin chelate iron from

the host microenvironments and lysed RBCs. This system is not

only essential for bacteria survival but also enhances pathogenicity

during lung infection processes (67, 68).
3.4 Exopolysaccharides

Extracellular polysaccharides provide a barrier protecting

bacteria against environmental factors, such as dehydration,

bacteriophages and the host immune factors. PA synthesizes three

main polysaccharides, including alginate, PSL, and PEL, all of which

are important components of in vitro biofilms (69). The production

of alginate is particularly noteworthy, as it imparts the mucoid
Frontiers in Immunology 05
phenotype of clinical PA isolates from CF lungs (70). These

polysaccharides are important for the establishment of PA

biofilms, providing a shield against host defenses such as reactive

oxygen species (ROS) and phagocytosis (71–73), as well as

enhancing resistance to antibiotics (74–76).
4 Effects of PA-derived metabolites on
respiratory epithelial cells

The respiratory epithelium of human lung is the body’s first line

of defense against inhaled germs, allergens, and pollutants, and

plays a crucial role in the initiation of immune responses. Its

primary innate immune functions encompass: (i) the production

of mucus to ensnare pathogens; (ii) the expulsion of inhaled

bacteria via ATP-dependent, coordinated mucociliary escalator;

(iii) the release of antibacterial peptides and ROS; (iv) the

initiation of wound healing processes after epithelial damage; and

(v) the secretion of cytokines and chemokines to signal the immune

system (77). The structural integrity of the epithelium, coupled with

mucociliary clearance, pollutant metabolism, and production of

antimicrobial and immune mediators, is essential for protecting the

gas exchange units (alveoli) and submucosal layers from

environmental inhalants (78). The integrity and function of

respiratory epithelial cells are hence crucial for maintaining

airway homeostasis. PA-derived metabolites and VOCs can

disrupt airway epithelial functions in several ways summarized

below (Figure 1).
4.1 Cytotoxicity via oxidative stress and
direct cell lysis

PA metabolites can damage cellular and mitochondrial

components, leading to cell death or dysfunction by generating

excessive ROS and causing oxidative stress. These ROS interfere

with multiple cellular functions in host cells, including electron

transport, cellular respiration, and energy metabolism (60). PYO, a

redox-active pigment and major virulence factor produced by PA,

plays a significant role in oxidative stress generation by elevating

intracellular levels of ROS, particularly superoxide (O2•−) and

hydrogen peroxide (H2O2) via consumption of catalase-associated

NADPH (60). These ROS cause oxidative damage to DNA,

proteins, and lipids, thereby inhibiting key cellular enzymes and

disrupting normal cellular functions (79, 80). Similarly, QS

molecules such as 3-oxo-C12-HSL (81) and HQNO (82), along

with the VOC HCN (24, 83, 84), disrupt electron transport in

mitochondria, attenuating cellular respiration and inducing the

generation of ROS. This, in turn, triggers apoptotic pathways in

epithelial cells and compromises the integrity of the epithelial

barrier (81, 85). Furthermore, rhamnolipids degrade lung

surfactant and disrupt tight junctions, causing direct injury to

tracheal and lung epithelial barrier (86).
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4.2 Ciliary dysfunction

Phenazines and HCN, have detrimental effects on mucociliary

clearance by directly impairing ciliary function. PYO and 1-

hydroxyphenazine reduce ciliary beat frequency in the lungs,

weakening the cilia’s ability to clear mucus and trapped particles

from the airways (87). Likewise, HCN produced by PA, which is

also a principal ‘ciliatoxic’ component found in cigarette smoke,

significantly damages the cilia, disrupting their synchronized

beating and hindering the efficient escalator movement of mucus

that clears entrapped particles out of the respiratory system (88).
4.3 Goblet cell hyperplasia and mucus
hypersecretion

