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Objective: To investigate the effects of hypoxia-related genes in stomach

adenocarcinoma (STAD) and construct an excellent prognostic model.

Methods: RNA expression data and clinical details were retrieved from the TCGA

and GEO database dataset. scRNA-seq analysis was conducted on primary

gastric cancer samples from GSE183904. Cellular hypoxia status was predicted

using the CHPF software. WGCNA and GO-BP/KEGG enrichment of module

genes analyses were performed to identify gene modules associated with

hypoxia and biological pathway enrichment. A prognostic model was

developed employing the LassoCox algorithm. GES-1, AGS, BGC823, and

MGC803 cell lines were obtained for qRT-PCR analysis to identify the

expression of model genes.

Results: Single-cell atlas within STAD delineated that most of neoplastic cells,

fibroblasts, endothelial cells, and myeloid cells were hypoxic. Further analysis of

neoplastic cell subpopulations identified four hypoxic subpopulations (H1-H4)

and four non-hypoxic subpopulations (N1-N4), with H1 subpopulation had the

highest degree of hypoxia. The prognostic model constructed by five H1-specific

transcription factors EHF, EIF1AD, GLA, KEAPI, and MAGED2, was demonstrated

efficacy in predicting overall survival (OS), with significantly worse OS in high-risk

patients. qRT-PCR analysis determined the higher expression level of five H1-

specific transcription factors in gastric cancer cell lines than that in normal gastric

epithelial cell line.

Conclusion: Hypoxia exerts a profound influence on STAD due to the

overexpression of hypoxic cellular subpopulations-specific transcription factors

EHF, EIF1AD, GLA, KEAPI, and MAGED2. The novel prognostic model developed

by these hypoxia-associated genes presents a novel approach to risk

stratification, exhibiting an excellent prognostic value for STAD patients.
KEYWORDS
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1 Introduction

Stomach Adenocarcinoma (STAD) ranks as one of the most

prevalent cancers globally, characterized by significantly high

incidence and fatality rates (1). Gastric cancer exhibits a notably

high incidence in China on a global scale (2). The prognosis for

STAD remains poor, featuring a five-year survival rate of 6% in the

metastatic setting that is intimately tied to the tumor’s aggressive

nature, heterogeneity, and resilience to therapeutic interventions (3).

In recent periods, the influence of hypoxia in tumor

development has attracted widespread focus. There is substantial

proof that the hypoxic condit ions within the tumor

microenvironment are closely related to the advancement and

metastasis of cancer (4). Hypoxia refers to a state where the

oxygen concentration in tissues is below normal levels due to

inadequate oxygen supply. In the tumor microenvironment,

hypoxia arises from an imbalance between tumor cell

proliferation (high oxygen consumption) with angiogenesis

(sluggish oxygen delivery), showing an insufficient oxygen supply

within the tumor (5, 6). Hypoxia can promote the infiltration and

dissemination of neoplastic cells by activating a series of signaling

pathways associated with tumor aggressiveness, such as the HIF-1a
signaling pathway (7). HIF-1a is a key transcriptional factor in the

cellular response to hypoxia, which can induce the production of

VEGF and other angiogenic factors, thereby enhancing tumor

angiogenesis and increasing the tumor’s invasiveness and

metastatic capacity (8). HIF-1a is reported to counteract the

effects of p53 during cancer progression (9). Increased expression

of HIF-1a has been widely demonstrated a correlation with poor

prognosis in gastric cancer patients (4, 10).

The tumor microenvironment constitutes an intricate network

encompassing tumor cells, immune cells, fibroblasts, endothelial cells,

and the surrounding extracellular matrix (11). Hypoxia can affect the

biological behaviors of various cells within it. For example, hypoxic

conditions can stimulate the activation of cancer-associated fibroblasts

(CAFs), which are pivotal in the tumormicroenvironment due to their

ability to secrete cytokines and matrix metalloproteinases (MMPs),

thereby enhancing tumor invasion and metastatic capabilities (12).

Under hypoxic conditions, CAFs orchestrate an augmentation in

tumor malignancy through diverse mechanisms such as extracellular

matrix remodeling, immunological tolerance, metabolic restructuring,

neovascularization, metastatic dissemination, and therapeutic

resistance (13). Hypoxia stands as a prominent flaw within the

tumor microenvironment, significantly impacting the efficacy of

conventional radiotherapy and chemotherapy. It also plays a pivotal

role in fostering malignant progression, encompassing the rapid and

aggressive growth of primary tumors, their recurrence, and the

dissemination of metastatic lesions (14).

