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Tian-Yu Jia1,2, Xiao-Hong Sun1,3, Xiao-Xia He1,2, Li-li Zhang1,2

and Ya-Ming Xi1,3*

1The First School of Clinical Medicine, Lanzhou University, Lanzhou, China, 2Clinical Medical Research
Center for Reproductive Diseases of Gansu Province, Lanzhou, China, 3Department of Hematology,
The First Hospital of Lanzhou University, Lanzhou, China, 4Department of General Surgery, Renmin
Hospital of Wuhan University, Wuhan, China
Objective: This study aimed to investigate the role of poly(A) binding protein

nuclear 1 (PABPN1) as a potential pan-cancer biomarker for prognosis

and immunotherapy.

Methods: The original datasets were acquired from TCGA and GEO databases.

PABPN1 expression analysis was conducted utilizing the Oncomine, TIMER,

GEPIA, and BioGPS databases. Prognostic implications of PABPN1 were

assessed through GEPIA, Kaplan-Meier plotter, and the PrognoScan database.

Correlations between PABPN1 expression and immune checkpoints (ICP), tumor

mutational burden (TMB), microsatellite instability (MSI), and neoantigens in

human cancers were examined using the SangerBox database. Additionally, the

association between PABPN1 and marker genes of tumor-infiltrated immune

cells in urogenital cancers was confirmed. Differential expression of PABPN1 in

urogenital cancers with distinct clinical characteristics was assessed using the

UALCAN database. Finally, experiments of T24, 5637, HLF and MCF-7 cells were

performed to verify the above results.

Results: The expression of PABPN1 tended to be higher in human cancers

compared to paired normal tissues. Its expression levels showed strong

associations with TMB, MSI, and neoantigens. Additionally, significant

correlations existed between PABPN1 expression and tumor immune-

infiltrated cells (TILs) in many human cancers, with marker genes of TILs

showing significant relationships with PABPN1 expression, particularly in

urogenital cancers. The coexpression networks of PABPN1 were predominantly

involved in the regulation of immune response, antigen processing, and

presentation. After down expression of PABPN1, mRNA expression levels of

MRPS15 and GPx (Glutathione peroxidase) decreased significantly in T24, 5637

HLF and MCF-7 cells.
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Conclusion: PABPN1 was expected to be an important role element in cancer

research, serving as a potential prognostic and immunological pan-

cancer biomarker.
KEYWORDS
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Introduction

The maturation process of eukaryotic precursor mRNAs (pre-

mRNAs) involved cleavage and polyadenylation (C/P) at their 3’

end (1). In eukaryotes, a majority of genes had multiple

polyadenylation signals (PASs), giving rise to alternative cleavage

and polyadenylation (APA). The selection of APA resulted in the

generation of diverse transcript isoforms characterized by variable

3’ untranslated region (3’UTR) lengths and sequence compositions.

The 3’UTR played a crucial role in influencing mRNA stability,

translation efficiency, transportation, and cellular localization. APA

standed out as a significant post-transcriptional regulatory

mechanism in eukaryotes. Several trans-acting factors involved in

APA regulation have been identified to date, including symplekin,

RNA polymerase II (RNAP II), poly(A) polymerase (PAP), and

nuclear poly(A)-binding protein 1 (PABPN1). Their intricate

interactions contributed to the fine-tuning of APA, thereby

exerting control over the diversity of transcript isoforms and the

subsequent functional consequences on gene expression in

eukaryotic cells (2, 3).

The poly(A) tails served a crucial role in the post-transcriptional

regulation of gene expression and were consistently associated with

PABPNs. Initially, PAP gradually synthesized 10 to 15 adenylate

residues at the 3’ end of the precursor mRNA. Subsequently,

PABPN1 bound to the short poly(A) sequence, providing an anchor

for PAP, which then rapidly synthesized additional adenylate residues.

This process resulted in the formation of a poly(A) tail typically

consisting of about 200 adenosine residues (4). Additionally, PABPN1

played a role in promoting the utilization of distal PAS. In vitro studies

indicated that PABPN1 inhibited cleavage at proximal mRNA PAS.

The removal or inhibition of PABPN1 leaded to a global shortening of

3’UTRs (5). Moreover, PABPN1 modulated mRNA export transport

through interacting with Aly/REF export factor (ALYREF) and

binding to the 3′UTR of mRNA (6, 7).

Earlier investigations have demonstrated a notable global

shortening of 3’UTRs in cancer cell lines in comparison to tumor

samples. This observation suggested that PABPN1 might be one of

the key regulators influencing APA profiles across many cancer

types (8). For example, Zhou et al. (9) identified a correlation

between PABPN1 expression and overall survival (OS) in patients

with gastric cancer. In non-small cell lung cancer, the dysregulation

of PABPN1 may contribute to tumor aggressiveness by potentially

releasing cancer cells from microRNA-mediated gene regulation
02
(10). In prostate cancer, a novel risk model comprising five genes,

namely poly(rC) binding protein 1 (PCBP1), PABPN1, protein

tyrosine phosphatase receptor type F (PTPRF), differentiation

antagonizing non-protein-coding RNA (DANCR), and MYC, was

established for predicting progression-free survival (PFS). This

model was developed using a publicly available TCGA dataset,

achieving an area under the curve (AUC) ranging from 0.64 to 0.78

(11). In glioblastoma cells, the knockdown of Bcl2l2-Pabpn1 by

targeting its fusion junction resulted in reduced expression, leading

to the suppression of cell proliferation, migration, and invasion in

vitro (12). In cervical cancer, the overexpression of PABPN1

reversed the inhibited cancer development and radio-resistance

induced by the miR-1323 inhibitor (13). The knockout of Pabpn1

resulted in a swift and substantial depletion of hematopoietic stem

and progenitor cells (HSPCs) as well as myeloid cells, ultimately

causing severe blood diseases (14). Moreover, in a study by

Zhao et al. (15), circ-PABPN1 was identified as a potential

novel molecular mechanism through which propofol

represses colorectal cancer development. These findings

collectively suggested that PABPN1 may be expected to be a

valuable pancancer biomarker with potential prognostic and

therapeutic implications.

