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The tumor microenvironment is heterogeneous, structurally complex, and

continually evolving, making it difficult to fully capture. Common dissociative

techniques thoroughly characterize the heterogeneity of cellular populations but

lack structural context. The recent boom in spatial analyses has exponentially

accelerated our understanding of the structural complexity of these cellular

populations. However, to understand the dynamics of cancer pathogenesis, we

must assess this heterogeneity across space and time. In this review, we provide

an overview of current dissociative, spatial, and temporal analysis strategies in

addition to existing and prospective spatiotemporal techniques to illustrate how

understanding the tumor microenvironment, focusing on dynamic immune-

cancer cell interactions, across four dimensions will advance cancer research

and its diagnostic and therapeutic applications.
KEYWORDS

spatial omics, temporal analysis, tumor microenvironment, tumor immune
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Introduction

A common storytelling technique comes from the Latin phrase in medias res, meaning

“in the middle of things.” This tool captures the audience’s attention by starting in the

middle or climax of the narrative then backing up to explain how the story reached that

point. Similarly, a scientist’s attention is often captured by an interesting phenotype,

causing them to wonder, “how did that end up there.” Just as flashbacks reveal plot while

describing characters, setting, and conflict to catch the audience up with the story,

experiments reveal important cell types, cell states, and signaling pathways to help

scientists piece together their own narrative. Dissociative techniques, such as flow

cytometry and single cell transcriptomics, have enabled the identification of the array of
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characters in these stories and sometimes their function at the point

of analysis. The rapid expansion of spatial biology and spatial multi-

omics has helped describe setting and neighborhoods, which could

influence the character’s function. However, to understand the full

plot of a research narrative, we need to study the changes and effects

of those conditions over time, not only in the middle of things, in

the moment of the assay. This is especially important in complex,

heterogeneous systems like tumor microenvironments (TME).

TME have been profiled across cancer types and are each

uniquely challenging to treat. Some prove more challenging than

others due to heterogeneity in TME composition, stromal barriers,

and enhanced immunosuppression. TME have been extensively

studied across the cancer biology field, but these studies largely

assay TME components in isolation. By studying TME in the

context of space and time (four dimensions), a more complete

narrative of each cancer can be written. Patients could be better

classified into responders and non-responders for specific therapies.

Scientists could identify when and where a target is most vulnerable

to manipulation and which cells are nearby to assist in the targeting.

Understanding the spatiotemporal changes of a TME would

improve biopsy analysis to advance patient therapy and outcome.

Accordingly, recent advances in bench methodology have

expanded TME analysis to include spatial and temporal methods.

The spatial platforms we will discuss have helped characterize cell

localization within the TME, but many of these modalities fail to

demonstrate how these cell types, especially immune cells, and the

tumor change over time. Temporal strategies like Zman-seq and

pulse-chase enabled by computational approaches such as TDEseq

and PseudotimeDE have shown the dynamics of molecule secretion

and cellular infiltration in the TME (1, 117). Although these

temporal tools were developed in isolation of space, their

integration with spatial methodologies cannot be dismissed. In

this review, we discuss how temporal dimensions can be

incorporated into existing methods through longitudinal

sampling, computational extrapolation and modeling, and

longitudinal labeling. Longitudinal sampling provides insights

into developmental processes and tumor progression based on the

assumption that chances of particular cellular dynamics are

consistent between samples while longitudinal labeling identifies

specific molecules or cells at one time point and assesses the changes

at later time points. Real-time imaging already combines

longitudinal sampling and longitudinal tracing to record

biological processes as they occur, and clinical imaging allows

clinicians to monitor temporal changes within the TME

(Figure 1). Nevertheless, spatiotemporal analysis represents the

next frontier in TME research. The innovations we propose are

initial steps towards transitioning from in medias res perspective to

a more complete narrative of biological phenomena.
Assessing identity

A cell's identity is determined by its distinct transcriptional

profiles and corresponding proteomic outputs, which collectively

govern its functional characteristics and phenotypic behavior within
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a given tissue or organism (1). One such method that enables

researchers to explore the transcriptome at the level of individual

cells is single-cell RNA sequencing (scRNA-seq), providing a high-

resolution view of cellular identity, serving as a valuable tool to

characterize cellular heterogeneity (2, 3). It is routinely used to

capture the transcriptome of a single cell; however, ongoing

advances have enabled nuclear transcriptome profiling using

single-nuclear RNA-seq (snRNA-seq) , which profi les

transcriptomes in cells that are hard to dissociate. A study by Liu

et al. used snRNA-seq to reveal distinct temporal shifts in the cervical

cancer TME from stage-I to stage-II, showing an immune-active

environment with proinflammatory macrophages and activated

CD8+ T cells in stage-I, versus an immunosuppressive, growth-

focused TME with fewer immune cells, more collagen, and increased

mitochondrial activity in stage-II. This study indicates how changes

in TME fuel cancer progression and point to stage-specific treatment

possibilities (195). Another multi-omics technique called single-cell

Assay for Transposase-Accessible Chromatin sequencing (scATAC-

seq) is employed to study chromatin accessibility and

characterization of regulatory elements. It is often used in

combination with scRNA-seq to explore cancer-specific traits,

linking chromatin accessibility changes to gene expression (5).

scATAC-seq profiling of the TME in basal cell carcinoma revealed

regulatory networks in immune, stromal, and cancer cells,

identifying mechanisms behind T cell exhaustion in tumor-

infiltrating lymphocytes (6). Among other innovations, tools like

Perturb-seq track responses to genetic changes while PROFIT-seq

studies other RNA molecules, enhancing our understanding of the

TME (4, 7–12). Overall, advances in distinguishing cellular identities

and functions have significantly improved our understanding of the

characters in the tumor progression narrative, but these methods are

only single dimension assessments.
Assessing space

Space serves as a foundational concept for understanding the

structure and location of biology. At its core, spatial data preserve

the x, y (2D) and, sometimes, z (3D) dimensions and provide details

of cellular components and structural organization, enabling a

comprehensive view into the spatial relationships within complex

systems. Cellular neighborhoods and spatial organization can

impact clinical outcomes and can even serve as prognostic

markers (13–17). This spatial assessment ranges from simple

chromogenic microscopy of digital pathology to the rapidly

progressing field of spatial multiplexing and omics, which has

been extensively reviewed elsewhere and only briefly discussed

here (18–23).