Hypoxia also affects the function of immune cells. As well-known,

T cells are key cell types in antitumor immune responses, but their

activity is suppressed under hypoxic conditions (15, 16). Furthermore,

immune cells present within the tumor microenvironment, namely

tumor-infiltrating macrophages (TIMs), exert crucial functions in

accelerating tumor expansion and dissemination to distant sites

(17). They exert immunosuppressive effects by stimulating tumor
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angiogenesis, increasing the invasiveness and vascular invasion

capabilities of tumor cells, also preventing NK cells or T cells from

attacking tumor cells during cancer progression or recovery after

chemotherapy (18). Hypoxia is closely related to resistance to tumor

immunotherapy (19). Hypoxia can reduce the responsiveness of

neoplastic cells to radiation therapy and pharmacological treatment

because it can impair DNA damage repair capacity and disrupt drug

metabolism and transport (20). Furthermore, hypoxia promotes the

formation of Stem-like cells (21), which possess self-renewal capacity

and the ability to differentiate into multiple cell types, serving as

significant contributors to tumor relapse and therapeutic

refractoriness (22).

In the context of STAD, recent studies on hypoxia have

concentrated on the construction of hypoxia-related prognostic

signature in predicting the clinical outcome (23, 24), along with the

effect of hypoxia on the cellular behaviors (25, 26). Research has

demonstrated that the expression levels of genes linked to hypoxia are

intimately tied to the stage, grade, and clinical outcome of gastric

adenocarcinoma (27). Moreover, hypoxia can serve as an

autonomous prognostic indicator for gastric adenocarcinoma, with

patients exhibiting high levels of hypoxia having a poorer prognosis

(28). Given the role of hypoxia in the advancement of gastric

adenocarcinoma, in-depth research into the molecular mechanisms

of hypoxia, the exploration of hypoxia-related biomarkers, and the

development of targeted therapeutic strategies against hypoxia are of

considerable importance in the improvement of clinical outcomes for

those with gastric adenocarcinoma. Therefore, we comprehensively

utilize molecular biology, genomics, and other methodology to deeply

study the influence of hypoxia in STAD and establish a hypoxia-

related gene-based prognostic model, intending to offer innovative

approaches and techniques for diagnosis and prognosis of STAD.
2 Methods

2.1 Collection and handling of
transcriptomic information

In this study, RNA expression profiles and medical records from

gastric cancer patients (n=368) were retrieved from TCGA database

for modeling. To validate the model’s stability and accuracy, the

GSE15460 (n=248) dataset from the GEO database, was employed as

a validation set. All data underwent TPM (Transcripts Per Million)

format conversion followed by log2 transformation to facilitate

subsequent analysis. Above data was normalized by the sva and

limma packages of R software (version 4.1.3).
2.2 Gathering and preparation of
single-cell RNA sequencing data

The single-cell dataset was obtained from GSE183904, with 26

primary gastric cancer samples selected. We conducted the single-cell

data analysis utilizing the Seurat package in the R. Quality control

criteria included mitochondrial content below 20%, hemocyte content
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below 3%, and UMI counts and gene counts ranging from 200-20,000

and 200-6,000, respectively. Normalization of the data, identification

of highly variable genes (amounting to 2000), and transformation of

the data (to mitigate the influence of the cell cycle by regressing out

“S.Score” and “G2M.Score” parameters) were executed utilizing the

NormalizeData, FindVariableFeatures, and ScaleData functions from

the Seurat package, respectively. To rectify batch effects, Harmony was

employed. Subsequent steps involved dimensionality reduction

techniques, encompassing UMAP, TSNE, and the Louvain

clustering algorithm, all derived from the Seurat package.