However, there has been limited systematic analysis of the role

of PABPN1 in prognosis and immunology across many human

cancers. This study aimed to comprehensively investigate the

involvement of PABPN1 in both prognosis and immunology in

human cancers. We explored the potential associations between

PABPN1 expression and immune subtypes, molecular subtypes in

different cancer types, promising immune biomarkers, and tumor-

infiltrating cells (TILs) in the tumor microenvironment (TME).

Furthermore, we extended our analysis to urogenital cancers to

validate the findings in human cancers. The primary objective of

this study was to uncover the potential of PABPN1 in anticancer

immunotherapy for human cancers, thereby providing insights into

a novel antitumor strategy.
Methods

Data and software availability

Data were sourced from The Cancer Genome Atlas (TCGA)

(https://cancergenome.nih.gov/) and Gene Expression Omnibus
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(GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases. Specific

details about human cancers and individual sample sizes can be

found in Supplementary Table S1. Descriptions of the online tools

employed were provided below.
Analysis of PABPN1 expression in human
cancers

PABPN1 expression in human cancers and paired normal tissue

was compared using the TIMER 2.0 database (http://timer.comp-

genomics.org/) and the GEPIA database (http://gepia2.cancer-

pku.cn/#analysis) (16–18). Expression profiles of PABPN1 in

various cancer and paired normal cell lines were analyzed using

the BioGPS database (http://biogps.org) (19).
Analysis of the prognostic value of PABPN1
in human cancers

The prognostic value of PABPN1 expression in human cancers

was explored using the GEPIA database (http://gepia2.cancer-

pku.cn/#analysis) and the Kaplan-Meier Plotter database (http://

kmplot.com/analysis/) (18, 20). The GEPIA database, an online

platform that utilizes tumor and normal tissue data from TCGA, was

employed to examine the correlation between PABPN1 expression and

OS and disease-free survival (DFS) across 33 cancer types. Group

classification was based on the median PABPN1 expression as a cutoff

in GEPIA database. Additionally, the Kaplan-Meier Plotter database,

which automatically determined optimal cutoff values, was used to

identify associations between PABPN1 expression and OS and relapse-

free survival (RFS) in 21 cancer types. The analysis included the

calculation of hazard ratios (HRs) with corresponding 95%

confidence intervals (CIs) and log-rank P-values.
Analysis of PABPN1 expression in immune
and molecular subtypes of human cancers

The TISIDB database (http://cis.hku.hk/TISIDB/index.php)

served as an online integrated repository portal that aggregates

extensive human cancer datasets derived from the TCGA database

(21). Through the TISIDB database, we investigated the correlations

between PABPN1 expression and immune or molecular subtypes

across various cancer types. Statistically significant differences were

defined as those with a P-value < 0.05.
Microsatellite instability, neoantigen, and
ESTIMATE of the TME in human cancers

The association between PABPN1 expression and aspects of the

TME was investigated using the Sangerbox website (http://
Frontiers in Immunology 03
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bioinformatics.com.cn). Sangerbox online platform utilized TCGA

data for subsequent analysis (22). Tumor mutational burden

(TMB), MSI, and neoantigens were established biomarkers of the

TME (23, 24). The ESTIMATE algorithm (Estimation of Stromal

and Immune cells in Malignant Tumor tissues using Expression

data), designed for predicting tumor purity in the TME, included

stromal score (indicating the presence of stroma in tumor tissue),

immune score (reflecting the infiltration of immune cells in tumor

tissue), and estimate score (inferred tumor purity) (25). The

SangerBox website was utilized to explore the correlations

between PABPN1 expression and these TME biomarkers.

Statistical significance was defined at a P-value < 0.05.
The correlation between PABPN1
expression and immune infiltration cells
and their marker genes

Initially, we investigated the relationship between PABPN1

expression and six distinct immune cell types (B cells, CD4+ T

cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells)

within the TME across 31 human cancers using the SangerBox

website. Subsequently, we extended our analysis to explore the

correlation between PABPN1 expression and a broader spectrum of

ten immune cell types within the TME. This extended examination

was conducted specifically in six urogenital cancers. The ten

immune cell types encompassed B cells lineage, CD8+ T cells,

cytotoxic lymphocytes, endothelial cells, fibroblasts, monocytic

cells, myeloid dendritic cells, neutrophils, natural killer cells, and

T cells. To validate the findings, we conducted a reanalysis of the

correlation between PABPN1 expression and TILs using both the

TIMER and GEPIA databases. The TIMER database, comprising a

comprehensive dataset of 10,897 samples across 32 cancer types

from TCGA, was specifically designed to assess the extent of tumor-

associated immune cell infiltration within TME (26). Following

that, we proceeded to confirm the correlation between PABPN1

expression and 24 TILs in six urogenital cancers through the GEPIA

database. Subsequently, the TIMER database was utilized to

investigate the relationship between PABPN1 expression and

marker genes associated with key immune cell types (27–29).

Statistical significance was attributed to differences with a P-value

< 0.05.
PABPN1 genomic alterations in six
urogenital cancers

The cBio Cancer Genomics Portal (c-BioPortal) (http://

cbioportal.org) aggregated a multidimensional cancer genomics

dataset (30). In our study, we utilized the c-BioPortal database

to investigate genomic alterations of PABPN1 in six urogenital cancers.
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PABPN1 expression in different clinical
subgroups of six urogenital cancers

The UALCAN database (http://ualcan.path.uab.edu) compiled

RNA-seq and clinical data from 31 cancer types obtained from

TCGA (31), providing a valuable platform for the analysis of gene

expression in both tumor and normal tissues. In our study, we

utilized this database to investigate the relationship between

individual gene expression and clinicopathological features across

various human cancers.
Analysis of PABPN1 coexpression networks

The LinkedOmics database (http://www.linkedomics.org/

login.php) served as a visual platform and was utilized to explore

the gene expression profile in this study (32). In our analysis,

LinkedOmics was employed to identify coexpression genes of

PABPN1 using Pearson’s correlation coefficient. The results were

visually presented through heat maps and volcano plots.