Popular spatial proteomics techniques often involve the hyper-

plexing of many antibodies to detect protein targets, but they can

also use mass spectrometry imaging for many molecules, including

proteins, metabolites, sugars, and metals (24–26). Various academic

and commercially available platforms have been used to map the

protein and cellular localizations within tissues, providing insights

into the complex organization and dynamics of proteins in
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cancerous tissues (18). Clinically, Carstens and Correa de Sampaio

et al. were the first to demonstrate the prognostic potential of spatial

quantifications of T cells in proximity to cancer cells (15). Mass

Spectrometry imaging has also been used to localize molecules of

various sizes and proteins. The field continues to expand, now

applying metabolic and functional markers in addition to sub-

cellular localization to access inter-tumoral heterogeneity, co-

localization, and therapeutic response (27–31).

Spatial transcriptomics profiles gene expression within tissue

sections, connecting molecular details with histological context.

Untargeted spatial transcriptomics is an approach designed to

capture and analyze the expression of all mRNA transcripts

within a tissue while preserving their spatial context. Unlike

targeted methods that focus on predefined gene panels,

untargeted techniques leverage next-generation sequencing

(NGS), similar to scRNA-seq, to comprehensively profile the

entire transcriptome. A key feature of this approach is the

incorporation of spatial barcodes, which enable the assignment of

each transcript to its original tissue coordinates, allowing for

mapping of gene expression patterns across spatially distinct

regions (32–34). These methods aide in developing spatial tissue
Frontiers in Immunology 03
a t l a s e s and the charac t e r i za t ion o f d i s t inc t tumor

microenvironments, including tumor interfaces and tertiary

lymphoid structures (35–38). These techniques can be variations

of laser capture microdissection and use UV-photo-cleavable spatial

targeting or barcoding (24, 39–41). Furthermore, these spatial

transcriptomics and scRNA-seq are complementary approaches

that, when integrated, provide a comprehensive view of cellular

identity within the spatial architecture of tissues, providing insights

into cancer progression and therapeutic targets (42–44). While

scRNA-seq offers high-resolution transcriptomic data and the

ability to identify novel cell subtypes, spatial transcriptomics

retains the positional information of cells within their native

microenvironment (45). Integration of these techniques is

commonly achieved through two main strategies: deconvolution

and mapping. Deconvolution aims to resolve distinct cellular

subpopulations within each spatial transcriptomics capture spot

by leveraging scRNA-seq data. Mapping involves two key

components: assigning scRNA-seq defined cell subtypes to

individual cells within high-plex RNA imaging maps and

localizing each scRNA-seq cell to a specific anatomical region

within the tissue. Such analyses offer spatial resolution to help
FIGURE 1

Integrating space and time in the study of the tumor microenvironment. Assessment of time is performed using four overlapping techniques: (1)
longitudinal sampling, (2) longitudinal labeling, (3) computational extrapolation, and (4) live imaging. Incorporating spatial quantifications with the
temporal assessments can inform tumor evolution and dynamics. Portions of this figure were created in BioRender.com. Mandloi, A (2025). https://
BioRender.com/f77v802.
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predict ligand–receptor interactions inferred from scRNA-seq data,

enabling insights into cell–cell communication within the tissue

microenvironment (46–54). Continuing innovations in these areas

have increased the imaging resolution to sub-cellular levels to allow

single-cell resolution within the native tissue structure (55, 56).

Targeted spatial transcriptomics often uses fluorescence in situ

hybridization (FISH) to identify single RNA molecules (57–60). Its

benefits include sub-cellular resolution and the ability to enhance

the capture of desired transcripts and isoforms that could be lost to

dropout from unbiased techniques. Spatial Perturb-Seq combines

untargeted whole transcriptomics with targeted CRISPR barcodes

to assess the CRISPR screening and enables single-cell resolution

analysis of genetic perturbations within intact tissue architecture.

As a result, this method reveals both cell-autonomous and non-cell-

autonomous effects while providing key insights into cellular

crosstalk that are often missed by conventional dissociated single-

cell sequencing (61). These methods effectively map tissue

architecture and cellular clonality, serving as valuable tools to

study TME heterogeneity (62).

Spatial omics platforms have recently integrated the evaluation

of various molecule types, termed multi omics. These techniques

enable protein confirmation of transcriptional signatures and assess

tissue architecture’s influence on protein translation and cell

signaling (63). Other multiomic techniques combine 3D

structural rendering of serial sections with spatial targeted whole

exome sequences, mass spectrometry imaging, spatial proteomics,

and spatial transcriptomics (64, 65). The recent advancement of

statistically principled and artificial intelligence based

computational tools in spatial omics enabled the study of tissue

organization by integrating spatial information with molecular

profiling, allowing researchers to explore how the spatial

arrangement of cells and molecular markers contributes to cancer

biological functions in TME. One of the principle tools is focused on

spatially variable gene analysis to identify genes that exhibit spatial

heterogeneity in their expression in spatial domain, which is

essential for understanding the functionality within tissues (66–

68). In the next step, spatially varying network estimation focuses

on regulation pattern at a molecular level and identification of

transcription factors or key biomarkers which are potential targets

for immunotherapy (69–71). Cell-type annotation and cluster

analysis based spatial region identification help to decipher the

complex cellular architecture of tissues by associating molecular

profiles with specific cell types and spatial regions within TME (48,

72–74). The integration of scRNA-seq and spatial omics data will

harness information from multiple omics layers to achieve higher

precision in inferring clinical biomarkers in TME for

immunotherapy based therapy intervention (75, 76). These

innovations are being applied to understanding the TME and

have identified structural and expressional heterogeneity far

outside what has been previously understood. Overall, spatial

assessments of the TME have contributed to discovering new

biomarkers, predictors of clinical and therapeutic outcomes, novel

phenotypes, and standards for tumor grading (21, 77–81). These

modalities reveal the locations and triggers of phenotypes but not

their onset or later progression. To fully grasp spatial TME biology
Frontiers in Immunology 04
and optimize its clinical applications, it is crucial to determine the

specific timing and duration of these changes.
Assessing time

Cross-sectional studies analyze gene expression in multiple

samples at a singular time point across different conditions,

treatments, disease stages, or patient cohorts. They are snapshots

of molecular and cellular activity, making them valuable for

identifying differentially expressed genes, discovering biomarkers,

and understanding disease mechanisms (82). Longitudinal

sampling expands cross-sectional analysis by tracking cellular

states and gene expression changes in the same individuals or

samples across different time points. It involves repeated sampling

and profiling of experimental systems at multiple time points to

capture temporal changes. Longitudinal labeling, on the other hand,

labels cells or molecules at distinct time points but collects the data

in a single snapshot. By integrating temporal data, longitudinal

studies can identify the onset of genetic expression as well as trace

the expression trajectory of dynamic biological systems, including

tumor evolution, immune responses, and disease progression (83).
Computational extrapolation of single cell
multi-omics