PYO plays a significant and multifaceted role in enhancing

mucus hypersecretion and goblet cell metaplasia and hyperplasia

during infections. PYO inactivates FOXA2, a transcriptional

regulator of airway mucus homeostasis which ordinarily inhibits
Frontiers in Immunology 06
excessive goblet cell hyperplasia and metaplasia and mucus

production (89, 90). Additionally, the ROS and reactive nitrogen

species (RNS) generated by PYO also cause post-translational

modifications of FOXA2, including nitrosylation, acetylation, and

ubiquitination, which impair its capacity to bind to the promoter of

the MUC5B gene (91). Subsequent investigations utilizing normal

and CF and COPD-diseased primary and immortalized human

airway cells, along with studies in mice, reveal that PYO inhibits

FOXA2 expression via the activation of antagonistic signaling

cascades, among others, EGFR-PI3K-AKT, EGFR-MEK-ERK, and

IL-13R-STAT6-SPDEF, leading to goblet cell hyperplasia and

metaplasia and overexpression and hypersecretion of mucus (89,

90, 92). Moreover, the ROS associated with PYO stimulate the

release of inflammatory cytokines and growth factors that promote

EGFR-dependent mucin secretion in airway epithelial cells (60, 93).

Long-term chronic exposure (12 weeks) to PYO in murine airways

results in goblet cell hyperplasia, airway fibrosis, destruction of

alveolar spaces, and a shift towards a Th2 immune response marked

by increased levels of Th2 cytokines IL-4 and IL-13. These cytokines

further activate the STAT6 signaling pathway, exacerbating goblet
FIGURE 1

The mechanisms by which Pseudomonas aeruginosa-derived secondary metabolites affect respiratory epithelial cells. Pseudomonas aeruginosa (PA)
employs multiple mechanisms to disrupt respiratory epithelial cells. Metabolites such as pyocyanin (PYO), hydrogen cyanide (HCN), and quorum-
sensing (QS) molecules (3-oxo-C12-HSL, HQNO) generate reactive oxygen and nitrogen species (ROS, RNS), including superoxide (O2•−), hydrogen
peroxide (H2O2), peroxynitrite (ONOO−), and nitric oxide (NO). These ROS and RNS disrupt mitochondrial electron transport, causing oxidative
stress and damage to DNA, proteins, and lipids. Furthermore, excessive ROS and RNS generated by PA metabolites—such as PYO, 3-oxo-C12-HSL,
HQNO, and HCN—perturb the respiratory epithelial barrier via activation of apoptosis pathways in epithelial cells and induce excessive mucus
production by inducing endoplasmic reticulum (ER) stress. This stress further exacerbates mucus production and contributes to chronic
inflammatory conditions. Rhamnolipid induce direct cell lysis, while HCN, PYO, and 1-hydroxyphenazine impair ciliary function, with PYO also driving
mucus overproduction and promoting goblet cell metaplasia. Furthermore, PA3611, a quorum-sensing-regulated protein expressed by PA during
infection, promotes epithelial-mesenchymal transition (EMT) in bronchial epithelial cells—a tissue remodeling process wherein epithelial cells lose
their characteristics and differentiate into myofibroblasts. Image created with BioRender.com. Kuo, S. (2025) https://BioRender.com/f5fss63
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cell hyperplasia and promoting excessive mucus production (92).

Besides, PYO has been found to upregulate expression of sialyl-

Lewis(x), a sugar modification of airway mucins to which PA

preferentially adheres, utilizing this as part of its strategy to

condition the airway for chronic infection (94). Consequently, a

sophisticated interplay of autocrine and paracrine signaling

pathways facilitates the mucin secretion induced by PYO in

respiratory epithelial cells (Figure 2). Additionally, prolonged

oxidative stress leads to an accumulation of improperly folded
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proteins within the endoplasmic reticulum (ER), resulting in ‘ER

stress’ and the subsequent activation of the ‘unfolded protein

response’ (UPR). This mechanism can further exacerbate mucus

production and contribute to chronic inflammatory conditions (95–

98) characterized by the secretion of proinflammatory cytokines.