Additionally, we delved into the Gene Ontology biological process

(GO_BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways of PABPN1 and its coexpression genes through gene set

enrichment analysis (GSEA).
Cell culture and MTT assay

T24, 5637, HLF and MCF-7 cells were maintained in DMEM

medium containing 10% FBS at 37°C, and 5% CO2. Transient

transfection was performed with Lipofectamine 2000 reagent

(Invitrogen) according to the manufacturer’s instructions. After

incubated with MTT reagent (50 mg/ml) for 4 h, treatment medium

was removed and the observance was measured at 570 nm using

microplate reader from Versa Max Molecular Device (Sunnyvale,

CA). This study was approved by the Ethics Committee of the First

Hospital of Lanzhou University (LDYYLL2022–130).
RNA isolation and RT-PCR

Bladder cancer tissues and para-carcinoma tissues were collected.

Total RNA was isolated from tissues and cells using Trizol reagent

(Invitrogen) as suggested by the manufacturer. cDNA was synthesized

using Quantscript RT Kit (Tiangen). RT-PCR was performed with

Power-Up SYBR Green Master Mix (Thermo Fisher). The CT

(Threshold cycle) values were analyzed by Thermo Scientific Piko

Real software (Thermo Fisher). The siRNA and PCR primers used in

the experiments were shown in Supplementary Table S2.
WB assay

Total protein was extracted from cells or tissues using RIPA lysis

buffer (CWBIO, Jiangsu, China).WB assays were performed according
Frontiers in Immunology 04
to the guidelines provided by Abcam (https://www.abcam.cn/

protocols/general-western-blot-protocol-2) utilizing a Bio-Rad gel

analysis system (Bio-Rad, Hercules, CA, USA).WB bands were

quantified using the ImageJ software(NIH, Bethesda, MD, USA).
Colony formation assay

The cells were grown in 6-well dishes with a cell density of 1000

cells per well for a period of 14 days. After the 14-day duration, the

cells were immobilized with 4% paraformaldehyde and subjected to

crystal violet staining (Beyotime, Shanghai, China). The ability of

the cell colony to form was subsequently evaluated based on the

presence of colonies.
Statistical analysis

GraphPad Prism 8.3.0 was utilized for the purpose of

conducting the data analysis. The values are presented as the

mean ± standard deviation. The differences between two groups

were assessed using unpaired or paired Student’s t-test. The

examination of the relationships between two variables utilized

Pearson’s correlation coefficient. The statistical significance was

established by considering *P < 0.05, **P < 0.01, ***P < 0.001,

****P < 0.0001, or ns (indicating no significance).
Results

Significant differential expression of
PABPN1 was observed between tumors
and normal tissues in many human cancers

The TIMER database analysis revealed significantly higher

expression levels of PABPN1 in multiple human cancers, including

BLCA (bladder urothelial carcinoma), BRCA (breast invasive

carcinoma), CESC (cervical cancer), CHOL(cholangiocarcinoma),

COAD (colon adenocarcinoma), ESCA(esophageal carcinoma),

HNSC (head and neck cancer), KIRC (kidney clear cell carcinoma),

KIRP (kidney renal papillary carcinoma), LIHC (liver hepatocellular

carcinoma), LUAD (lung adenocarcinoma), LUSC (lung squamous

cell carcinoma), PRAD (prostate adenocarcinoma), READ (rectal

cancer), STAD (stomach adenocarcinoma), THCA (thyroid cancer)

and UCEC (uterine corpus endometrial carcinoma), compared to

adjacent normal tissues (Figure 1A). And the results from the GEPIA

database analysis, focusing on cancers without paired normal tissues

in the TIMER database, demonstrated significantly elevated PABPN1

mRNA expression in CHOL (cholangiocellular carcinoma), DLBC

(large B-cell lymphoma), PAAD (pancreatic adenocarcinoma), and

THYM (thymoma) except TGCT (testicular cancer) (Figure 1B). The

BioGPS database analysis was conducted to examine the expression of

PABPN1 across various cancer cell lines and normal tissues. The

findings revealed a consistently high expression level of PABPN1 in

almost all cancer cell lines. Figure 1D illustrated the ten cancer cell
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lines with the highest PABPN1 expression level. Contrastingly, in

normal cells, the PABPN1 expression level in immune cells was the

highest (Figure 1C). Additional detailed information regarding

PABPN1 expression can be found in Supplementary Table S1.

These results collectively suggested that PABPN1 was overexpressed

in cancer tissues and may play a role in immune regulation processes.
Frontiers in Immunology 05
PABPN1 was a prognostic pan-cancer
biomarker

The prognostic significance of PABPN1 expression in human

cancers was assessed through several databases. In GEPIA, higher

PABPN1 expression correlated with poorer OS and DFS in ACC
*** *** * *** *** *** *** ** *** *** *** *** * *** ** ******
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FIGURE 1

PABPN1 expression levels in human cancers. (A) Analysis of PABPN1 expression levels in cancer types from the TCGA database using the TIMER tool.
(B) Comparison of PABPN1 expression in several cancers and their paired normal tissues using the GEPIA database. (C) Assessment of PABPN1
expression in different cancer cell lines utilizing the BioGPS database. (D) Examination of PABPN1 expression in normal tissues based on the BioGPS
database. *P < 0.05, **P < 0.01, ***P < 0.001, the same below.
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(n = 38, OS: HR = 6.3, P = 9.6×10-5; n = 38, DFS: HR = 4.3, P =

0.00011; Figures 2A, B) and LIHC (n = 182, OS: HR = 1.7, P =

0.0025; n = 182, DFS: HR = 1.7, P = 0.019; Figures 2C, D).

Furthermore, elevated PABPN1 expression was associated with

poorer OS and DFS in UVM (uvea lmelanoma) (n=20, OS:

HR=5.4, P = 0.031, DFS: HR = 4.7, P = 0.051; Figures 2E, F) and

KIRC (n =258, HR =1.5, P =0.011; Figure 2G). Additionally, patients

with higher PABPN1 expression exhibited poor DFS in CESC (n =

73, HR = 2.7, P = 0.035; Figure 2H), LUSC (n = 97, HR = 2.2, P =
Frontiers in Immunology 06
0.018; Figure 2J) and PAAD (n = 45, HR = 0.51, P = 0.029;

Figure 2L). In the Kaplan-Meier plotter database, increased

PABPN1 expression was linked to poorer RFS in Multiple

Myeloma (n = 538, HR = 1.70, P = 0.012; Figure 2N), STAD (n =

215, HR = 2.42, P = 0.043; Figure 2O) and TGCT (n = 105, HR =

2.72, P = 0.0096; Figure 2P). Additional details regarding the

relationship between PABPN1 and RFS analyzed by the Kaplan-

Meier plotter database were provided in Supplementary Figure S1.