While longitudinal sampling offers direct insight into temporal

dynamics, computational approaches have emerged as effective

alternatives or complements, enabling the inference of cellular

trajectories and gene expression changes over time using static or

limited time-point single-cell datasets. These methods have been

adapted to appreciate cellular dynamics through computational

extrapolations with or without longitudinal sampling.

Purely computational approaches of scRNA-seq datasets

include monocle3 and wishbone used for “pseudotime trajectory

analysis” which extrapolates the relationship of the transcriptional

profiles of each cell as if one cell evolved from another using a single

starting point (84, 85). These tools have been used in many

publications to suggest clonal evolution and differentiation

patterns of tumors (86–88). They have also been combined with

longitudinal samples to confirm trajectory outputs (89).

Computational approaches are strengthened by incorporating

longitudinal samples as time-point ground-truth within the

analysis. TDEseq utilizes non-parametric statistical models to

account for batch effects and confounding factors to enhance the

detection of gene expression changes across multiple time-points

(90). Additionally, Ramazzotti et al. introduced a Longitudinal

Analysis of Cancer Evolution (LACE) for reconstructing

longitudinal clonal trees that depict tumor evolution. This

approach employed longitudinal single-cell somatic mutation

profiles from tumor samples to monitor cancer evolution and

intra-tumor heterogeneity over time and was used to evaluate

therapeutic effectiveness and resistant sub-clone detection (91).

The Time Series Analysis (TiSA) pipeline is another
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computational tool focusing on integrating data from multiple

time-points to capture the temporal progression of cellular states,

trajectories, and interactions. Its significance lies in its ability to

address common challenges in biological data analysis, such as

handling few replicates and uneven sampling within experimental

groups. It employs a novel clustering method called PART, which

identifies small genomic clusters for independent analysis,

enhancing the biological interpretation of data through functional

enrichment analysis (83, 92, 93). Its ability to investigate individual

time points without requiring additional analyses highlights its

robustness and flexibility, making it accessible to both clinicians

and biological researchers. Taken together, the computational

methods integrating longitudinal sampling are feasible tools for

understanding the temporal progression of disease. While the

aforementioned techniques help study temporal shifts in the

TME, innovative strategies are required to definitively track TME

cells and their dynamic evolution over time.
Tracking cell dynamics

Longitudinal sampling has proven a powerful tool to

extrapolate cellular dynamics; however, it does not study the

same cells overtime. To overcome this limitation, the field has

developed methods to label cells across time in a way that can be

separated out at a common endpoint.

Lineage tracing
Lineage tracing is a technique for understanding cell

differentiation and development by tracking the progeny of

specific cells over time. This method involves labeling cells with

fluorescent markers, such as conditional tracing with genetically

controlled recombinases, or molecular barcodes, like CRISPR-Cas9,

to follow the lineage and fate of these cells as they divide and

differentiate (3, 94). Flow cytometry and multi-omics approaches

can be used to detect and quantify these fluorescent markers and

barcodes, respectively, providing a high-throughput means of

analyzing cell populations (95). For example, in the study of

minimal residual disease (MRD) in B-lineage acute lymphoblastic

leukemia, flow cytometric analysis to track lineage tracing of

leukemic cells predicted relapse and survival outcomes (96). A

multicolor lineage tracing approach in colon cancer revealed clonal

architecture and dynamics, showing a differentiation gradient from

the tumor margin (marked by nuclear b-catenin and FRA1) to the

center (marked by CK20 and GLUT1), where clonal competition

indicated stable driver mutation profiles, suggesting spatial rather

than genetic influences (89). Advances in lineage tracing have also

incorporated CRISPR-based technologies, which augment the

integration of unique genetic barcodes into cells to enable detailed

reconstruction of cell lineages and developmental hierarchies. This

approach, exemplified by the GESTALT method, enables the

generation of thousands of unique barcodes, allowing us to

appreciate tissue development and disease progression (97). Yang

et al. combined lineage tracing with scRNA-seq to demonstrate that

tumor evolution follows distinct phylogenetic trajectories, driven by
Frontiers in Immunology 05
genetic mutations, leading to enhanced cellular plasticity,

correlating to more aggressive tumor states (98). Another study

by Nadalin et al. used a similar method to highlight that tumor-

initiating clones share a common chromatin priming state

associated with specific transcriptional and epigenetic profiles

using a Perturb-Seq guide barcode library (99).

Lineage tracing offers key strengths, like selectively and

precisely labeling cells with genetic tools to track their progeny,

helping us understand cell fate and tissue homeostasis, including

how clonal expansion drives cancer progression. However, it can be

limited by the need for specific markers, off-target effects and

multiple double stranded breaks resulting in genotoxicity, limited

targetable tissues, and single time point tracing (100).

Reporters
Reporter systems are molecular tools that reveal a cell’s

functional state by linking a reporter gene to a regulatory

sequence of interest, allowing quantification of active biological

events. The reporter gene encodes a measurable product, such as a

fluorescent protein (e.g., GFP, RFP), enzyme (e.g., luciferase), or

chromogenic marker (e.g., X-gal staining), producing a detectable

signal under specific conditions (101). Reporter systems can be

classified as constitutive or inducible based on gene expression

regulation. Constitutive reporters are often used to ensure

successful transduction/transfection of cells while inducible

reporters can be turned on and/or off and are usually used to

study expression of a specific gene under specific conditions (102).

