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Background: Acute lymphoblastic leukemia (ALL) is a hematological malignancy

with high survival rates in children; however, certain high-risk subtypes pose

significant challenges due to poor prognosis and frequent relapse. Ubiquitination,

a post-translational modification critical for protein regulation, has been implicated

in various cancer processes, yet its role in ALL remains poorly understood.

Methods: Using the TARGET database, we identified molecular subtypes of ALL

through consensus clustering based on ubiquitination-related genes (URGs). A nine-

gene prognostic model was constructed using LASSO and Cox regression analyses.

The immunological landscape variations between high- and low-risk groups were

assessed using immune cell infiltration analysis and functional enrichment studies.

FBXO8 was further explored through functional experiments in vitro and in vivo.

Results: Four ALL subtypes with distinct survival outcomes were identified, with

Cluster D representing the high-risk group. Patients were divided into high- and

low-risk groups using the nine-gene predictive model, and FBXO8 was found to

be a significant protective factor. According to immune landscape analysis, high-

risk groups had an immunosuppressive microenvironment that was correlated

with FBXO8 expression and marked by an increase in regulatory T cells and M2

macrophage infiltration. In vitro functional assays, FBXO8 knockdown notably

enhanced cell proliferation and suppressed apoptosis in ALL cells. In FBXO8-

knockdownmouse models, in vivo investigations demonstrated increased tumor

growth, reduced apoptosis, and diminished survival rates.

Conclusion: This work identifies FBXO8 as a crucial therapeutic target and

prognostic biomarker for ALL. Knockdown of FBXO8 led to the suppression of

apoptosis and increased tumor growth, suggesting potential therapeutic

applications. These results highlight the need for more investigation into

ubiquitination-related pathways and offer important new insights into high-risk ALL.
KEYWORDS
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1 Introduction

Acute lymphoblastic leukemia (ALL) is a malignant tumor

arising from lymphocyte progenitor cells, characterized by rapid

progression and a high fatality rate (1, 2). This blood and bone

marrow cancer frequently causes extensive organ damage and,

without timely treatment, can lead to death within weeks due to

bone marrow failure, severe infections, or bleeding (3, 4). Notably,

over 50% of ALL cases occur in children. While the cure rate for

childhood ALL (cALL) has increased to 80–90% in recent years,

several high-risk subtypes still have high relapse rates and poor

treatment results, which poses a serious risk to pediatric survival (5–

8). Therefore, it is still crucial to conduct continuous research into

novel therapeutic approaches in order to enhance clinical results for

these individuals.

Ubiquitination plays a crucial role in various biological

functions, such as regulating signaling pathways, maintaining

cellular homeostasis, and degrading proteins (9–11). Recent

studies have highlighted its significant impact on the initiation,

progression, and treatment resistance of ALL. For instance,

ubiquitination regulates the degradation of Notch1, ensuring the

stability of the Notch signaling pathway and preventing T-ALL

development (12, 13). However, mutations in the E3 ubiquitin

ligase FBW7 can disrupt this balance, triggering the onset of ALL

(14–16). Moreover, ubiquitination targets extend to cell cycle

regulators, apoptosis-related proteins, and immune checkpoint

molecules. Evidence indicates that MDM2-mediated accelerated

degradation of p53 and abnormal ubiquitination of key cell cycle

proteins, such as Cyclins and CDKs, contribute to the uncontrolled

proliferation and survival of ALL cells (17, 18). Similarly,

dysregulated degradation of PD-L1 can impair the efficacy of

CAR-T cell therapy and targeted immunotherapy (19).

Emerging evidence underscores the therapeutic potential of

targeting ubiquitination pathways in ALL. For example,

proteasome inhibitors like bortezomib have shown efficacy in

newly diagnosed T-ALL (20). Additionally, it has been reported

that E3 ubiquitin ligase FBW7 is linked to NOTCH1-driven T-ALL

(21). Recent study also reveal that ubiquitination of immune

checkpoints (e.g., PD-L1) regulates their stability, offering a dual

therapeutic strategy to enhance immunotherapy efficacy (22).