Differential gene expression analysis between clusters or between

cell types was conducted using the FindAllMarkers function, with

thresholds set at a p-value less than 0.05, a log2 fold change greater

than 0.25, and an expression proportion exceeding 0.1.
2.3 Identifying hypoxic and
non-hypoxic cells

CHPF (available at github.com/yihan1221/CHPF), an open-

source software, was utilized for predicting cellular hypoxic

conditions by integrating single-cell transcriptomic profiles with

hypoxia-induced gene clusters. According to hypoxia status, cells

were divided into hypoxic cells (H-group) and non-hypoxic cells

(N-group cells) and visualized in the UMAP plot.
2.4 Cell annotation analysis

Cell marker genes were determined for neoplastic cells, myeloid

cells, fibroblasts, endothelial cells, MAST cells, B cells, T cells, and

NK cells. Individual cluster analyses were performed on tumor cells

to investigate the diversity within the tumor, with results depicted

through UMAP and t-SNE plots, as well as bar graphs

and heatmaps.
2.5 WGCNA and enrichment evaluation

WGCNA package was used to examine gene modules correlated

with the H-group cells, and performed gene enrichment analysis with

the clusterProfiler package, taking advantage of the GO-BP and KEGG

databases. The enrichment outcomes for both the H-group and N-

group cells were graphically represented using the EnrichmentMap

and AutoAnnotate plugins within the Cytoscape platform.
2.6 Analysis of cell-cell communication

CellChat package was used to assess potential intercellular

communication. The gene expression matrix, once normalized, was

fed into the CellChat framework to establish a CellChat entity.

Preliminary data handling encompassed the application of functions

such as identifyLIHCerExpressedGenes, identifyLIHCer

ExpressedInteraction, and ProjectData. The likelihood of ligand-
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receptor interactions was deciphered through the execution of

computeCommunProb, filterCommunication, and compute

CommunProbPathway utilities, culminating in the assembly of a

network mapping cellular communications utilizing the

aggregateNet function.
2.7 Single-cell CNV analysis

Employing the infercnv package, we estimated the copy number

variations within the tumor cells, benchmarking against endothelial

cells as a comparative baseline. For every tumor cell, a CNV score

was derived to quantify these genetic alterations.
2.8 Single-cell transcription
factor assessment

The SCENIC package was employed to predict transcription

factors in H1 and N1 cell populations, with GRNboost2 software

used for gene co-expression analysis to construct gene regulatory

networks. Important nodes in the network were assessed by degree,

and the top 1% of genes or transcription factors were chosen for in-

depth examination.
2.9 Development of a predictive
outcome model

Transcription factors only derived from the H1 cell population

were analyzed. Initially, a univariate Cox regression analysis was

conducted to filter out genes associated with survival outcomes. The

LassoCox algorithm was employed for modeling to establish a

prognostic model and calculate risk scores. The cutoff value was

established as the median, categorizing patients into high-risk and

low-risk groups accordingly.
2.10 Validation of the predictive
outcome model

This study used the GEPIA2 (Gene Expression Profiling

Interactive Analysis 2) platform to analyze the expression of

genes in the model in STAD. GEPIA2 is an online tool based on

the TCGA and GTEx (Genotype-Tissue Expression) databases,

providing functions for differential gene expression analysis

between cancer and normal tissues, as well as clinical data

correlation analysis. The significance level was set at P < 0.05.
2.11 RNA extraction and quantitative real-
time PCR analysis

Total RNA was extracted from tissues and cell lines using Trizol

reagent (Takara Inc., Dalian, P.R. China). Subsequently, cDNA was
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synthesized using the PrimeScript RT Reagent Kit (Takara Inc.,

Dalian, P.R. China) with 500 ng of total RNA. Quantitative real-

time PCR (qRT-PCR) was performed using SYBR Premix Ex Taq™

(Takara Inc., Dalian, P.R. China) on a CFX96 Thermal Cycler

Dice™ Real-Time PCR System (Bio-Rad Laboratories, Inc., CA).

All samples were run in triplicates, and the mRNA expression levels

of the target genes were normalized to 18S rRNA cDNA expression

levels. The primer sequences are listed in Supplementary Table 1.

GES-1, AGS, BGC823, and MGC803 cell lines were purchased from

the ATCC (American Type Culture Collection) cell bank.
2.12 Statistical analysis

All phases of data manipulation, statistical calculations, and

data visualization were carried out using R software (version 4.1.3).