Moreover, PrognoScan analysis revealed a correlation between
FIGURE 2

Kaplan-Meier survival curve of human cancers with high and low PABPN1 expression analyzed by the GEPIA database (A–M) and the Kaplan-Meier
plotter database (N–P). (A–F) High PABPN1 expression was associated with worse OS and DFS in ACC, LIHC, and UVM cohorts, respectively.
(H–J) High PABPN1 expression was linked to worse DFS in CESC, HNSC, and LUSC cohorts. (K, L) High PABPN1 expression was associated with
better OS and DFS in PAAD cohorts. (M) High PABPN1 expression was correlated with better OS in BRCA. (N–P) Higher PABPN1 expression was
associated with poorer RFS in Myeloma, STAD and TGCT, respectively.
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higher PABPN1 expression and worse survival outcomes in many

cancer types, including blood cancer (B-cell lymphoma), lung

cancer, breast cancer, bladder cancer, esophagus cancer, brain

cancer and colorectal cancer. Specific details are presented in

Supplementary Table S3. These results collectively supported the

close association of PABPN1 expression with the prognosis of many

cancer types.
The expression of PABPN1 was associated
with immune and molecular subtypes in
human cancers

The TISIDB website was utilized to investigate the impact of

PABPN1 expression on immune and molecular subtypes across

human cancers. Immune subtypes were categorized into six types:

C1 (wound healing), C2 (IFN-gamma dominant) , C3

(inflammatory), C4 (lymphocyte depleted), C5 (immunologically

quiet), and C6 (TGF-b dominant). Results indicated that PABPN1

expression was associated with different immune subtypes in

BRCA, HNSC, KIRC, LGG (brain lower grade glioma), LIHC,

LUAD, MESO, PRAD, READ, STAD, and UVM (Figure 3).

Furthermore, PABPN1 expression varied within different immune

subtypes of one cancer type. Taking KIRC for instance, PABPN1

exhibited high expression in C1 and C5 types and low expression in

C3 and C4 types. Regarding different molecular subtypes of cancers,

a significant correlation with PABPN1 expression was observed in

ACC, BRCA, ESCA, HNSC, LGG, LUSC, OV, STAD, and UCEC

(Figure 3). The expression of PABPN1 in different immune and

molecular subtypes of other cancers was detailed in Supplementary

Figures S2 and S3. Based on these results, it can be concluded that

PABPN1 expression varied across immune subtypes and molecular

subtypes in several human cancer types.
Relationship between PABPN1 expression
and immune checkpoint genes in human
cancers

Studies have demonstrated the significant impact of ICP genes

on immune cell infiltration and immunotherapy (33). In light of

this, we delved into the connections between PABPN1 expression

and ICP genes across human cancers, aiming to uncover the

potential role of PABPN1 in immunotherapy. Among the 60 ICP

genes studied, associations with PABPN1 expression were identified

in many cancer types, including OV, UVM, LIHC, PAAD, ALL,

DLBC, GBM, WT, THYM, TGCT, CHOL, PCPG, LAML, UCEC,

COAD, KIRC, LUAD, BRCA, HNSC, ACC, GBMLGG, LGG,

PRAD, LUSC, STAD, STES, UCS, CESC, BLCA, SARC, MESO,

THCA, KIPAN, and KIRP (Figure 4A). Particularly in OV, UVM,

LIHC, PAAD, ALL, and WT, PABPN1 expression showed a

positive correlation with immune checkpoint genes. Notably, in

OV, 47 out of the 60 immune checkpoint genes exhibited

connections with PABPN1 expression. This suggested that
Frontiers in Immunology 07
PABPN1 might play a role in coordinating the activity of these

ICP genes within different signal transduction pathways,

positioning it as a potential immunotherapy target. Furthermore,

high PABPN1 expression in certain cancers, especially OV, may

serve as an indicator of favorable therapeutic efficacy in

immunotherapies targeting ICP genes. The intricate relationship

between PABPN1 expression and immune checkpoint genes in

many cancer types warranted further investigation. In summary,

our hypothesis suggested that PABPN1 could serve as a potential

pan-cancer biomarker or a novel immunotherapy target, with the

potential to predict the response to immunotherapy.
The correlation between PABPN1
expression and TMB, MSI, neoantigen, and
ESTIMATE

To investigate PABPN1’s role in the immune mechanisms and

responses within the TME, we conducted an analysis of the

correlations between PABPN1 expression and TMB, MSI, and

neoantigens. TMB, MSI, and neoantigens in the tumor

microenvironment are recognized as indicators of antitumor

immunity and can potentially predict the efficacy of tumor

immunotherapy (34–36).

Our analysis revealed positive correlations between PABPN1

expression and TMB, MSI, and neoantigens in several cancer types,

including ACC, BRCA, LUSC, KIPAN, LGG, STES, BLCA, PAAD,

LUAD, MESO, and READ (Figures 4B–D). Subsequently, we delved

into the ESTIMATE score of PABPN1 across many cancer types

(Supplementary Figure S4). Supplementary Table S4 provided

detailed associations between PABPN1 expression and the three

ESTIMATE categories. Notably, strong negative correlations were

observed in ACC, BLCA, BRCA, CESC, COAD, GBM, HNSC,

KIRP, LGG, LUAD, LUSC, OV, PRAD, STES, STAD, THCA, and

TGCT. The obtained results provided additional confirmation

supporting the hypothesis that PABPN1 may impact antitumor

immunity through the regulation of the composition and immune

mechanisms within the tumor microenvironment.
PABPN1 correlated with immune cell
infiltration in the TME in human cancers