Furthermore, novel inhibitors targeting deubiquitinating enzymes

such as USP7 or USP14 are under investigation for their ability to

restore tumor suppressor functions and overcome chemoresistance

(23). Despite these advances, the heterogeneity of ubiquitination-

related mechanisms in ALL remains underexplored. Comprehensive

profiling of ubiquitination-related genes (URGs) could therefore

uncover subtype-specific vulnerabilities and guide the development

of precision therapies.

Our study aimed to find the important part ubiquitination plays

in ALL and the necessity for future research to provide more

accurate and potent treatment plans. These findings not only

advance our understanding of ubiquitination in ALL but also

highlight actionable targets for improving treatment outcomes,

particularly in high-risk patients who face limited therapeutic
Frontiers in Immunology 02
options. Pediatric patients and those with recurrent disease may

benefit greatly from such developments.
2 Methods

2.1 Data acquisition

The transcriptome sequencing data for ALL participants were

collected from the “Therapeutically Applicable Research to

Generate Effective Therapies” (TARGET) database. Following the

exclusion of samples with missing clinical information or survival

lengths of less than 30 days, the analysis comprised 464 cALL

patients with complete mRNA sequencing data and extensive

clinical information. Ubiquitination-related genes (URGs) were

found by thoroughly reviewing pertinent datasets from the GSEA

database (https://www.gsea-msigdb.org/gsea/index.jsp) and the

Genecards database (https://www.genecards.org/). A total of 1121

URGs with strong research evidence were curated and confirmed

for further study (Supplementary Table 1).
2.2 Consensus clustering analysis

Consensus clustering was performed in R (version 4.1.0) with

the ConsensusClusterPlus package to identify molecular subgroups

of ALL patients based on URG expression profiles. Resampling was

performed 1,000 times with a subsample ratio of 0.8, and the best

number of clusters (k = 4) was identified using the consensus

cumulative distribution function (CDF) and delta area plot. Patients

were divided into four subtypes: clusters A, B, C, and D.

Principal Component Analysis (PCA), done with the factoextra

package, was used to confirm and illustrate the clustering results,

emphasizing the significant separation of subtypes. Heatmaps created

with the ComplexHeatmap package showed the expression patterns

of URGs across clusters, supporting the robustness of the discovered

molecular subtypes. Survival Analysis Kaplan-Meier survival curves

were created to assess the overall survival (OS) of patients in various

clusters or risk groups. The analysis was carried out in R, with the

survival package calculating survival probability and the survminer

package visualizing the Kaplan-Meier curves. Log-rank tests were

used to determine statistical significance and were accomplished

using the survdiff function in the survival package.
2.3 Differential Gene Expression Analysis

Based on the subtypes discovered using consensus clustering and

the findings of survival analysis, Cluster D was designated as the high-

risk category with the worse prognosis among ALL patients. Using R’s

limma package, we discovered differentially expressed genes (DEGs)

between Cluster D and the other clusters. DEGs were chosen based on

an adjusted p-value < 0.05 and |log2 fold-change| > 0.585, indicating

genes strongly related with the high-risk condition.
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2.4 Construction of risk score (prognosis)
model

To identify ubiquitination-related genes (URGs) that are

significantly associated with prognosis and develop a prognostic

prediction model, 69 genes that overlap with URGs and

differentially expressed genes (DEGs) were subjected to LASSO

regression, as well as univariate and multivariate Cox regression

analyses. These studies were carried out in R with the glmnet

package for LASSO regression and the survival package for

Cox regression.

The dataset was randomly divided into two sets: training and

validation, at a 1:1 ratio. Based on the Cox regression results, a risk

score formula was created by adding the expression levels of the

final risk-associated genes, which were weighted by their respective

Coef coefficients. The coefficient of the final 9-gene signature

formula was displayed in Supplementary Table 3. Each patient

sample received a risk score, and all samples were divided into high-

risk and low-risk groups using the median risk score as the cutoff.