The relationship between two continuous variables was evaluated

by determining the Pearson correlation coefficient. For comparing

categorical variables, a Chi-square test was used, whereas for

continuous variables, either the Wilcoxon rank-sum test or the t-

test was chosen based on the data’s characteristics. Cox regression

analysis and Kaplan-Meier survival analysis were conducted using

the survival package in R.
3 Results

3.1 Single-cell atlas of STAD

The UMAP plot demonstrated different cell types in STAD

tissues, including neoplastic cells, myeloid cells, fibroblasts,

endothelial cells, MAST cells, B cells, T cells, and NK cells

(Figure 1A). Markers were identified in neoplastic cells (CDH1,

EPCAM, KRT18, KRT19), fibroblasts (SLRR1B, CD90, COL1A1,

COL1A2), endothelial cells (CD31, CLDN2, VEGFR-1, RAMP2), T

cells (CD3D/E/G, IMD7), NK cells (GIG1, NKG5, CD56, CD94), B

cells (CD79A, AGM1, IgG3, IGHA2), myeloid cells (AMYLD5,

SCARA2, CD16, CD68), and mast cells (CD117, ATOPY, DCML).

We conducted the CHPF software to classify cells into two

categories, revealing that most of neoplastic cells, fibroblasts,

endothelial cells, and myeloid cells were hypoxic, whereas most of

mast cells, NK T cells, and B cells were non-hypoxic (Figure 1B).

Further analysis of the ratio of hypoxic cells across disparate

samples and tissue types showed a significant increase in the

proportion of hypoxic cells in stage III STAD tissues; fibroblasts

had the highest proportion of hypoxic cells among all cell

subpopulations, followed by endothelial cells, myeloid cells, and

neoplastic cells (Figure 1C). A Sankey diagram revealed the

associations between cell type, sample type, and hypoxic status,

indicating that hypoxic cells were concentrated mainly in key cell

subpopulations of stage III STAD, such as neoplastic cells,

fibroblasts, endothelial cells, and myeloid cells (Figure 1D). The

heatmap displayed the expression of hypoxia-related marker genes

in neoplastic and immune cells, demonstrating that immune cells

also exhibited a clear hypoxic state (Figure 1E).
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3.2 Analysis of immune cell subpopulations

In this part, we delved into the characteristics of immune cells in

a hypoxic microenvironment. Dimensionality reduction clustering

analysis depicted the distribution of immune cell subpopulations and

distinguished hypoxic from non-hypoxic states, revealing that

hypoxic cells were concentrated mainly in macrophages, myeloid

dendritic cells (mDCs), and monocytes (Figures 2A-C). Sankey

diagram analysis showed that these hypoxic cells were primarily

derived from STAD stages II and III (Figure 2D). Using CellChat

software, we analyzed the communication between immune cells and

neoplastic cells, revealing a potential cell-cell communication

network and presenting communication and receptor-ligand

interaction plots (Figure 2E). As shown in Figure 2F, we found

high communication activity between CD74 and CD44, so that we

visualized the expression levels of CD74 and CD44 in Figures 2G, H.

In addition, we depicted the cell communication pathways in diverse

immune and tumor cells including incoming and outgoing patterns,

showing the importance of MIF signaling pathway (Supplementary

Figure 1A). Correspondingly, the heatmap of the MIF signaling

pathway communication between different cell types was presented

in Supplementary Figure 1B.
3.3 Analysis of neoplastic
cell subpopulations

Cluster analysis of neoplastic cells based on their hypoxic status

identified four hypoxic subpopulations (H1-H4) and four non-

hypoxic subpopulations (N1-N4) (Figures 3A, B). Further hypoxia

scores indicated that the H1 subpopulation had the highest degree

of hypoxia (Figure 3C). Heatmap analysis showed the marker genes

of each cell cluster, with genes such as TM4SF1, EFNA1, CLDN3,

and CEACAM6 significantly upregulated in hypoxic cell

subpopulations (Figure 3D). GO-BP enrichment analysis and the

application of Cytoscape software revealed the functional

enrichment of hypoxic subpopulation marker genes, involving

biological processes such as mitotic nuclear division, telomerase

telomere localization, insulin secretion glucose, and ribonucleoside

triphosphate electron (Figure 3E). WGCNA analysis identified key

gene modules associated with each subpopulation, such as the high

correlations between the H2 subpopulation and the red module and

between the H3 subpopulation and the yellow module (Figure 3F).