Jun-Seo et al. developed a HeLa-Mx2 reporter cell line, containing a

luciferase gene under the Mx2 promoter, an expression target of

IFN-a, allowing precise quantification of IFN-a activity via

luminescence (103). Massara et al. used a dual fluorescent

reporter system with GFP to trace cancer cells and a modified,

secreted mCherry protein (sLP-mCherry) endocytosed by CD206+

macrophages to track tumor-to-host communication in brain

metastasis (104). Reporters can be combined with lineage tracers

to capture both past and active expression of target molecules. For

example, Perelli et al. developed a novel combined Cre- and Flipase-

responsive reporter to trace the evolution of epithelial to

mesenchymal transition in a model of pancreatic cancer. The

cancer cells expressed tdTomato only if both the transforming

Cre-expressing adenovirus and vimentin have been expressed. A

FLEX-GFP Vimentin reporter also recorded cells actively

expressing vimentin, so cells that have ever expressed vimentin

were red while cells that actively expressed vimentin were both red

and green (105). The authors also used VimentinFLEX mice to

enable Cre-dependent, tumor-specific ablation of proliferating

mesenchymal-state cancer cells upon ganciclovir treatment. This

system permitted precise, time- and tissue-restricted elimination of

mesenchymal cancer cells, revealing their essential role in

sustaining both primary and metastatic tumor growth (105).

Reporter systems enable real-time, non-invasive detection with

high sensitivity and quantitative analysis while being easily

adaptable to various animal models. However, challenges can

come from the requirement of genetic engineering and the

limitations of fluorescent tracers, such as endogenous cellular
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autofluorescence interfering with reporter signal and

photobleaching/signal decay during prolonged light exposure.

Longitudinal labeling
Another means of tracking cell fate across time is adding a tag to

cells at specific time points via longitudinal labeling. Common

techniques use genetic approaches similar to lineage tracing and

reporters but with an inducible genetic event as well as fluorescent

or isotope additives that can be incorporated within specific

time windows.

The classic pulse-chase experiments are versions of longitudinal

radio-labeling of RNA and proteins that measure synthesis and

degradation by tracking the incorporation (pulse) and subsequent

decay (chase) of labeled nucleotides/amino acids. This technique

has been widely used in cancer biology to study concepts ranging

from degradation of tumor suppressors, protein folding and

trafficking, and cellular metabolism (106–109). For example,

CD36, a scavenger receptor, facilitates metabolic crosstalk

between macrophages and cancer cells by uptaking tumor cell-

derived extracellular vesicles enriched in long-chain fatty acids,

which enhances their tumor-promoting potential and contributes

to a pro-metastatic environment (109). In another study, a pulse-

chase experiment with EU-labeled RNA revealed key effects of MYC

in breast cancer cells. It showed that MYC boosts both RNA

synthesis and decay rates. This increased RNA turnover induces

oncogenic stress leading to cell death, highlighting its role as a

potential therapeutic target (108).

Computationally, the open source pulseR package provides

tools for analyzing RNA turnover from the experiments,

supporting various experimental designs and addressing potential

labeling biases (110). This method allows researchers to study

physiology without overexpressing molecules, offering an efficient

way to explore multi-step signaling pathways while accurately

reflecting natural conditions due to minimal cell disturbances.

However, pulse-chase struggles with molecules that have long

half-lives (80, 90, 91). Another critical factor is the pulse

duration, as longer pulses can disrupt RNAs and proteins (92).

Stable Isotope Labeling by Amino acid in Culture (SILAC) is

another method to examine metabolic changes across the proteome.

It monitors protein synthesis, degradation, and turnover using

stable, non-radiolabeled isotopes detected by mass spectrometry

(111). This technique is increasingly used in cancer research to

investigate tumor development, progression, and therapy

resistance. For example, Kim et al. found that oxaliplatin-resistant

pancreatic cancer cell lines had higher levels of MARCKS and

pAKT proteins than parental cells. Since MARCKS activates the

PI3K/AKT pathway, it might contribute to resistance (112).

Standard SILAC is limited to dividing cells in culture, but new

advances have shown in vivo SILAC mouse models (113, 114).

A parallel in vivo strategy is the KikGR (Kikume green -red) mouse

model used to map cell fate, track cell lineage, and live image cell

dynamics. KikGR is a photoconvertible green-to-red fluorescent

protein which converts from green to red upon exposure to violet

light, allowing researchers to track the movement of labeled cells. It is

expressed in a variety of cell types, including dendritic cells, osteoclast
Frontiers in Immunology 06
precursors, and tumor-infiltrating monocytes (115). Moriya et al. used

KikGR photoconvertible reporter mice to demonstrate that

immunogenic tumor cell death promotes the migration of tumor-

infiltrating dendritic cells (Ti-DCs) to draining lymph nodes where

they initiate effective CD8+ T cell responses. By photoconverting Ti-

DCs in situ, they showed that phagocytosis of dying tumor cells

triggered DC emigration through HMGB1-TLR4 and ATP-P2X7

signaling, ultimately enhancing memory precursor CD8+ T cell

formation and suppressing secondary tumor growth in a dendritic

cell-dependent manner (116).

Zman-seq is another iteration of longitudinal labeling that uses

fluorescent antibodies. Named after the Hebrew word for time,

Zman-seq applies both fluorescence-activated cell sorting (FACS)

and scRNA-seq to resolve cell-state transitions and molecular

signaling networks over time. To do this, antibodies for CD45 are

injected intravenously into mice every 12 hours beginning 60 hours

before endpoint. Each time point and antibody is associated with its

own fluorophore to mark when specific cells were in circulation.