This model was validated as an effective predictor of patient

prognosis using Receiver Operating Characteristic (ROC) curve

analysis with the TimeROC program.
2.5 Functional enrichment analysis

Using the same screening criteria, we discovered risk-related

differentially expressed genes (RDEGs) between the high-risk and

low-risk groups. The differential analysis was performed using the

wilcox test, with genes having a log fold change (logFC) greater than

0.585 and a p-value less than 0.05 defined as RDEGs. Functional

enrichment analysis, which included Gene Ontology (GO) and

KEGG pathway analyses, was used to investigate the biological

processes, cellular components, and molecular functions associated

with these RDEGs. The enrichment analysis and visualization were

carried out in R with the clusterProfiler tool. GO analysis revealed

critical biological processes, cellular components, and molecular

functions, whereas KEGG pathway analysis showed relevant

signaling and metabolic pathways related with the RDEGs.
2.6 Immune landscape analysis

Previous research has shown that the tumor microenvironment

(TME) is crucial for tumor progression (24, 25). In this study, the

CIBERSORT algorithm was used to compare the makeup of

immune cells in high-risk and low-risk ALL patients. Data

visualization was carried out in R using the ggplot2 and

ComplexHeatmap packages to show significant variations in

immune cell distribution between the two risk groups (p-values

computed using the Wilcox test).

Single-sample Gene Set Enrichment Analysis (ssGSEA) with the

GSVA program was used to determine key immunological

characteristic scores such as antigen presentation capacity,

inflammatory activity, and cytotoxicity (26) Furthermore, the
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expression levels of classical immune checkpoint genes (e.g.,

PDCD1, CTLA4, LAG3) were compared between high-risk and

low-risk groups to better understand the function of immune

regulation in ALL progression.

The “pRRophetic” R software was used to perform drug

sensitivity analysis, which estimates IC50 values for various

medicines based on gene expression profiles and data from the

GDSC database. The Wilcoxon rank-sum test was used to analyze

statistical differences in drug sensitivity between high-risk and low-

risk ALL groups. The results, displayed as boxplots, revealed

medicines with significantly varying IC50 values, indicating

prospective options for personalized therapy regimens in ALL.
2.7 Cell lines and culture conditions

Jurkat and 293T cells were cultured in RPMI-1640 medium

(Thermo Fisher Scientific) and Dulbecco’s Modified Eagle’s Medium

(DMEM; Thermo Fisher Scientific), which were both supplemented

with 10% fetal bovine serum (FBS; Gibco) and 1% penicillin-

streptomycin. To reduce FBXO8 expression, a particular short

hairpin RNA (shRNA) sequence was developed and cloned into the

pLKO.1 vector (Plasmid #10879) with EcoRI and AgeI restriction

enzymes (New England Biolabs). Lentiviral transduction was carried

out using the packaging plasmids psPAX2 (Plasmid #12260) and

pMD2.G (Plasmid #12259). Cells were centrifuged at 1,000 rpm for

1.5 hours at 37°C and transduced with 8 µg/ml polybrene (Sigma-

Aldrich). Transduced cells were chosen for 48 hours with 1 µg/ml

puromycin (Beyotime Biotechnology), and knockdown effectiveness

was verified by qPCR (Thermo Fisher Scientific). The primer sequences

for FBXO8 used in the in vitro investigation were as follows: Forward:

CCGGTATGACAACATCTACCTTATTCTCGAGAATAAGGTA

GATGTTGTCATATTTTTG. Reverse: AATTCAAAAATATGACAA

CATCTACCTTATTCTCGAGAATAAGGTAGATGTTGTCATA.
2.8 qPCR analysis

Total RNA was isolated from cells using the TRIzol reagent

(Thermo Fisher Scientific) per the manufacturer’s instructions.

cDNA was generated from 1 µg of total RNA using the High-

Capacity cDNA Reverse Transcription Kit (Thermo Fisher

Scientific). SYBR Green Master Mix (Thermo Fisher Scientific)

was used to run qPCR on an Applied Biosystems QuantStudio 5

Real-Time PCR System. The FBXO8 expression was normalized to

GAPDH, and relative expression levels were estimated using the 2^

(-DDCt) technique. Supplementary Table 3 contains primer

sequences for FBXO8 and its negative control, GAPDH. Each

sample was examined three times to verify repeatability.
2.9 Apoptosis analysis by flow cytometry

Apoptosis was detected with the Annexin V-FITC/PI Apoptosis

Detection Kit (BD Biosciences). The cells were extracted, washed
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twice with cold PBS, and resuspended in binding buffer at a

concentration of 1 × 10^6 cells/ml. Next, add 5 µl of Annexin V-

FITC and 5 µl of propidium iodide (PI) to 100 µl of cell suspension.