This release further escalates ER stress, creating a feedback loop that

amplifies the inflammatory response (95, 99). Also, ER stress has

been implicated in the initiation and progression of pulmonary

fibrosis, with growing evidence suggesting that it also plays a role in
FIGURE 2

Mechanisms of respiratory impact and immune modulation by pyocyanin during Pseudomonas aeruginosa (PA) infection. Pyocyanin (PYO), a
chemical redox pigment and the major virulence factor in PA, generates an oxidative burst through the increased production of intracellular reactive
oxygen species (ROS) that damage DNA, protein, and phospholipids. These damages initiate apoptotic cascades and disruption of the respiratory
barrier. Also, PYO reduces ciliary beats frequency, which has a detrimental effect on mucociliary clearance. Moreover, PYO causes goblet cell
hyperplasia and mucus hypersecretion by suppressing FOXA2, a master regulator of mucus homeostasis, through activation of the EGFR-PI3K-AKT,
EGFR-MEK-ERK, and IL-4/IL-13R-JAK-STAT6-SPDEF pathways. The ROS generated by PYO is additionally responsible for the promotion of
chemokine and growth factor release which augment EGFR-induced mucin hyperproduction. In addition to the above effects, PYO also modulates
both pro-inflammatory and anti-inflammatory immune responses. On the one hand, it increases neutrophil chemotaxis, and, on the other hand, it
inhibits macrophage phagocytosis and activates the apoptosis of neutrophils, T lymphocytes, and B lymphocytes. Neutrophils drawn to tissue
following chemotaxis exacerbate tissue damage via the release of ROS, proteases, and pro-inflammatory cytokines. PYO also induces the release of
extracellular DNA with neutrophil extracellular traps (NETs) formation, which contribute to biofilm formation and persistent infection of PA in tissue.
Image created with BioRender.com. Kuo, S. (2025) https://BioRender.com/5y1ycg1.
frontiersin.org
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obstructive lung diseases, pulmonary infections associated with CF,

and lung cancer (100).
4.4 Epithelial-mesenchymal transition

As aforementioned, PA infects chronically diseased lungs (1).

Epithelial injury triggers a sustained immune response, leading to

emphysema and airway remodeling, which involves peribronchial

fibrosis and possibly increased airway smooth muscle mass (101,

102). Pulmonary fibrosis develops as a complication of repeated PA

infections, epithelial damage, and tissue repair. The EMT in

bronchial epithelial cells—a tissue remodeling process where

epithelial cells lose their characteristics and differentiate into

myofibroblasts—plays a pivotal role in the progression of

bronchial and pulmonary fibrosis and obliterative bronchiolitis

(OB). These changes in cell proportions can result in goblet cell

metaplasia/hyperplasia and increase mucus production, a hallmark

of chronic bronchitis in COPD (103). Prolonged exposure to PYO

has been shown to induce peribronchial fibrosis (92). PA3611, a

putative QS-regulated protein produced by PA during infection

(104), has been shown to promote EMT by integrin avb6-mediated

activation of the TGF-b1-induced p38/NF-kB pathway, which

causes mesenchymal markers to be upregulated and epithelial

markers to be downregulated (105). In line with this, Borthwick

et al. demonstrated that PA-activated monocytic cells can enhance

TGF-b1-driven EMT in primary bronchial epithelial cells (106).

These observations shed light on the association between PA
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infection and the increased likelihood of developing obliterative

bronchiolitis following lung transplantation.