PABPN1’s correlation with immune cell infiltration in the TME

across different human cancers was investigated. After establishing

differential PABPN1 expression in distinct immune subtypes, the

exploration of potential correlations with immune cell infiltration

revealed significant associations in 42 cancer types. PABPN1

expression displayed strong correlations with immune cell types,

including CD8+ T cells in 11 cancer types, cytotoxic lymphocytes in

10 cancer types, B cells in 16 cancer types, natural killer cells in 11

cancer types, monocytic cells in 23 cancer types, myeloid dendritic

cells in 19 cancer types, neutrophils in 18 cancer types, endothelial

cells in 18 cancer types, and fibroblasts in 17 cancer types (Figure 5A).
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FIGURE 3

The association between PABPN1 expression and pan-cancer immune/ molecular subtypes. Immune subtypes: (A) BRCA, (B) HNSC, (C) KIRC,
(D) LGG, (E) LIHC, (F) LUAD, (G) MESO, (H) PRAD, (I) READ, (J) STAD, (K) UVM; Molecular subtypes: (L) ACC, (M) BRCA, (N) ESCA, (O) HNSC, (P) LGG,
(Q) LUSC, (R) OV, (S) STAD, (T) UCEC.
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These findings were consistent with the results obtained from the

TIMER database, detailed in Supplementary Figure S5.

Further analysis focused on the connection between PABPN1

expression and immune cell infiltration in six urogenital cancers.

The findings indicated that PABPN1 expression was associated with

the infiltration levels of immune cell types in specific urogenital

cancers (Figure 5B). In TGCT, PABPN1 expression correlated with

the infiltration levels of B cells, CD4+ T cells, CD8+ T cells,

neutrophils, macrophages, and dendritic cells. In KIRC, the

correlation was observed with B cells, CD8+ T cells, neutrophils,

macrophages, and dendritic cells. In KIRP, PABPN1 expression was

correlated with B cells, CD4+ T cells, CD8+ T cells, macrophages,

and dendritic cells. In KICH, the correlation was observed with

CD4+ T cells and macrophages. Lastly, in BLCA, PABPN1

expression was associated with CD4+ T cells, CD8+ T cells,

neutrophils, macrophages, and dendritic cells. To validate these

findings, the relationship was verified using EPIC, and most results

from this database were consistent with the initial observations

(Supplementary Figure S6). In summary, these results strongly

supported the notion that PABPN1 expression influenced

immune cell infiltration in urogenital cancers.
Frontiers in Immunology 09
PABPN1 correlated with immune cell
infiltration and their gene markers in TME
in LIHC, BLCA and TGCT

In the analysis of LIHC, BLCA, and TGCT using the TIMER

database, we delved deeper into the correlation between PABPN1

expression and marker subsets of immune cells, adjusting for purity

to mitigate biases introduced by clinical samples. In LIHC (n = 363),

BLCA (n = 405), and TGCT (n = 132), we aimed to elucidate the

potential immune functions of PABPN1 across different cancer

types. As outlined in Table 1, PABPN1 demonstrated a close

association with most included marker genes of B cells, CD8+ T

cells, monocytes, tumor-associated macrophages (TAMs), M2

macrophages, and Th2 cells in LIHC and TGCT. However, in

BLCA, after purity adjustment, PABPN1 expression exhibited a less

robust connection, being correlated mainly with marker genes of

CD8+ T cells, monocytes, M2 macrophages, and Th17. The varying

relationships between PABPN1 expression and gene markers of

immune cell infiltration in LIHC, BLCA, and TGCTmay contribute

to the distinct survival outcomes observed in different cancer types.

The findings suggested that PABPN1 may exert regulatory
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FIGURE 4

The correlation between PABPN1 expression and pan-cancer immune checkpoint genes (A), TMB (B), MSI (C), neoantigen (D), ESTIMATE score.
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FIGURE 5

The relationship between PABPN1 expression and infiltrating immune cells of human cancers and urogenital cancers. (A) The relationship between
PABPN1 expression level and infiltrating levels of T cells, CB8+ T cells, cytotoxic lymphocytes, B cell lineages, natural killer cells, monocytic cells,
myeloid dendritic cells, neutrophils, endothelial cells and fibroblasts in 45 cancer types. (B) The relationship between PABPN1 expression level and
infiltrating levels of B cells, CD4+ T cells, CB8+ T cells, neutrophils, macrophages and dendritic cells in six urogenital cancers. *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001.
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TABLE 1 Correlation between PABPN1 and relate genes and markers of immune cells analyzed by TIMER.

Description Gene
markers

LIHC BLCA TGCT

None Purity None Purity None Purity

Cor P Cor P Cor P Cor P Cor P Cor P

CD8+ T cell CD8A 0.125 * 0.218 *** -0.105 * 0.080 0.125 -0.378 *** -0.360 ***

CD8B 0.130 * 0.223 *** -0.014 0.773 0.131 * -0.369 *** -0.335 ***

T cell (general) CD3D 0.211 *** 0.318 *** -0.127 ** 0.081 0.120 -0.343 *** -0.332 ***

CD3E 0.158 ** 0.290 *** -0.168 ** 0.051 0.326 -0.373 *** -0.373 ***

CD2 0.160 ** 0.283 *** -0.153 ** 0.070 0.182 -0.337 *** -0.319 ***

B cell CD19 0.196 *** 0.247 *** -0.202 *** -0.077 0.139 -0.421 *** -0.422 ***

CD79A 0.165 ** 0.264 *** -0.233 *** -0.091 0.081 -0.390 *** -0.386 ***

Monocyte CD86 0.228 *** 0.354 *** -0.240 *** -0.051 0.327 -0.278 ** -0.232 **

CSF1R 0.126 * 0.237 *** -0.290 *** -0.106 * -0.318 *** -0.278 **

TAM CCL2 0.102 * 0.191 *** -0.221 *** -0.063 0.226 0.100 0.222 0.137 0.099

CD68 0.148 ** 0.225 *** -0.204 *** -0.068 0.196 -0.387 *** -0.358 ***

IL10 0.202 *** 0.301 *** -0.237 *** -0.067 0.201 -0.362 *** -0.337 ***

M1 Macrophage NOS2 -0.032 0.539 -0.035 0.512 0.021 0.667 0.102 * 0.008 0.918 -0.053 0.527

IRF5 0.337 *** 0.328 *** 0.024 0.634 -0.001 0.990 -0.279 ** -0.233 **

PTGS2 0.113 * 0.209 *** -0.098 * -0.047 0.370 -0.009 0.908 -0.051 0.540

M2 Macrophage CD163 -0.017 0.750 0.053 0.327 -0.296 *** -0.121 * -0.011 0.894 0.021 0.799