The samples were incubated in the dark at room temperature for 15

minutes before being examined using a BD LSRFortessa flow

cytometer (BD Biosciences).
2.10 T-ALL mouse model construction

T-ALL models were established using C57BL/6J mice aged 8 to

12 weeks. Retroviruses carrying the MSCV-NOTCH1-IRES-GFP

sequence were generated by transfecting 293T cells with plasmids

using polyethylenimine (PEI; Polysciences). Viral supernatants were

collected at 48 and 72 hours post-transfection. Bone marrow (BM)

cells were harvested from mice pre-treated with 5-fluorouracil (5-

FU; Sigma-Aldrich) to enrich hematopoietic stem and progenitor

cells (HSPCs). These BM cells were infected with the retroviruses in

the presence of polybrene (8 µg/ml; Sigma-Aldrich) and cultured in

Iscove’s Modified Dulbecco’s Medium (IMDM; Thermo Fisher

Scientific) supplemented with 10% fetal bovine serum (FBS;

Gibco) and 1% penicillin-streptomycin (Thermo Fisher Scientific).

Infected cells were transplanted intravenously into lethally irradiated

(9 Gy) recipient mice (X-RAD 320; Precision X-Ray).

FBXO8 knockdown was achieved by lentiviral transduction using

vectors carrying FBXO8-specific shRNA, packaged with psPAX2 and

pMD2.G plasmids. The shRNA sequence for FBXO8 was as follows:

AATTAAAAGAGAATCTATCTTGATGAAAGTTCGCTTTCATC

AAGATAGATTCTC; Reverse: CCGGGAGAATCTATCTTGATGA

AAGCGAACTTTCATCAAGATAGATTCTCTTTT. The scramble

shRNA sequence was set as negative control (Plasmid # 1864).

Lentiviral particles were produced in 293T cells and transduction

efficiency was enhanced with polybrene. Knockdown was confirmed

by qPCR using SYBR Green Master Mix (Thermo Fisher Scientific).
2.11 Leukemic cell transplantation

Primary leukemic cells were cultured in RPMI-1640 medium

(Thermo Fisher Scientific) supplemented with 10% FBS, SCF

(PeproTech), IL-3 (PeproTech), IL-6 (PeproTech), and GM-CSF

(PeproTech), all at 10 ng/ml. The cells were infected with

retroviruses, centrifuged (1,500 rpm, 1.5 hours; Eppendorf

5804R), and cultured for 2 hours before the media was replaced.

Puromycin (2 µg/ml; Beyotime) was used to select infected cells

over two days. Leukemic cells from T-ALL mice were administered

intravenously into mice that had been sub-lethally irradiated

(4.5 Gy).

Survival, weight changes, and leukemic progression were all

observed in recipient mice. The leukemic load in BM and peripheral

blood was determined using flow cytometry (BD LSRFortessa). All

animal research followed ethical rules established by the Ruiye

Model Animal (Guangzhou) Biotechnology Co., Ltd. Laboratory

Animal Ethics Committee (RYEth-20240329576).
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3 Results

3.1 Molecular subtypes of ALL identified by
consensus clustering

Based on consensus clustering analysis, ALL patients were

categorized into four distinct molecular subtypes (Clusters A, B,

C, and D; Figures 1A–C). PCA revealed clear separation of the four

subtypes in two-dimensional space, reflecting significant differences

in gene expression profiles among them (Figure 1D). This robust

classification provides a solid foundation for subsequent

investigations into biological functions.

Kaplan-Meier survival analysis revealed substantial variations

among subtypes, with Cluster D having the lowest overall survival

and Cluster B having the best prognosis (p < 0.001, Figure 1E).

These findings reveal specific biological factors that drive the

progression and prognosis of each subtype. The PCA and survival

analysis results are consistent, which verifies the subtype

classification’s dependability. Cluster D’s much lower survival

rates as a high-risk subtype indicate the presence of distinct

molecular processes connected to malignancy, necessitating

additional exploration.
3.2 Construction and evaluation of risk
prognosis model

Using a Venn diagram (Figure 2A), 69 potential prognostic

genes were discovered. These were refined further using LASSO

regression analysis (Figures 2B, C), resulting in the identification of

nine key genes (ATL2, MKRN1, FBXW8, FBXO8, DCAF16, WSB1,

CHFR, MDM2, SOCS2) that were found to be strongly associated

with the prognosis of ALL patients, as determined by univariate

(Supplementary Figure 1) and multivariate COX regression

analyses. The expression heatmaps (Figures 2D-F) show that

there are significant changes in the distribution of these

important genes between high-risk and low-risk patient groups

across all data, including the training and validation sets.