Overall, PA exerts its pathogenic effects through a multifaceted

approach, including the production of ROS, inhibition of

mucociliary blanket, and induction of goblet cell hyperplasia and

metaplasia, mucus hypersecretion, and the promotion of EMT. A

brief overview of documented PA-derived metabolites and VOCs,

along with their implicated roles in respiratory epithelial pathology,

is summarized in Table 3.
5 Influence of PA-derived metabolites
on lung inflammation

Chronic inflammation is interconnected with mucus

dysregulation and has a bidirectional relationship, that is, each of

the two events serves as a cause for the other. Thus, PA-derived

metabolites exacerbate pulmonary inflammation and disease

courses through multiple mechanisms. It was noted that from the

point of their role in lung inflammation, several metabolites have a

significant influence on respiratory health and disease, as will be

further discussed in the following section. Interestingly, these

metabolites often exert a dual role in modulating inflammation

during PA infection, promoting neutrophil chemotaxis while

concurrently impairing host defense mechanisms. A comparison

of PA-derived metabolites and VOCs involved in immune

modulation during infection is presented in Table 4.
TABLE 3 Overview of PA-derived metabolites and VOCs in respiratory epithelial pathology.

PA-derived metabolites Functions in respiratory pathology References

Pyocyanin (PYO) Generation of ROS Gloyne et al. (2011) (79)
Schwarzer et al. (2008) (80)

Reduction in ciliary beat frequency Wilson et al. (1987) (87)

Goblet cell hyperplasia, metaplasia, and mucus hypersecretion Rada et al. (2013) (60)
Hao et al. (2012) (89)
Choi et al. (2020) (90)
Hao et al. (2013) (91)
Caldwell et al. (2009) (92)
Rada et al. (2011) (93)
Jeffries et al. (2016) (94)

2-heptyl-4-hydroxyquinoline N-oxide (HQNO) Generation of ROS Rieger et al. (2020) (82)

Hydrogen cyanide (HCN) Generation of ROS and interference with tissue oxygenation Ryall et al. (2008) (24)
Castric et al. (1975) (83)
da Cruz Nizer et al. (2023) (84)

Ciliary damage Nair et al. (2014) (88)

N-3-oxo-dodecanoyl homoserine lactone
(3-oxo-C12-HSL)

Induction of mitochondrial DNA oxidative injury Maurice et al. (2019) (81)

Rhamnolipids Degradation of lung surfactant and disruption of
tight junctions

Zulianello et al. (2006) (86)

1-hydroxyphenazine Reduction in ciliary beat frequency Wilson et al. (1987) (87)

PA3611 Promotion of epithelial-mesenchymal transition Shu et al. (2022) (105)
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5.1 Pyocyanin

PYO, in particular, plays a complex role in modulating

inflammation during PA infection. First, PYO has several

mechanisms that promote inflammation, and is known to increase

the expression of interleukin-8 (IL-8) in airway epithelial cells that

involve oxidative stress and kinase signaling pathways (107, 108).

Additionally, it acts in synergy with pro-inflammatory cytokines such
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as TNF-a and IL-1a resulting in an amplified production of IL-8

(107). Chai et al. conducted further studies that indicated PYO

significantly increases IL-8 secretion in U937 cells, a human

monocyte cell line, in a time- and concentration-dependent fashion.

Their research suggests that this effect is mediated through the

activation of specific signaling pathways, including protein kinase C

(PKC), p38, and ERK mitogen-activated protein kinases (MAPKs), in

addition to nuclear factor-kappa B (NF-kB) (109, 110). The
TABLE 4 Comparison of PA-derived metabolites and VOCs in immune modulation during infection.

Metabolites and VOCs Functions in
immune upregulation

References Functions in
immune
downregulation

References

Pyocyanin (PYO) Increases IL-8 expression in
airway epithelial cells

Denning et al. (1998) (107)
Pan et al. (2006) (108)

Induces
neutrophil apoptosis

Allen et al. (2005) (115)
Usher et al. (2002) (116)
Managò et al. (2015) (117)

Increases IL-8 secretion in
U937 human monocytes

Chai et al. (2014) (109)
Chai et al. (2013) (110)

Promotes neutrophil
extracellular trap
(NET) formation

Rada et al. (2013) (118)