Upon tumor collection, CD45+ cells are sorted by tumor exposure

time according to the fluorophores they expressed. The sorted

immune cells are then analyzed via scRNA-seq to extrapolate

how long they were in the tumor and how that continuous tumor

exposure time influences gene expression, transcription factor

levels, ligand interactions, and signal senders and receivers. All

these data can be used to resolve the moment immune cells become

dysfunctional or immunosuppressive in the tumor. For example, its

initial use revealed the temporal dynamics of immune cells in the

glioblastoma TME. They found that monocyte to TAM transition

correlates with tumor exposure time and NK cells became

dysfunctional the longer they were in the tumor. Trem2 was also

identified as a good immunotherapeutic target for redirecting TAM

differentiation towards an anti-tumor phenotype. As a new method,

Zman-seq has not yet been applied to many studies, but its

implementation would capture single immune cell dynamics in

real-time to inform how TME shape immune cell function. If paired

with spatial transcriptomics and imaging, it could show which

adjacent cells specifically contributed to these changes.

Limitations such as limited fluorophores, fading signals, and

recyclable epitopes can constrain its applications; however, Zman-

seq proves a feasible modality for identifying the specific identity

trajectories immune cells experience upon entering the TME (117).

Overall, these temporal techniques serve as potent tools for

studying infiltration, cell fate, and function. They can be limited by

label efficiency and stability, computational limitations,

downstream data analysis, and heterogeneity in large populations.

Still, temporal analysis remains vital for elucidating the changes in

the TME. Moreover, by incorporating these temporal analyses with

a spatial dimension, researchers can achieve a thorough perspective

of how time and space collectively influence cell fate and function.
Assessing time and space

The previously mentioned methods are useful for assessing

temporal or the spatial context of a change, but they do not provide
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both. To assess tissue dynamics, spatial methods should be paired

with real-time assays. This would create a more complete picture of

the complexity of biology that single time point and non-spatial

methods cannot attain. The following section discusses methods of

real-time investigation that incorporate space and their future

applications in cancer biology.
Single-molecule/cell real-time imaging

Real-time imaging can assess the secretion of single molecules.

One method, the interferometric detection of scattered light

(iSCAT), tracks single particle release from single cells. In iSCAT,

a cell secretes a protein within a detection field of view that appears

as diffraction-limited shadows. The darkness of the shadow

indicates the amplitude of the electromagnetic field that was

scattered by the protein, thereby quantifying the presence and

spread of protein secreted with single-cell resolution (118). iSCAT

has already assessed secretion of IgG from Laz388 cells derived from

B lymphocytes immortalized by Epstein-Barr Virus (118) and could

be similarly used to assess the secretion of IgG and cytotoxic

granules from TME-exposed B, NK, and T cells to assess

lymphocyte exhaustion.

Another label-free high-throughput method uses hyperspectral

photonic crystal resonant technology (PCRT) to map a gradient of

protein secreted from single cells and assesses binding capacity of

molecules. In PCRT, capture molecules, like antibodies, bind the

target protein to cause a refractive index change and create the

mapped gradient of protein secretions. These maps can be from

single or multiple cells if run in parallel in a large field of view,

providing the ability to image protein secretion frommultiple single

cells at once in real-time. This method has been applied to

understanding the effects of cancer cell secretions on other

populations by mapping platelet-mediated regulation and

secretion of thrombopoietin from a human hepatocyte carcinoma

cell line (119) and could be applied in TME research. However,

PCRT has low throughput, does not specifically quantify the

amount of secreted protein, can be influenced by non-specific

binding, and has low spatial resolution (119).

Instead, similar secretion range analyses done via a label-free

nanoplasmonic microwell array imaging system can create 4D (x, y,

intensity, time) quantifiable spatiotemporal secretion maps from

single-cells. This modality uses machine-learning cell tracking to

capture cellular morphology and motility as it maps secretion. It has

already been used to characterize antibody secretion from human

hybridoma cells (120). Despite a small imaging window, future

directions of this technique aim to add multiplexing capabilities to

detect multiple secreted biomolecules at a time in addition to

monitoring more than one cell type at a time. Such innovations

would contribute to studies on cancer and immune cell interactions,

such as analyzing how one immune-cell based cytokine could

influence the morphology of cancer cell lines from epithelial to

mesenchymal and tracing the changed cytokines the cancer cell

releases upon morphological changes. If adapted to track more than

one cell type at a time, label-free nanoplasmonic microwell array
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imaging system could record immune cells in conjunction with the

surrounding cancer cells, improving the ability of capturing cell-cell

signaling interactions and their consequential influence on the TME

in real-time (120).

Another imaging method, total internal reflection fluorescence

microscopy (TIRFM), does require a label and specialized

equipment but can provide real-time and high throughput

imaging of specific protein secretion. In this case, the fluorophore

on the target is only excited if it is a specific distance from the cell

(121). TIRFM has been used to assess immune cell secretion such as

IL-1b from non-classical monocytes and revealed the order in

which monocytes lost their cell membranes and secreted IL-1b
(196). F-actin patches have been analyzed with TIRFM (121), and it

has also been applied to studying the levels of apoptotic and

necrotic death that Campthothecin and Cisplatin induces in

breast cancer cells (122). As TIRFM can observe cell secretion

and other activities near cell membrane surfaces, it would be a

strong candidate for capturing cytotoxic immune cell activity in

TME such as CD8+ T cell or NK cell release of Granzyme B to kill

cancer cells or even record immune escape interactions such as

conjunction of PD-1 and PD-L1.

These in situ tools provide means to assess signaling and

secretion patterns of cells in the TME. Each method has its own

limitations depending on label-need, downstream analysis, and

required equipment, but all are robust ways of capturing cell

secretion in real-time. For a detailed analysis of these methods

with other TME models, see this review (123). Combining these

single-cell based signaling assays with more robust TME models

would provide improved translational capabilities to current

standard lab practices.
Multi-cell real-time imaging and
biosensors

Fluorescent biosensors
Fluorescent biosensors track cellular processes as they occur by

measuring the presence of a specific molecule in a mixture in real-

time. When this ligand binds to the sensor, the signal induces a

quantifiable physical change corresponding to the amount of the

target in a sample (urine, saliva, blood, plasma, etc.) (124).