Patients in the high-risk group had significantly lower survival

durations than those in the low-risk group (p < 0.001) across the

overall cohort (Figures 3A, D, G), training (Figures 3B, E, H), and

test sets (Figures 3C, F, I). The Kaplan-Meier survival curves

supported the risk score’s strong prediction ability for the

ALL prognosis.

ROC curve analysis (Figures 4A-C) was used to evaluate the

model’s predictive performance across 3, 4, and 5 years. The AUC

values for the total cohort were 0.873, 0.840, and 0.824; for the

training set, 0.870, 0.851, and 0.868; and for the test set, 0.876, 0.826,

and 0.779, all indicating good discrimination ability. Furthermore,

incorporating clinical factors into the study (Figures 4D-F)

indicated substantial relationships between the risk score and

pat ient gender and age , demonstra t ing the model ’ s

clinical significance.
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3.3 Functional enrichment analysis

The functional enrichment analysis indicated significant

differences between the high-risk and low-risk groups in biological

processes, cellular components, molecular activities, and pathways. In
Frontiers in Immunology 05
terms of biological processes, the training-cohort was significantly

enriched in immune regulation-related processes such as B cell-

mediated immunity, immunoglobulin-mediated immune response,

megakaryocyte differentiation, and lymphocyte-mediated immunity

(Figure 5A), whereas the validation cohort was enriched in
FIGURE 1

Molecular Subtypes of ALL Identified by Consensus Clustering and Their Prognostic Implications. (A) Consensus clustering matrix for k = 4, showing
clear separation of the four clusters. (B) Consensus cumulative distribution function (CDF) plot for different cluster numbers, indicating stable
clustering results. (C) Delta area plot showing the relative change in the area under the CDF curve, with k = 4 selected as the optimal number of
clusters. (D) PCA illustrating the distribution of samples across the four identified clusters. (E) Kaplan-Meier survival curves showing significant
differences in overall survival among the four clusters.
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megakaryocyte differentiation, T cell differentiation, lymphocyte

immunity, and mitochondrial apoptosis-related processes

(Figure 5B). In terms of cellular components, both cohorts showed

significant enrichment in key structures such as nucleosomes,

nucleoli, and mitochondrial inner membranes (Figures 5C, D); In

molecular function analysis, the DEGs in training cohort was more

enriched in chromatin structural components, ribosome structural

components, and unfolded protein binding (Figures 5E, F), whereas

the DEGs in validation cohort was also significantly associated with

ribosome binding and ATPase regulatory activity. Pathway analysis

revealed that the high-risk group was considerably enriched in

inflammation and apoptosis-related pathways, such as neutrophil

extracellular trapping formation (NETosis), apoptosis, protein

processing in the endoplasmic reticulum, and the IL-17 signaling

pathway. In contrast, the validation cohort had higher levels of

proliferation and metabolism-related pathways, such as the cell

cycle, oxidative phosphorylation, glycolysis, and Epstein-Barr virus

infection (Figures 5G, H). Overall, the DEGs in training cohort was

more associated with inflammation, immune response, and

apoptosis, whereas the DEGs in validation cohort was primarily

involved in metabolism and proliferation-related processes, providing

important insights for future research into the molecular mechanisms

of ALL and precision treatment strategies.
3.4 Immune landscape analysis

Immune checkpoint gene expression levels differed significantly

between high-risk and low-risk groups. Patients in the high-risk

group had significantly higher expression of immune checkpoint

genes such as PDCD1(PD-1), whereas certain immune-related genes
Frontiers in Immunology 06
were overexpressed in the low-risk group. These results indicate

that the high-risk group may have a more active immunological

escape mechanism (Figure 6A). Furthermore, the immunological

feature scores differed significantly between the two groups. The

high-risk group scored significantly higher on antigen presentation

inhibition (APC co-inhibition), inflammatory activity, and T cell

co-stimulation, while the low-risk group scored higher on antigen

presentation activation (APC co-stimulation) (Figure 6B).