Inhibits T and B
lymphocyte proliferation
and induces
lymphocyte apoptosis

Ulmer et al. (1990) (121)
Nutman et al. (1987) (122)
Mühlradt et al. (1986) (123)
Oleiwi et al. (2015) (126)

Impairs macrophage
phagocytosis of
apoptotic cells

Bianchi et al. (2008) (129)

Inhibits phagocytosis-
induced ROS release and
reduces nitric oxide
production in macrophages
exposed to PA
lipopolysaccharide (LPS)

Shellito et al. (1992) (127)
Marreiro de Sales-Neto et al.
(2019) (128)

1-hydroxyphenazine Exerts proinflammatory effects
on neutrophils, intensifying
neutrophil-mediated
tissue damage

Ras et al. (1990) (114) Inhibits LPS-induced
inflammation in RAW264.7
murine macrophages

Xiao et al. (2021) (131)

Phenazine-1-carboxylic
acid (PCA)

Induces expression of IL-8 and
ICAM-1

Denning et al. (2003) (132) Reduces expression of
RANTES and MCP-1

Denning et al. (2003) (132)

Promotes biofilm formation Wang et al. (2011) (133)

N-3-oxo-dodecanoyl homoserine
lactone (3-oxo-C12-HSL)

Blocks anti-inflammatory
PPARg signaling in murine
fibroblasts and human lung
epithelial cells

Jahoor et al. (2008) (134)
Cooley et al. (2010) (135)

Attenuates LPS-induced
inflammation in RAW264.7
murine macrophages

Zhang et al. (2014) (137)

Induces COX-2 expression and
PGE2 production in
lung fibroblasts

Smith et al. (2002) (136) Promotes apoptosis in
macrophages, neutrophils,
lymphocytes, and platelets

Tateda et al. (2003) (138)
Kushwaha et al. (2023) (139)
Yadav et al. (2021) (140)

2-undecanone Activates neutrophils via the
Gai–phospholipase C
signaling pathway

Jeong et al. (2022) (148) Induces
neutrophils apoptosis

Jeong et al. (2022) (148)

2-aminoacetophenone (2-AA) Suppresses pro-
inflammatory cytokine
expression in THP-1 human
monocytes and RAW264.7
murine macrophages

Bandyopadhaya et al. (2012)
(143)
Bandyopadhaya et al. (2016)
(144)
Bandyopadhaya et al.
(2017) (145)

Inhibits autophagy and lipid
synthesis in RAW264.7
murine macrophages

Chakraborty et al. (2023) (146)
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antioxidant N-acetyl cysteine was found to effectively inhibit the

expression of IL-8, suggesting a ROS-dependent mechanism (109).

As a potent neutrophil chemoattractant, elevated IL-8 levels play a

crucial role in driving the pronounced neutrophil infiltration

frequently observed in PA infections. Neutrophils are central to the

pathogenesis of CF and other respiratory disorders, where their

elevated presence in lung tissue often intensifies the inflammatory

response (111). Their accumulation, while aimed at clearing bacterial

infections, inadvertently contributes to lung damage through the

release of proteases, ROS, and pro-inflammatory cytokines, which

can harm the surrounding tissues and exacerbate disease progression

(112). In particular, neutrophils release neutrophil elastase,

myeloperoxidase and H2O2, which are key components of the

peroxidase system and potent contributors to oxidative stress (113).

This oxidative stress, in turn, amplifies cellular damage and further

escalates inflammatory responses in the lungs (114).