WGCNA analysis revealed brown module was positively correlated

to hypoxic subpopulations and turquoise module was negatively

correlated to hypoxic subpopulations (Figure 3F). GO-BP

enrichment analysis of these gene modules revealed their

involvement in biological processes of cell cycle, progesterone-

mediated oocyte maturation, and oocyte meiosis, while KEGG

results suggested their involvement in PI3K-Akt signaling

pathway, focal adhesion, human papillomavirus infection,

proteoglycans in cancer, MAPK signaling pathway, and regulation

of actin cytoskeleton (Figure 3G). CytoTRACE analysis showed that

the H4 subpopulation appeared the peak differentiation level

compared to non-hypoxic subpopulations (N1-N4) (Figure 3H).
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Pseudotime analysis using monocle3 software revealed that

neoplastic cells with high hypoxia scores were located in the

middle of the pseudotime trajectory (Figure 3I). Supplementary

Figure 2 provides UMAP plots of cell subpopulation distribution

and hypoxia score enrichment by Pseudotime analysis, along with

the distribution of hypoxia score in different H1-H4 subclusters.
3.4 Analysis of tumor-related pathways,
CNV, and transcription factors

To investigate the link between hypoxia and the aggressiveness

of STAD, we sourced signature genes pertinent to hypoxia,

invasion, apoptosis, angiogenesis, and EMT from the CancerSEA

database and computed activity scores for each cellular

subpopulation employing GSVA analysis (Supplementary

Figure 3). Correlation analysis demonstrated the positive
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associations of hypoxia score with Angiogenesis, Apoptosis, EMT,

and Invasion scores (Figure 4A). In Figure 4B, it revealed that the

Angiogenesis, Apoptosis, EMT, and Invasion scores of hypoxic

subpopulation exhibited significantly higher than non-hypoxic

subpopulation. CNV analysis unveiled CNV scores among diverse

tumor subpopulations (Supplementary Figure 4), and the CNV

status of cancer cells was evaluated using endothelial cells as a

benchmark (Figure 4C).

Transcription factor analysis further identified in the H1 and

N1 subpopulations and extracted the top 1% of associated nodes

(Figure 4D). We identified 106 and 85 key transcription factors in

the H1 and N1 subpopulations, respectively. The overlapped

transcription factors of H1 and N1 subpopulations were zero,

indicating the specificity of identification in Figure 4E.

Correlation analysis between 106 H1-specific transcription factors

and Hallmark pathways was conducted, presenting a heatmap of

correlations with |Cor|>0.2 and P<0.05 (Figure 4F).
FIGURE 1

Single-cell atlas results of STAD. (A) UMAP plot visualizing annotated cell type from single-cell data. (B) UMAP plot identifying hypoxia status of
different cell types using CHPF software. (C) Bar chart representing the proportion of hypoxia status across samples, tissue types, and cell types. (D)
Sankey diagram correlating cell type, sample type, and hypoxia status. (E) Heatmap depicting marker expression in tumor and immune cells based
on hypoxia status.
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3.5 Construction of the prognostic model
by LASSO

The LassoCox algorithm was employed to refine the

construction of the prognostic model (Supplementary Figures 5A,

B), and patients were stratified into high- and low-risk categories

based on the median risk score. Ultimately, five transcription factors

—EHF, EIF1AD, GLA, KEAPI, and MAGED2—were identified for

constructing the prognostic model (Supplementary Figures 5C, D;

Figure 5A). The Kaplan-Meier survival curve revealed a

significantly reduced overall survival (OS) rate in the high-risk

group compared to the low-risk group within the TCGA dataset

(P=0.0079) (Figure 5B). Multivariate Cox analysis further
Frontiers in Immunology 06
confirmed that this model served as an independent predictor of

prognosis for STAD patients, with an odds ratio (OR) of 4.50 (95%

CI: 2.08-9.70), P<0.001 (Figure 5C). The prognostic value of the

model was validated in GSE15460, demonstrating a significantly

lower survival rate in the high-risk group versus the low-risk group

of STAD patients (P=0.00092) (Figure 5D).
3.6 Drug analysis

Based on information from the GDSCv2 database, we calculated

the correlation betweenH1-specific transcription factors and drugs with

|Cor|>0.3 and P<0.05, and presented a bar chart (Figure 6A). These
FIGURE 2

Immune cell subpopulation analysis results. (A-C) Clustering, cell type annotation, and hypoxia status UMAP plots of immune cell subpopulations.
(D) Sankey diagram correlating cell type, sample type, and hypoxia status. (E, F) Analysis results of communication between immune cells and tumor cells.
(G) UMAP plot indicating expression profile of CD74 based on single-cell data. (H) UMAP plot indicating expression profile of CD44 based on single-cell data.
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drugs target multiple crucial tumor development and progression

processes, including PI3K/mTOR signaling, DNA replication, and

apoptosis regulation (Figure 6B). The transcription factor EHF was

found to be significantly associated with multiple drugs targeting

different biological pathways, including Topotecan and Teniposide

acting on DNA replication, GNE317 acting on PI3K/mTOR

signaling, and VX-11e acting on ERK/MAPK signaling (Figure 6C).