VSIG4 -0.014 0.794 0.064 0.237 -0.283 *** -0.108 * 0.003 0.970 0.022 0.787

MS4A4A 0.007 0.891 0.099 0.067 -0.259 *** -0.060 0.248 -0.163 * -0.116 0.161

Neutrophils CEACAM8 0.009 0.870 0.036 0.506 0.023 0.637 -0.021 0.682 0.208 * 0.218 **

ITGAM 0.222 *** 0.286 *** -0.259 *** -0.069 0.186 -0.167 * -0.116 0.164

CCR7 0.096 0.065 0.196 *** -0.008 0.879 0.068 0.191 -0.160 * -0.076 0.358

Natural
killer cell

KIR2DL1 0.006 0.902 -0.006 0.910 -0.122 * -0.021 0.687 -0.151 0.066 -0.076 0.357

KIR2DL3 0.165 ** 0.198 *** -0.076 0.126 0.035 0.507 -0.197 * -0.133 0.107

KIR2DL4 0.169 ** 0.209 *** -0.052 0.294 0.089 0.089 -0.118 0.150 -0.020 0.806

KIR3DL1 0.068 0.189 0.081 0.134 -0.033 0.510 0.065 0.212 -0.132 0.108 -0.045 0.589

KIR3DL2 0.045 0.382 0.097 0.072 -0.024 0.624 0.084 0.109 -0.250 ** -0.191 *

KIR3DL3 0.065 0.213 0.070 0.198 0.055 0.266 0.096 0.067 -0.282 *** -0.239 **

KIR2DS4 0.059 0.260 0.067 0.211 -0.066 0.185 0.031 0.551 -0.182 * -0.110 0.185

Dendritic cell HLA-DPB1 0.107 * 0.191 *** -0.262 *** -0.079 0.131 -0.389 *** -0.370 ***

HLA-DQB1 0.096 0.064 0.187 *** -0.219 *** -0.026 0.620 -0.268 ** -0.233 **

HLA-DRA 0.095 0.066 0.174 ** -0.232 *** -0.053 0.307 -0.402 *** -0.391 ***

HLA-DPA1 0.094 0.072 0.180 ** -0.228 *** -0.057 0.276 -0.422 *** -0.408 ***

CD1C 0.096 0.065 0.159 ** -0.243 *** -0.129 * -0.324 *** -0.306 ***

NRP1 0.337 *** 0.357 *** -0.114 * -0.017 0.749 -0.101 0.218 -0.134 0.106

ITGAX 0.323 *** 0.440 *** -0.212 *** -0.007 0.893 -0.290 *** -0.249 **

Th1 TBX21 0.092 0.075 0.179 ** -0.108 * 0.082 0.116 -0.380 *** -0.377 ***

(Continued)
F
rontiers in Immun
ology
 11
 frontier
sin.org

https://doi.org/10.3389/fimmu.2025.1553527
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1553527
influences on immune cell functions, potentially engaging in

mechanisms similar to those involving marker genes.
PABPN1 expression in different clinical
subgroups of urogenital cancers

The cBioPortal website was utilized to analyze genomic

alterations of PABPN1 in urogenital cancers. Results indicated that

genomic alterations of PABPN1 occurred in 1.1% of patients

(Figure 6A and Supplementary Figure S7). The types of PABPN1

gene alterations were diverse, leading to changes in gene expression

(Figure 6B). Copy number variation (CNV) predominantly occurred

in BLCA, with no CNV observed in KICH and KIRC (Figure 6C).

Subsequently, the UALCAN database was employed to investigate

PABPN1 expression in urogenital cancers with different clinical

characteristics. Using BLCA as an example, significant differential
Frontiers in Immunology 12
expression of PABPN1 was observed across various cancer stages,

histological subtypes, patient sex, molecular subtypes, nodal

metastasis status, and TP53 mutation status of BLCA (Figures 6D–

I). PABPN1 expression in five other urogenital cancers with different

cancer stages was presented in Supplementary Figure S7. All these

findings collectively suggested that PABPN1 may play a crucial role

in the onset and progression of cancer in urogenital tissues.
Analysis of PABPN1 coexpression networks