While PYO possesses pro-inflammatory properties, it is also

able to inhibit various arms of the immune responses in

neutrophils, lymphocytes, and macrophages. Even as it is

extremely neutrophilic, PYO can induce neutrophil apoptosis,

thereby hampering their host defense mechanisms and allowing

PA to evade immune clearance (115, 116) through stimulation of

mitochondrial ROS release and activation of mitochondrial acid

sphingomyelinase (117). Moreover, PYO induces extracellular

DNA (eDNA) and neutrophil extracellular traps (NETs) release

in a dose-dependent manner, a process that requires NADPH

oxidase and involves c-Jun N-terminal kinase (JNK) and

phosphatidylinositol 3-kinase (PI3K) pathways (118). NETs in

their turn escalate biofilm formation (119) the latter is a well-

established driver of persistent infections that are difficult to

eradicate (120). Besides, PYO exhibits dose-dependent effects on

B and T lymphocyte function (121). PYO inhibits T lymphocyte

proliferation by blocking the release of IL-2 and reducing IL-2

receptor expression on T cells (121–123). This inhibition reduces

immunoglobulin secretion by B lymphocytes and decreases

lymphocyte proliferation, ultimately leading to a diminished

immune response against PA (123–125). Of note, it was shown

that toxic effects on T and B lymphocyte proliferation could be

induced by PYO concentrations as low as 0.5 µg/mL (121). This is

further supported by subsequent study showing that PYO induces

DNA fragmentation in human peripheral blood lymphocytes,

leading to their apoptosis (126). PYO suppresses phagocytosis-

induced ROS generation and subsequently decreases the production

of nitric oxide in macrophages upon the treatment of PA’s

lipopolysaccharides (LPS) (127). These results were further

supported by an independent study showing that PYO exerts

anti-inflammatory effects by downregulating the production of

nitric oxide, TNF-a, and IL-1b in LPS-activated murine

macrophages (128). Additionally, macrophage phagocytosis of

apoptotic cells was also impaired by the presence of PYO, which

was related to the generation of intracellular ROS and alterations in

small GTPase signaling (129). These multiple effects of PYO on

immune cells contribute to PA’s ability to evade host defenses and

establish chronic infections, particularly in immunocompromised
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individuals (130). The important roles of PYO in infection and

pulmonary inflammation are also summarized in Figure 2.
5.2 1-hydroxyphenazine and phenazine-1-
carboxylic acid

Other phenazine compounds, such as 1-hydroxyphenazine and

PCA, have also been reported to interfere with the host mucosal

immune responses. Similar to PYO, 1-hydroxyphenazine has

proinflammatory effects on neutrophils that may intensify

neutrophil-mediated tissue damage during infection (114).

Intriguingly, 1-hydroxyphenazine was later characterized as

having anti-inflammatory activity toward murine macrophages,

inhibiting LPS-induced inflammation in RAW264.7 cells in vitro

(131). PCA has been found to induce expression of both IL-8 and

ICAM-1, but simultaneously reduces the expression of RANTES

and monocyte chemoattractant protein-1 (MCP-1) (132). In

human airway epithelial cells, PCA is also linked to heightened

intracellular oxidant generation (132). These activities are further

inhibited by antioxidants, suggesting that oxidative stress is integral

to these mechanisms (132). Furthermore, PCA is implicated in

promoting bacterial biofilm formation through the acquisition of

ferrous iron in the later stages of infection (133).
5.3 N-3-oxo-dodecanoyl homoserine
lactone

The PA QS signaling molecule 3-oxo-C12-HSL can also

modulate the function of a variety of mammalian cell types,

including lymphocytes, macrophages, neutrophils, platelets,

fibroblasts, and respiratory epithelial cells. By acting as an agonist

of PPARb/d and antagonist of PPARg, 3-oxo-C12-HSL induces

proinflammatory responses in host cells by blocking anti-

inflammatory PPARg signaling in murine fibroblasts and human

lung epithelial cells (134, 135). It also stimulates the formation of

cyclooxygenase-2 and prostaglandin E2 production in lung

fibroblasts, hence contributing to inflammation and lung

pathology (136). Conversely, 3-oxo-C12-HSL attenuates LPS-

induced inflammation in RAW264.7 mouse macrophage cell by

activating the unfolded protein response, which suppresses NF-kB
activation (137). 3-oxo-C12-HSL particularly facilitates the