Using online analysis from the CMap database (QUERY [clue.io]), we
Frontiers in Immunology 07
submitted H1-specific transcription factors as upregulated genes and

N1-specific transcription factors as downregulated genes for analysis.

The resulting volcano plot displayed compound scores across various

cell lines (Figure 6D). Further analysis of the top 5 compounds ranked

by |Score| in each cell line yielded a total of 44 compounds (Figure 6E).

Finally, statistical analysis of the pathways targeted by these compounds

was conducted (Figure 6F), identifying potential candidates for future

hypoxia-targeted therapies.
FIGURE 3

Tumor cell subpopulation analysis results. (A, B) UMAP plots of PCA analysis of hypoxic (H1-H4) and non-hypoxic (N1-N4) cell subclusters.
(C) Ridge plot of hypoxia scores among hypoxic (H1-H4) and non-hypoxic (N1-N4) cell populations. (D) Heatmap of marker expression in each cell
population. (E) GO-BP enrichment analysis results for each cell population. (F) Module-trait relationships between gene modules and cell
populations through WGCNA analysis. (G) KEGG enrichment analysis results for gene modules brown and turquoise. (H) CytoTRACE analysis results
for each cell population. (I) Pseudotime analysis results of cell populations (H1-H4, N1-N4) derived from Monocle3.
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3.7 In-vitro validation of expression of
modeling genes

The expression levels of MAGED2, KEAP1, GLA, EIF1AD, and

EHF genes were analyzed in the TCGA-STAD dataset using the

GEPIA2 platform. Except for MAGED2, the expression levels of the

remaining four genes were significantly higher in tumor tissues
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compared to normal tissues (P < 0.05) (Figures 7A-E). Furthermore,

we compared the expression levels of these genes in commonly used

gastric cancer cell lines AGS, BGC823, MGC803, and the normal

control group GES-1. The results showed that the expression of all

five genes was significantly higher in gastric cancer cell lines

compared to normal tissues and the control group (P < 0.001)

(Figures 7F-J). These findings further support the potential roles of
FIGURE 4

Analysis results of tumor-related pathways, CNV, and transcription factors. (A) Scatter plot showing correlations between hypoxia score and four
other signature scores (Angiogenesis, Apoptosis, EMT, and Invasion). (B) Box plot illustrating differences in four signature scores (Angiogenesis,
Apoptosis, EMT, and Invasion) across cell populations. (C) CNV prediction results using InferCNV software with endothelial cells as normal reference.
(D) Network diagram of top 1% transcription factors/genes for H1 and N1. (E) Venn diagram of top 1% transcription factors/genes for H1 and N1. (F)
Heatmap of correlation between h1-specific transcription factors/genes in and hallmark pathways (|Cor|>0.2 and P<0.05).
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MAGED2, KEAP1, GLA, EIF1AD, and EHF genes in the

occurrence and progression of STAD.
4 Discussion

This research explores the prognostic signature of MAGED2,

KEAP1, GLA, EIF1AD, and EHF genes associated with hypoxia in

gastric cancer through analyzing transcriptome information and

scRNA-seq data, and indicates the clinical relevance of hypoxia

during gastric cancer progression.

Our findings reveal that hypoxia run a pivotal role in gastric

cancer. Cells within gastric cancer tissues can be categorized into

hypoxic and non-hypoxic groups, with neoplastic cells, fibroblasts,

endothelial cells, and myeloid cells predominantly being hypoxic.
Frontiers in Immunology 09
This finding is consistent with prior research findings, indicating

that the prevalence of hypoxic cells within the tumor

microenvironment is intimately tied to the aggressiveness of the

tumor and its clinical outcome (29, 30). Furthermore, we found a

significant increment in the proportion of hypoxic cells in stage III

gastric cancer tissues, potentially linked to rapid tumor proliferation

and inadequate angiogenesis (31). Hypoxia influences both the

biological behavior of neoplastic cells and the other cell types

present in the tumor microenvironment (32, 33). Hypoxia can

promote the activation of cancer-associated fibroblasts (CAFs) (34),

which facilitate tumor invasion and metastasis by secreting

cytokines and matrix metalloproteinases (MMPs) (35).