Fluorescence-based, genetically encodable biosensors provide

information for events such as protein phosphorylation,

metabolism, neurotransmission, hormone analysis, DNA and

toxin detection, medical diagnoses, and drug delivery and

discovery; they are also used in multiple research fields, including

tumor biology (124–131). Fluorescence resonance energy transfer

(FRET) is a biosensor with a fluorophore/quencher pair that

conjugate to any target in the vicinity and trigger a fluorescent

signal that can be imaged (123). Using FRET, cancer studies have

highlighted specific peptide interactions, spatiotemporally

visualized signaling activity, and tested therapies involving

apoptosis and immune checkpoint inhibitors (132–137). FRET

has detected the amount of lactate in a single cancer cell (130)

and visualized kinase signaling activity and how specific drugs
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induce apoptosis in cancer cells (132–135). Time resolved FRET

tested small molecule inhibition of LAG-3 on T cells in relation to

FGL1 on human cancers (137) while nanosensors identified specific

exosomes to try to diagnose cancer earlier (136). As with most

fluorescent modalities, signal overlap and tissue penetrance can

pose problems with analysis, but there are workarounds. Even so, as

customizable, quantifiable, non-invasive, and high-resolution ways

to analyze live-cell signaling and biomolecule presence in real-time,

biosensors prove to be a useful tool in studying dynamics within the

TME. When combined with spatial and transcriptomic data, these

analyses could characterize the heterogeneity of TMEs across time.

Bioluminescence imaging
Bioluminescence imaging (BLI) is another non-invasive direct

imaging technique designed to measure luminescence in genetically

modified cells to trace their activity (138). BLI works by genetically

engineering cells to express a luciferase enzyme reporter which,

when bound to a specific added substrate, emits recordable light

(139). Originally, the firefly luciferase gene, luc, was added into a

virus’ genome and used to detect infected cells in culture and in

mouse tissue, creating a method for tracking the spread of viral

infection (140). Since then, luciferase reporters have expanded to

include other insect species, marine organisms, whole body cancer

progression models, immune infiltration, and immunotherapy

efficacy assays; they even have multiplexing ability (139, 141–

143). For example, a dual color luciferase reporter mouse

identified “hot” vs “cold” pancreatic cancer tumors based on T

cell infiltration and activation states (142). Dual luciferase reporters

tracked tumor cells and T cells with and without chimeric antigen

receptors (CAR) to see how CAR addition increases tumor killing

capacity of T cells in vitro and in vivo (143). Other applications of

BLI in the TME could include longitudinal tumor growth, attempts

at capturing circulating cancer cells in the blood stream, or immune

cell secretion of cytotoxic granules in a tumor as seen done by Chen

et al. to help track checkpoint inhibitor efficacy (144). BLI’s

effectiveness can be limited by tissue penetration, spectral overlap,

spatial resolution, luciferase kinetics, and its dependency on

substrate (145). While BLI is applied in longitudinal studies, these

snapshots of luciferase activity are captured in real-time, allowing

the collection of biologically relevant data that can be followed in

the same specimen. BLI is commonly used in TME analysis already,

and it is often used in conjunction with real-time imaging practices

as we will discuss. By providing a relatively simple yet specific way

of seeing more than one cell population interact at a time, BLI

applications in the TME allow researchers to watch cell dynamics in

environments of varying size.

Tumor on a chip
Recent advances in organoid and microfluidics have created

tumor-on-a-chip (TOC) to model the three-dimensional

complexity of TME in vitro. TOC has captured components of

TME including cancer cells, vasculature, stromal cells, immune

cells, and ECM in addition to heterogeneous metabolic factors like

oxygen, pH, nutrient gradients, and growth factors (123). These

features can self-organize or be designed to mimic the specific TME
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of humans or mice, improving upon standard in vitro cell cultures

and 3D spheroids/organoids (123, 146, 147). For instance,

vascularizing TOC with microfluidics successfully models drug

delivery, biochemical diffusion, and metastatic dynamics (148–

151). The benefits of being an in vitro system allow for fine-tuned

control of the environmental conditions and gene expression of the

constituent members as well as the use of standard cell proliferation,

viability, apoptosis, migration, and secretory assays. TOC captures

spatiotemporal heterogeneity of tumors more than a cell line and

has plenty of potential integration with omics. Therefore, TOC has

high translatability to in vivo studies while providing clear

applications to personalized medicine. It has been used to mimic

bone marrow structure to compare healthy and leukemic TME

(146) and model breast cancer cell metastasis (151). One study used

TOC to mode l the TME of g l iob las toma inc luding

immunosuppressive tumor associated macrophage modulation

and cytotoxic T cell response to anti-PD-1 therapy (147). While

TOC cannot capture the systemic influences seen in vivo and has a

simplified heterogeneity, it remains a model in which applying the

above real-time and single-cell assays to TOC could provide higher

resolution in current TME in vitro studies. Other uses for TOC

could be tracking immune cell homing ligands secreted by the

tumor to get a three-dimensional map of chemokine concentrations

over time or even immune cell movement through the TOC itself. It

could potentially be used to highlight heterogeneity and minimal

amount of MHC-I presentation by cancer cells to immune cells

more robustly than standard cell lines. TOC creates an opportunity

to study tumor heterogeneity in vitro; however, nothing is more

translatable than being able to record cellular activity in the animal

as it is happening. Intravital imaging allows for exactly that.
Intravital imaging

Intravital imaging (IVI), also called intravital microscopy,

incorporates many of the modalities we have discussed including

BLI and lineage tracing to record cell movement and interactions

inside the live animal as they occur. IVI can be used to measure

acute or chronic changes with repeated imaging of the same animal,

gaining a comprehensive depiction of live cell processes (152). For

acute studies, IVI focuses on thinner tissues that light can pass

through for direct imaging such as the ear, cremaster muscle, or

salivary gland of a mouse. However, for chronic studies, the entire

organ or its surface can be externalized for imaging. Alternatively,

an imaging window or chamber is installed directly into the mouse

for up to a month of imaging (152). These windows have been used

to study a wide array of organs including the brain, skin vasculature,

lymph nodes, liver, spleen, pancreas, small intestine, kidneys, lungs,

ovaries, and long bone (152–162). The cranial imaging window can

be used for long-term brain imaging though open-skull or thinned

skull windows. One study used this model to record glioblastoma

tumor cell migration into the tumor core, border, or invasive front

(155). Abdominal imaging windows capture any organ in the

abdominal cavity and can image for up to a month. Using these

windows, scientists have tracked mouse colorectal cancer metastasis
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to the liver and recorded pre-micro and micro-metastases (154).