induction of apoptosis in diverse immune cells, including

macrophages (138), neutrophils (138), lymphocytes (139), and

platelets (140). These studies further reinforce the concept that

QS AHLs not only regulate bacterial virulence but also modulates

various cellular functions that are essential for host inflammation

and immune defenses.
5.4 2-aminoacetophenone

The PA VOC, 2-AA, plays a complex role in inflammation and

infection. 2-AA silences acute virulence functions while promoting
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chronic infection phenotypes in PA by modulating the virulence

regulator MvfR and inducing biostability (33). Although not

demonstrated in lungs, 2-AA has been shown to trigger

mitochondrial dysfunction in skeletal muscle, reducing the rate of

ATP synthesis and compromises muscle function (141, 142). A

decline in energy production, coupled with mitochondrial

dysfunction, may create conditions that favor infections and

contribute to host tolerance of pathogens, promoting their

persistence—an important step in establishing chronic infections

(33, 141). Additionally, 2-AA has been found to regulate HDAC1

activity and NF−KB interactions, suppressing pro-inflammatory

cytokine expression in human monocytes THP-1 cells and mouse

macrophage RAW264.7 cell (143–145). Recently, Chakraborty et al.

found that 2−AA inhibits murine macrophage processes such as

autophagy and lipid synthesis (146) and re-wiring cellular

bioenergetics through the PGC−1/ERR axis, reducing bacterial

clearance (146, 147). Moreover, in mouse models of PA infection,

pretreatment with 2-AA yields a higher survival rate compared to

control mice, even with increased bacterial burden (143). Collectively,

these observations suggest that 2-AA has a multifunctional role in PA

infection, regulating immunological and metabolic processes to

promote host tolerance and bacterial persistence, promoting

chronic infection.
5.5 2-undecanone

Another VOC 2-undecanone, which is produced by PA during

infection, has recently been identified as a potent activator of

neutrophils through the Gai-phospholipase C pathway. However,

this activation subsequently leads to a reduction in the bactericidal

capabilities and promotes apoptosis of neutrophils, potentially

aiding PA in escaping immune detection (148).
6 Conclusion

There is a burgeoning interest in microbial VOCs, with a growing

number of research efforts focused on understanding their

production and functional roles. In this review, we summarize the

major species of PA-derived VOCs and discuss the potential and

limitations of VOCs in the non-invasive diagnosis of chronic lung

infections, calling for more intensified translational research to bridge

in vitro and in vivo findings. Advances in analytical techniques are

enabling increasingly broader VOC profiling, steering away from

individual biomarkers and towards more comprehensive metabolic

profiles that better represent PA infections in the clinical niche. PA-

derived secondary metabolites, including VOCs, initiate a

multifaceted array of signaling pathways and molecular events in

airway epithelial cells, leading to epithelial and ciliary injury,

mucostasis, EMT, and disturbed local immune responses. These

mechanisms include the activation of oxidative stress pathways, ER

stress, inflammatory signaling, mucin gene regulation, and more. In

addition, the influence of PA metabolites on lung inflammation
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presents multifaceted interactions between pathogenicity and the

host immune response. The phenazines PYO, 1-hydroxyphenazine,

and PCA represent how PA-metabolites can worsen and moderate

inflammatory processes in the various subpopulations of immune

cells in lungs. PYO, through its twin role in triggering neutrophil

infiltration and simultaneously inactivating their host defense

functions, highlights the complexities of the inflammatory response

to PA infection. Also, 3-oxo-C12-HSL as well as 2-AA are other

metabolites that showcase the delicate connection between the host

immune system and the QS communication of bacteria. This review

also highlights PA-derived metabolites’ participation in chronic lung

inflammation and development of the disease course. Deeper insights

into these complex interactions and disease mechanisms opens

avenues for targeting PA metabolites and virulence factors in

therapeutic and diagnostic strategies, improving outcomes in

PA infections.
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