The preceding findings highlighted a substantial association

between PABPN1 and cancer prognosis and immunity. To further

elucidate the potential functional role of PABPN1 in tumor tissue,

we investigated PABPN1 coexpression networks using the

LinkedOmics database. TGCT was chosen as an illustrative

example to showcase the potential effects (Figure 7A).
TABLE 1 Continued

Description Gene
markers

LIHC BLCA TGCT

None Purity None Purity None Purity

Cor P Cor P Cor P Cor P Cor P Cor P

STAT4 0.200 *** 0.244 *** -0.172 *** 0.005 0.919 -0.253 ** -0.213 **

STAT1 0.233 *** 0.255 *** -0.088 0.076 0.059 0.262 -0.471 *** -0.450 ***

IFNG 0.177 ** 0.244 *** -0.061 0.216 0.098 0.060 -0.308 *** -0.265 **

TNF 0.259 *** 0.355 *** 0.002 0.967 0.105 0.044 -0.237 ** -0.188 *

IL12A 0.435 *** 0.461 *** 0.018 0.724 0.098 0.062 -0.194 * -0.196 *

IL12B 0.109 * 0.154 ** -0.129 ** 0.001 0.987 -0.490 *** -0.479 ***

Th2 GATA3 0.199 *** 0.322 *** 0.190 *** 0.088 0.091 0.214 ** 0.185 *

STAT6 0.163 ** 0.130 * 0.072 0.149 0.022 0.680 0.167 * 0.138 0.096

STAT5A 0.290 *** 0.326 *** -0.217 *** -0.124 0.018 -0.350 *** -0.312 ***

IL13 0.135 ** 0.120 * -0.058 0.241 0.020 0.701 -0.005 0.952 -0.020 0.812

Tfh BCL6 0.347 *** 0.356 *** 0.088 0.074 0.058 0.271 -0.034 0.682 -0.035 0.671

IL21 0.027 0.601 0.066 0.223 -0.031 0.533 0.042 0.425 -0.359 *** -0.325 ***

Th17 STAT3 0.064 0.218 0.088 0.104 -0.143 ** -0.055 0.297 -0.081 0.325 -0.087 0.294

IL17A 0.090 0.083 0.101 0.062 0.077 0.123 0.105 * -0.134 0.103 -0.106 0.199

Treg FOXP3 0.083 0.111 0.122 * -0.105 * 0.086 0.098 -0.203 * -0.133 0.109

CCR8 0.233 *** 0.291 *** -0.122 * 0.030 0.564 0.060 0.469 0.109 0.189

STAT5B 0.239 *** 0.202 *** 0.035 0.481 0.033 0.527 -0.506 *** -0.493 ***

TGFB1 0.276 *** 0.353 *** -0.149 ** -0.065 0.213 -0.283 *** -0.283 **

T cell
exhaustion

PDCD1 0.290 *** 0.383 *** -0.132 ** 0.070 0.181 -0.348 *** -0.333 ***

CTLA4 0.299 *** 0.409 *** -0.128 ** 0.077 0.141 -0.309 *** -0.270 **

LAG3 0.267 *** 0.317 *** -0.076 0.125 0.122 * -0.246 ** -0.187 *

HAVCR2 0.244 *** 0.378 *** -0.243 *** -0.044 0.395 -0.215 ** -0.148 0.074

GZMB 0.134 * 0.203 *** -0.145 ** 0.055 0.294 -0.043 0.601 0.073 0.382
frontier
*P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 6

PABPN1 genomic alterations and differential expression in urogenital cancers analyzed by the cBioPortal and UALCAN database. (A) OncoPrint of
PABPN1 gene alterations in the cancer cohort. Different colors indicate different genetic alteration types, with amplification being predominant.
(B) Main types of PABPN1 gene alterations observed in cancer groups. (C) Details of PABPN1 gene alteration types within the cancer cohort.
(D–I) PABPN1 expression in bladder cancer across specific clinical subgroups, encompassing cancer stages (D), histological subtypes (E), patient
sex (F), molecular subtypes (G), nodal metastasis status (H), and TP53 mutation status (I). **P < 0.01; ***P < 0.001.
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Supplementary Table S5 presented all coexpressed genes positively

or negatively linked to PABPN1. The top 50 genes, both positively

and negatively correlated with PABPN1, were displayed in a

heatmap (Figures 7B, C). Among these, MRPS15, MRPL52, and

RPL24 exhibited the strongest associations with PABPN1

expression (r = 0.844, 0.817, 0.808, and p = 6.735e-42, 3.149e-37,

7.687e-36, respectively).

Subsequently, GSEA was employed to identify the primary GO

terms of PABPN1 coexpression genes. The analysis revealed that

PABPN1 and its coexpression genes were predominantly involved

in the regulation of RNA processes, protein complex disassembly,

GTPase activity, and Golgi vesicle transport (Figure 7D) within the

biological process categories of GO. The molecular function (MF)

and cell component (CC) analyses of PABPN1 coexpression genes

were presented in Supplementary Figure S9. Furthermore, KEGG

pathway analysis showed that the coexpressed genes were enriched

in oxidative phosphorylation, spliceosome, and glutathione

metabolism (Figure 7E).
Experimental validation of bioinformatics
results

The expression of PABPN1 in BLCA, LIHC and BRCA tissues

was significantly higher than that in para-carcinoma tissues

(Figure 8 A, B; Supplementary Figures S11A–D). To investigate

the functional role of PABPN1, we transfected T24, 5637, HLF and

MCF-7 cells with PABPN1 siRNAs. RT-qPCR confirmed effective
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knockdown (Figure 8C; Supplementary Figures S11E, G), and

Western blot analyses validated this finding (Figure 8D;

Supplementary Figures S11F, H). For cell proliferation studies,

MTT and colony formation assays revealed that reduced PABPN1

expression decreased T24, 5637, HLF and MCF-7 cells viability

(Figure 8E; Supplementary Figures S11I, K) and significantly

reduced colony numbers (Figures 8F; Supplementary Figures

S11J, L). Additionally, flow cytometric analysis revealed that

PABPN1 downregulation promoted apoptosis in these cells

(Figures 8G; Supplementary Figures S11M, O). The mRNA

expression levels of MRPS15 and GPx (Glutathione peroxidase)

decreased notably in T24, 5637, HLF and MCF-7 cells after

siPABPN1 transfection (Figure 8H; Supplementary Figures S11N,

P). Collectively, the results substantiated our assumption that

PABPN1 was a potential pan-cancer biomarker.
Discussion

PABPN1, formerly recognized as a versatile facilitator of nuclear

polyadenylation, engages in several key functions, such as associating

with the elongating poly(A) tail and interacting with poly(A)

polymerase, regulating poly(A) tail length, and influencing

alternative cleavage and polyadenylation processes (37, 38). Despite

being categorized as a nuclear poly(A)-binding protein, PABPN1 was

observed in the peri-nuclear region of the cytoplasm, suggesting a

potential role as a mediator shuttling between the nucleus and

cytoplasm (39). Several decades ago, mutations in the PABPN1
A B

D E

C

FIGURE 7

PABPN1 coexpression genes in TGCT analyzed by the LinkedOmics database. (A) Highly correlated genes of PABPN1 tested by Pearson test in TGCT
cohort. (B, C) Top 50 positive coexpression genes (B) and negative coexpression genes (C) of PABPN1 in heat map in TGCT; (D) Directed acyclic
graph of PABPN1 GO analysis (biological process) in TGCT cohort. (E) Volcano plot of PABPN1 KEGG pathways in TGCT.
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gene were identified as the underlying cause of Oculopharyngeal

Muscular Dystrophy (OPMD), impacting a specific group of skeletal

muscles (40). Earlier research has established the critical role of

PABPN1 in major zygotic genome activation and its regulatory

function in the expression of cell fate-determining factors during

the preimplantation stage in mouse embryos (41). In this study, we

revealed PABPN1’s pivotal involvement in oncogenesis and the

progression of tumors across many types of cancer.