Another study quantified pancreatic tumor cell hypoxia and its

spatial relationship with collagen and microvasculature architecture

(163). Lung imaging windows have visualized single tumor cells

interacting with macrophages and monocytes in lung vasculature

(157). Other applications recorded all steps of tumor metastasis and

seeding to the lung and even tracked neutrophils in pulmonary

capillaries working as defenders against pathogens (158, 159).

Dorsal skinfold chambers allow for imaging access of muscle cells

and mouse skin and have assessed solid tumor interactions with

bone in a miniaturized tissue-engineered bone construct (160).

Other methods of IVI include through the body cavity or by

externalizing the organ. This strategy has visualized resident

macrophage cloaking in response to cell injury to prevent

neutrophil-mediated inflammatory damage (161). It has also been

used to assess granulocyte monocyte progenitor populations in the

spleen of cancer bearing mice, finding that the spleen serves as a

source of tumor associated macrophages and neutrophils (162).

When these organ visualization methods are used with cell-tracking

such as BLI, lineage tracing, or reporters, IVI easily captures real-

time cellular activity of cancer, stromal, and immune components

of the TME in a live animal (163, 164).

Limitations of IVI include imaging depth penetration dependent

on the type of microscopy used, light scattering properties of the

imaged tissue, and limited number of fluorophores the camera can

simultaneously capture (152). Immobilization could induce shear force

on tissue, and many IVI models have to use immunodeficient mice to

avoid reactions to the cameras. Imaging time frame can also be a

limiting factor, but downstream fixing, sectioning, and staining of the

tissue in the imaging area can be correlated with the videos taken with

IVI for confirmation and deeper analysis of the end-point recording

(156). Image analysis itself can also be a bottleneck due to the densely

associated cells in tissues and large data files. Machine learning

algorithms have become more common to assist with IVI analysis,

especially time-lapse recordings (156). Despite these limitations, IVI

remains a comprehensive method of understanding the dynamics of

cancer cells and the TME in their natural environment, expanding our

knowledge of tumor development and treatment response. More

details about intravital imaging methods and applications can be

found in these reviews (152, 153, 156, 164, 165).

IVI lets researchers look into a live animal and record biological

processes as they happen, so events like cell movement and cytokine

release can be visualized in real-time. This advancement in

biological research will expand translatability to cancer

diagnostics and treatment. With biomedical imaging becoming a

major tool for cancer identification and therapy, increasing IVI

studies for potential incorporation with diagnostic and therapeutic

imaging would provide an efficient axis for elevating research from

mice to humans.
Diagnostic and translational imaging

Biomedical imaging is of prime importance in comprehensive

cancer care. It offers numerous benefits like real time surveillance,
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non-invasive access to the tissue, and the ability to operate over a

wide spectrum of spatial and temporal levels involved in the

biological system (166). Ultrasound, Computed Tomography

(CT), and Magnet ic Resonance Imaging (MRI) , and

radiotheranostics are major techniques for biomedical imaging,

each offering unique advantages and information (Table 1). These

methodologies are also available in the pre-clinical setting, thereby

allowing mechanistic studies in model systems that can be

translated into the clinic.

Biomedical imaging performed in the context of longitudinal

imaging can inform the evolution and progression of disease. A

study by Javadi et al. found that 80% of patients with pancreatic

cancer experienced locoregional or distant recurrence within two

years post-resection. Using imaging modalities like multi-detector

CT (MDCT), PET/CT, and MRI, they determined that baseline

MDCT is effective in detecting early lesions after resection (183).

Another study indicates that FDG PET-CT provides better

diagnostic accuracy than CT alone for detecting recurrent PDAC.

However, evidence supporting routine radiologic surveillance post-

resection is limited, requiring further research to optimize follow-

up strategies (184). These longitudinal imaging studies are further

enhanced by the collection of biological samples at the time of the

longitudinal imaging, acting to confirm the tissue, cellular, and

molecular components of the lower resolution imaging data.
Computational tools for spatiotemporal
omics

High-throughput sequencing techniques combine high-

resolution spatial and temporal profiling to study the dynamic

organization and biological processes within TME. Spatial

alignment tools like MOSCOT and SLAT align the heterogeneous

tissues across multiple time points (185, 186). MOSCOT was used

to overcome the limitations in spatial transcriptomic data by

integrating gene expression, protein abundance, and single-cell

annotations to accurately characterize liver zonation and align

large-scale tissue sections. This enabled the identification of

central and portal veins, mapping of Kupffer cells, and

construction of a consensus tissue view. On the other hand, SLAT

accounts for non-rigid structural changes without manual

annotations and offers scalability, adaptability, and real-time

performance, making it a robust tool for diverse biological

applications such as developmental mapping, in silico data

enhancement, and cross-species comparisons. Spateo and stLearn

integrate spatial and temporal expression for lineage tracing and cell

fate inference during a biological process (187, 188). The joint

integration of spatial and temporal dimension of omics layers is

challenging from several perspectives such as alignment, tractability

and resolution (189). Explainable AI (XAI) is also achieving broader

recognition because of its ability to make complex machine

learning models, especially deep learning, more transparent and

interpretable—an essential step in understanding hidden patterns in

spatiotemporal omics data (190). Among XAI tools, SHAP (Shapley

Additive exPlanations) provides detailed information into how
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individual features influence a model’s prediction, offering both

global and local interpretability (191). Grad-CAM (Gradient-

weighted Class Activation Mapping), on the other hand, is a

visual approach that highlights the regions of input images that
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drive convolutional neural network predictions, making it useful in

spatial analyses (192). Though XAI is in its infancy in biomedical

discipline, such methods help researchers build trust in AI models

and better understand the underlying biology. Even though the tool
TABLE 1 Strengths, limitations, and TME applications of diagnostic and translational imaging.