Furthermore, hypoxia alters the functioning of immune cells by

suppressing T-cell activity, consequently impairing the immune

response against the tumor (36, 37). These discoveries underscore
FIGURE 5

Prognostic model construction based on H1-specific transcription factors/genes (A) Heatmap of expression of modeling genes EHF, E1F1AD, GLA,
KEAT1, and MAGED2 (including clinical indicators of age, gender, stage, pM, pN, and pT). (B) Survival analysis results of risk groups from TCGA
Dataset. (C) Forest plot of multivariate cox analysis including risk score and clinical indicators age, gender, stage, pM, pN, and pT. (D) Survival analysis
results of risk groups from GSE15460 Dataset.
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FIGURE 6

Drug analysis results. (A) Bar chart of significant correlation between H1-specific transcription factors and drugs. (B) Bar chart of target pathways for
drugs. (C) Network diagram of model gene EHF, drugs, and target pathways. (D) Volcano plot from CMap online analysis showing compound scores
across cell lines. (E) Bubble plot of Top 5 compounds (|score|) selected from each cell line. (F) Bubble plot of target pathways corresponding to top
5 compounds (|score|) selected from each cell line.
FIGURE 7

Validation of gene expression in the prognostic model. (A-E) Expression analysis of MAGED2, KEAP1, GLA, EIF1AD, and EHF between tumor and
normal tissues in STAD using GEPIA2. (F-J) Expression analysis of MAGED2, KEAP1, GLA, EIF1AD, and EHF between AGS, BGC823, MGC803 cell lines
and the normal control group (GSE-1).
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the intricate role of hypoxia within the tumor microenvironment

and its diverse effects on the progression of gastric cancer.

Maintaining a stable oxygen environment is important to provide

the oxygen needed for oxidative phosphorylation and to defend

cells against oxidative stress (38). Hypoxia induces a metabolic shift

in tumor cells, transitioning from oxidative phosphorylation to

anaerobic glycolysis (39), which is characterized by reduced energy

efficiency and heightened glucose consumption. In hypoxic

environments, cancer cells exhibit weaker antioxidant defenses,

rendering them more susceptible to the direct damaging effects of

ROS (40). Additionally, ROS can bolster antitumor immune

responses by promoting mutations and the generation of

immunogenic neoantigens (41). Significant increases in ROS

levels have been detected in gastric cancer patients, with these

high levels causing oxidative stress that may damage the gastric

mucosa and contribute to cancer progression (42). Shedding light

on the hypoxia-related development of gastric cancer and finding

effective biomarkers is vital for improving the diagnosis, prevention,

and management of gastric cancer.

Through cluster analysis of neoplastic cells based on their hypoxic

status, we identified four hypoxic and four non-hypoxic

subpopulations. Further hypoxia scoring revealed that the H1

subpopulation had the highest degree of hypoxia. The expression

pattern of hypoxia-related genes in this subpopulation is closely

related to tumor aggressiveness and prognosis. Additionally,

WGCNA analysis and GO-BP enrichment analysis unveiled the

functional enrichment of marker genes in hypoxic subpopulations,

involving multiple biological processes and signaling pathways such as

cell cycle, angiogenesis, PI3K-Akt and MAPK signaling pathways.

The connection between hypoxia and tumor resistance to

treatment has been a key area of investigation. Our research

suggests that hypoxia may diminish the responsiveness of tumor

cells to radiotherapy and chemotherapy, potentially due to a reduced

capacity for DNA damage repair and impairments in drug

metabolism and transport induced by hypoxic conditions. In

response to low oxygen levels, tumor cells adapt by activating HIF-1

and its downstream target genes, such as BNip3 and BNip3L (43).