In the initial phase of our investigation, we employed the

TIMER, GEPIA, and BioGPS databases to assess the expression

levels of PABPN1 in both cancer and normal tissues. The findings

revealed a notably elevated expression of PABPN1 across many

cancer types. These outcomes suggested that PABPN1 may played a

significant role in fostering oncogenesis and advancing tumor

progression in human cancers. Besides, DNA aberrant

methylation was recognized as a common contributor to the

dysregulation of tumor-associated gene expression. In our study,

we delved into the Methylation-Expression correlation for pabpn1

across different cancers using the DNMIVD database (42, 43) (refer

to Supplementary Figure S10). The outcomes revealed robust
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positive correlations in several cancer types, including BLCA,

BRCA, CESC, COAD, LIHC, KIRC, KIRP, and SAR. Investigating

abnormal PABPN1 methylation in the context of pan-cancer

research holds significant promise as a novel direction for future

research endeavors.

Subsequently, we delved into the correlation between PABPN1

expression and prognosis. In numerous cancer types, including

ACC, CESC, GBM, KIRC, LIHC, LUSC, PAAD, and UVM,

heightened PABPN1 expression corresponded to a poorer

prognosis. This substantiated PABPN1’s potential as a pan-cancer

prognostic biomarker. Further investigation into PABPN1

expression across different immune subtypes and molecular

subtypes of human cancers, using the TISIDB website, unveiled

significant variations in PABPN1 expression in many cancer types

such as BRCA, HNSC, LGG, STAD, suggesting its potential role as a

diagnostic pan-cancer biomarker and involvement in immune

regulation. Additionally, our findings demonstrated noteworthy

differences in PABPN1 expression across clinical subgroups of

urogenital cancers, aligning with prior research highlighting

varying PABPN1 expression in different stages of prostate cancer
FIGURE 8

PABPN1 knockdown inhibits cell proliferation. (A) mRNA expression of PABPN1 in bladder cancer and para-carcinoma tissues (All were 5 samples).
(B) Protein expression of PABPN1 in bladder cancer and para-carcinoma tissues. (C) mRNA level of PABPN1 in T24 and 5637 cells treated with
siPABPN1. (D) protein level of PABPN1 in T24 and 5637 cells treated with siPABPN1. (E) Viability of cells tested by MTT. (F) Colony formation assay
conducted in PABPN1-knockdown HCCLM3 cells. (G) Detection of apoptosis by flow cytometry treated with siPABPN1. (H) Effect of PABPN1
knockdown on gene expression (MRPS15, GPx and GST). *P < 0.05; **P < 0.01.
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(11). Subsequent exploration focused on the association between

PABPN1 expression and immune cell infiltration in six urogenital

cancers, revealing PABPN1’s presence across diverse clinical

characteristics. This implied a potential role for PABPN1 in the

growth and progression of these cancers.

TILs within the tumor microenvironment have been established

as an autonomous predictor of both cancer patient prognosis and the

effectiveness of immunotherapeutic interventions (44). Our

investigation revealed that PABPN1 expression did not consistently

exhibit a negative correlation with TILs across different human

cancers. These results suggested that PABPN1 may play distinct

roles in immune regulation in many cancer types. The correlations

with TMB, MSI, neoantigens, and ESTIMATE scores underscore the

potential significance of PABPN1 in shaping the immune landscape

of various cancers, contributing to our understanding of its role in the

broader context of cancer immunotherapy. These correlations

supported the hypothesis that PABPN1 may exert an influence on

antitumor immunity by regulating the composition and immune

mechanisms within the tumor microenvironment. Nevertheless,

additional experimental research was required to substantiate its

functional role. Additionally, PABPN1 exhibited a strong

correlation with a majority of the marker genes associated with B

cells, CD8+ T cells, monocytes, TAMs, M2 macrophages, and Th2

cells. This emphasized the significance of PABPN1 in shaping the

immune microenvironment and hinted at its potential involvement

in modulating immune responses within the context of cancer in

both LIHC and TGCT.

In vitro, we performed functional experiments to examine the

role of PABPN1 in BLCA, LIHC and BRCA progression. The

downregulation of PABPN1 expression was found to suppress the

proliferation of T24, 5637, HLF and MCF-7 cells while promoting

apoptosis. These findings underscored the strong association

between elevated PABPN1 expression and adverse outcomes in

cancer patients, highlighting the potential significance of PABPN1

in driving cancer progression. The induction of apoptosis following

PABPN1 knockdown may be attributed to several mechanisms.

First, PABPN1 regulates mRNA stability and translation, and its

depletion may destabilize mRNAs encoding anti-apoptotic

proteins, such as BCL-2l2 (12),CDK2, CDK6 and CDKN1A (45),

leading to increased apoptosis. Second, PABPN1 influences

alternative polyadenylation (APA), and its knockdown may result

in the production of truncated or non-functional protein isoforms

that promote apoptosis (46). Third, the observed reduction in GPx

expression following PABPN1 knockdown suggests increased

oxidative stress, which can trigger intrinsic apoptosis pathways

(47). Finally, mitochondrial dysfunction induced by PABPN1

depletion may lead to the release of cytochrome c and activation

of the caspase cascade, further promoting apoptosis.

Despite conducting a comprehensive and systematic analysis of

PABPN1 and utilizing different databases for cross-verification, this

study has certain limitations. Firstly, disparities in microarray and

sequencing data across different databases lacked consistency in

granularity and specificity, potentially introducing systematic bias.

Secondly, the validation of our findings on the potential functions of

PABPN1 required in vivo/in vitro experiments to enhance the
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credibility of our results. Thirdly, despite our conclusion that

PABPN1 expression was significantly correlated with immune cell

infiltration and cancer prognosis, there was a lack of direct evidence

demonstrating PABPN1’s direct influence on prognosis through

participation in immune infiltration. Further study was required to

elucidate the exact pathway of PABPN1’s participation in immune

regulation and its specific influence on cancer prognosis. Hence, it is

essential to undertake a prospective study focusing on PABPN1

expression and its involvement in immune infiltration in human

cancers. Additionally, the successful development and thorough

testing of a novel antitumor immunotherapy drug targeting

PABPN1 should be pursued. This approach holds the potential to

enhance our understanding of PABPN1’s role in cancer immunity

and could lead to the creation of effective therapeutic strategies.
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