Method Strengths Limitations Applications in TME

Ultrasound • Utilizes sound waves to create images
of internal body structures

• Non-invasive

• Real-time imaging

• Safe, does not use ionizing radiations

• Cost effective

• Sound waves do not pass through
bones and air

• Might not capture deep tissues in
the body

• Routine cancer screenings and lesion
characterization in organs like the
liver, urogenital tract, and soft
tissues (167)

• Early breast cancer detection
(168, 169)

• Used microbubbles linked to
molecularly-targeted ligands that bind
to specific tumor markers, enhancing
contrast and facilitating the
identification of cancerous
tissues (170)

Magnetic Resonance Imaging (MRI) • Non-invasive imaging to produce 3-D
anatomical images using magnets and
radio waves

• Contrast agents enhance ability to
detect specific cellular/
subcellular events

• Non-invasive

• No ionizing radiations

• Uses very strong magnetic field,
thereby excluding people with any
form of implants, especially those
containing iron

• Expensive and more time consuming
than CT

• Agents can be targeted to specific
receptors or molecules, allowing for
detailed imaging of tissues like
myocardium, atherosclerotic plaques,
or tumors (171–173)

• Dynamically monitors changes in
tumor vascular structures and
immune responses (174)

• Integrates with photoacoustic imaging
(MR/PA), enhancing its utility in
assessing therapeutic responses (174)

Computed Tomography (CT) • Utilizes x-rays to produce high-
resolution cross-sectional images of
the body

• CT can create 2D or 3D images,
which can be rotated to detect
the issue

• Quick scans (less than 1 minute)

• Exposes patients to more radiation
than x-rays

• Less proficient than MRI to detect
soft tissues

• Contrast agents can cause allergic
reactions and lethargy in patients

• Transplants and metal objects can
produce artifacts

• Not suitable for pregnant women

• Evaluates, stages, and monitors cancer
with intravenous and oral contrast
agents enhancing assessment accuracy
(175, 176)

• Screening for lung cancer using
low-dose CT in individuals with
smoking history (177)

• Colonoscopy combined with CT
(virtual colonoscopy) to detect large
colorectal polyps and tumors (178)

Positron Emission Tomography (PET) • Generates 3D functional images of the
body by detecting gamma rays
emitted from positron-emitting
radiotracers
(fluorodeoxyglucose, FDG).

• Non-invasive

• Often combined with CT or MRI to
enhance spatial resolution and
provide anatomical context

• Low signal to noise ratio can lead
to noisy images and/or inaccurate
detection of very small lesions and
subtle changes in tracer uptake

• Spatial resolution of 4.5mm can lead
to artifacts and issues in detecting
small lesions

• Diagnoses tumors, assesses metastases,
and evaluates treatment
responses (179)

• Measures molecular properties of
diseases crucial for prognosis, therapy
selection, and monitoring early and
long-term responses to
treatment (180)

Radiotheranostics • Detects the presence of a target in
patients before giving them
treatment, separating responders
from non-responders.

• Consists of a radionuclide for
diagnosis or therapy, a ligand or
probe for a cancer-specific molecular
target, and a chelator to link them

• Real-time

• Diagnostic and therapeutic functions

• Precision targeting to minimize side
effects

• Limited availability of suited
radioisotopes

• Discrepancy between optimal imaging
and therapeutic ability of the agent

• Requires precise calculation of the
dose to be delivered to the target
tissue using complex
theranostic agents

• Targeted prostate specific membrane
antigen in prostate cancer and NaI
symporter in differentiated thyroid
cancer (181)

• Fibroblast activation protein has been
targeted in multiple cancers (182)

• CD20 has been a target for B cell
non-Hodgkin lymphoma as well as
CD45 in acute myeloid
leukemia (182)
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development for spatiotemporal omics is in its early phase, it holds

immense potential to revolutionize our understanding of complex

biological processes by providing insights into the spatial and

temporal dynamics of molecular interactions within tissues,

paving the path for a new era of precision medicine (193, 194).
Discussion

Tumor microenvironments and the specific dynamics of

their components are highly complex, necessitating equally

complex methods for their study. The components of the

microenvironment are regulated by both space and time, and

understanding both of those dimensions would allow for finely

tuned windows of intervention in personalized care. Standard

tissue sampling across longitudinal studies can extrapolate general

TME evolution over time, but each sample is an isolated incident

unable to track the lives of each cell across tumor progression. These

methods can be enhanced with lineage tracing, barcoding, and active

reporters to identify specific cell types undergoing fate changes.

Spatiotemporal imaging of live cells in vitro and in vivo are ideal

methods for recording cell activity in real-time and have the

potential to be integrated with standard pre-clinical and clinical

image technologies to translate these assessments to clinical practice.

Overall, the addition of space and time to high-dimensional cellular

analyses is becoming increasingly feasible for cancer biology and

clinical translation.
Future directions

The integration of spatiotemporal strategies, AI technology, and

infrastructure readiness will shape the future of precision medicine

to better capture the dynamic and contextual nature of cancer

biology. Emerging tools that enable high-resolution, multiplexed,

and real-time profiling of gene, protein, and metabolite expression

across space and time will provide a deeper and better

understanding into tissue architecture, cellular interactions, and

disease progression. These advances will require robust, user-

friendly computational platforms capable of handling high-

dimensional, multimodal data. AI and machine learning

modalities are powerful tools for interpreting these complex

spatiotemporal dataset. Such analysis could help personalize

clinical decision making once these technologies are supported by

rigorous validation and standardized protocols. As spatiotemporal

datasets continue to grow, comparison between diverse cohorts will

enhance clinical relevance and reproducibility. Additionally,

achieving spatiotemporal readiness—coordinating where and

when therapies are manufactured, processed, and delivered—will

be vital to ensure timely, cost-effective, and equitable access.

Together, these strategies demand interdisciplinary collaboration

and thoughtful infrastructure planning to realize the full promise of

spatiotemporal precision medicine.
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Conclusion

To move beyond an in medias res understanding of tumor

microenvironments, we must incorporate both spatial and temporal

perspectives into our research frameworks. While spatial biology has

delivered critical details into cellular localization and interactions, and

temporal strategies have revealed dynamic changes in molecular

activity, their integration offers a more complete and actionable

picture of disease progression. By capturing how cell states, signaling

pathways, and microenvironmental contexts evolve over time and

space, spatiotemporal analysis enhances our ability to identify

therapeutic windows, track disease trajectories, and inform precision

interventions. As tools and methodologies continue to advance,

embracing this four-dimensional approach will be essential to fully

unfold the complexities of biology and improve patient outcomes.
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