Under hypoxic conditions, the antioxidant defenses of tumor cells

weaken, making themmore vulnerable to the direct detrimental effects

of ROS. Oxidative stress can trigger lipid peroxidation, endoplasmic

reticulum stress, and dysfunction of Tregs, all of which contribute to

immune dysregulation (44). Furthermore, hypoxia upregulates PD-L1

expression via HIF-1a, leading to the suppression of T-cell activation

(45, 46). Blocking HIF-1a may aid in modulating the function and

differentiation of myeloid-derived suppressor cells (MDSCs), thereby

potentiating the antitumor immune response (46).

The biological traits of tumor cells can be influenced by gastric

cancer cells in their microenvironment, which affect the expression of

certain transcription factors and genes linked to tumors to adapt to

hypoxia (47). Hypoxia-associated transcription factors EHF, EIF1AD,

GLA, KEAPI, andMAGED2 were screened and applied for developing

an excellent prognostic model for STAD by this study. Its prognostic
Frontiers in Immunology 11
performance was demonstrated by the K-M curve, indicating the worse

OS in high-risk patients than in low-risk patients. Differential

expression profile of genes associated with hypoxia can function as a

standalone indicator of prognosis in gastric cancer, offering novel

molecular targets for personalized therapeutic strategies in gastric

cancer. Among the screened transcription factors, EHF can enhance

or inhibit the expression of subsequent gene targets by forming

transcriptional complexes alone or with other effector molecules,

participating in processes such as cell proliferation, differentiation,

apoptosis, and senescence (48, 49). In vitro experiments have

confirmed that knocking down EHF in gastric cancer cells

significantly reduces their clonal formation ability, invasion, and

migration capacity, leads to cell cycle arrest, decreased proliferation,

and increased apoptosis (50). Mechanistically, EHF binds to the HER2

promoter region to promote its transcription and activates the

downstream pathways of MAPK/Erk and PI3K/AKT to promotes

gastric tumorigenesis (51). Previous study indicated overactivation of

the RAS/MAPK and PI3K/AKT/mTOR pathways results in the

upregulation of HIF-1a (52), which is involved in the gastric cancer

cell proliferation and invasion under hypoxic conditions. These

findings indicated the potential coeffect of transcription factors EHF

and HIF-1a on the progression of STAD, which needs more evidence

to verify in the future.

The novelty of our research is as follows. Our study innovatively

classifies the tumor cells into hypoxic cells (H1-H4) and non-hypoxic

cells (N1-N4) based on single-cell sequencing data and determines the

H1 subpopulation with the highest degree of hypoxia. H1-specific

transcription factors were utilized to build a novel prognostic signature

through LASSO algorithm for STAD. We validated in vitro that

hypoxia-related model genes were highly expressed in tumor cells

compared to normal cells to support the findings.

Despite providing in-depth insights into the character of

hypoxia in STAD, this study has some limitations. Firstly, it

primarily relies on bioinformatics analysis and requires further

experimental validation to confirm the functions and clinical

relevance of hypoxia-related genes. Secondly, the scope of this

study is constrained by the sample size, and the accuracy and

universality of the prognostic model need to be validated in larger

samples. Finally, the dynamic changes and spatiotemporal

heterogeneity of hypoxia in gastric cancer development require

further in-vivo investigation.
5 Conclusion

A prognostic model was based on the hypoxia-associated

transcription factors EHF, EIF1AD, GLA, KEAPI, and MAGED2,

demonstrating remarkable efficacy in predicting the clinical

outcomes of patients with STAD. These discoveries not only

elevate our comprehension of the hypoxic influence in the

progression of STAD but also illuminate novel molecular markers

and targeted therapeutic avenues tailored for individual strategies.
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Kruskal-Wallis Analysis Results of Hypoxia Score in Different H1-

H4 Subclusters.
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Heatmap of GSVA Scores for Hallmark Pathways Across Hypoxic and Non-

Hypoxic Tumor Subpopulations.

SUPPLEMENTARY FIGURE 4

Box Plot of CNV Scores for Hypoxic and Non-Hypoxic Tumor Subpopulations.

SUPPLEMENTARY FIGURE 5

(A, B) Modeling Results Using Lasso regression analysis. (C) Forest Plot of

Univariate Cox Analysis for five Modeling Genes. (D) Bar Chart of Coefficients
(Coef) for the Prognostic Model. * represents p < 0.05, ** represents p < 0.01,

*** represents p < 0.001, and **** represents p < 0.0001.
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