Immune cell infiltration was also found to be substantially

linked with important gene expression (Figure 6C). Treg cells and

M2 macrophages in the high-risk group correlated positively with

important genes including FBXO8 and MDM2. In contrast,

activated CD4+ memory T cells were positively related to the

expression of MKRN1. These data highlight that the high-risk

group has an immunosuppressive milieu, whereas the low-risk

group is more related with an immune-activated state.
3.5 Drug sensitivity analysis

The study found significant differences in medication sensitivity

between the high-risk and low-risk groups. The high-risk group had

higher sensitivity to routinely used medications such as cytarabine

(Figure 7A, p = 1.9e-07), targeted medicines such as doxorubicin

(Figure 7B, p < 2.22e-16), cyclopamine (Figure 7C, p < 2.22e-16).

rapamycin (Figure 7D, p < 2.22e-16), roscovitine (Figure 7E, p =

5.2e-07), and sorafenib (Figure 7F, p < 2.22e-16) demonstrated

lower sensitivity in the high-risk group. These findings show

considerable medication resistance in the high-risk population,

which may contribute to their poor prognosis and pose possible

hurdles for treatment management.
FIGURE 2

Identification of Prognostic Genes and Expression Patterns (A) Venn diagram showing 67 overlapping genes between DEGs and URGs. (B) LASSO
coefficient profiles of the candidate genes. (C) Partial likelihood deviance plot used to determine the optimal lambda value, selecting nine key genes.
(D-F) Heatmaps showing the expression patterns of the nine key genes in high-risk and low-risk groups for all samples (D), training set (E), and
validation set (F). High-risk patients exhibit significantly different expression profiles compared to low-risk patients.
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FIGURE 3

Risk Score Distribution and Survival Analysis (A–C) Scatter plots showing survival status (alive or dead) of ALL patients in the entire cohort (A), training
set (B), and test set (C) ranked by increasing risk scores.(D–F) Distribution of risk scores in high-risk and low-risk groups for the entire cohort (D),
training set (E), and test set (F). High-risk groups have significantly higher scores. (G-I) Kaplan-Meier survival curves for the entire cohort (G), training
set (H), and test set (I), illustrating significantly poorer survival outcomes in the high-risk group (p < 0.001).
FIGURE 4

Model Performance and Clinical Association Analysis (A, C) ROC curves evaluating the predictive performance of the risk model in all samples (A),
training set (B), and test set (C). The AUC values at 3, 4, and 5 years demonstrate the model's strong predictive ability. (D-F) Clinical characteristic
distribution, showing the association of gender, age, and risk groups in all samples (D), training set (E), and test set (F). Significant correlations
between risk scores, gender, and age are observed. Chi-squared test was employed. (p<0.05*, p<0.01**, p<0.001***).
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FIGURE 5

Functional Enrichment Analysis of High-Risk and Low-Risk Groups (A, B) Biological processes showing immune regulation and differentiation as key
features in both cohorts. (C, D) Cellular components enriched in nucleosomes, nucleoli, and mitochondrial structures.(E, F) Molecular functions
highlighting chromatin and ribosome-related activities. (G, H) KEGG pathways showing inflammation and apoptosis dominance in the training
cohort, and metabolism and proliferation in the validation cohort.
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FIGURE 6

Immune Landscape Analysis (A) Elevated immune checkpoint genes (e.g., PDCD1) in the high-risk group compared to the low-risk group. (B)
Immune feature scores show significant differences in antigen presentation and T cell function between groups. (C) Immune cell infiltration was
linked with important gene expression. (p<0.05*, p<0.01**, p<0.001***).
FIGURE 7

Drug Sensitivity Analysis in High-Risk and Low-Risk Groups (A, F) Boxplots showing predicted IC50 values for cytarabine (A), doxorubicin (B),
cyclopamine (C), rapamycin (D), roscovitine (E), and sorafenib (F). The high-risk group demonstrates significantly higher IC50 values for most drugs,
indicating reduced drug sensitivity compared to the low-risk group (p < 0.001).
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3.6 FBXO8 knockdown inhibits apoptosis
and promotes ALL progression

To discover possible treatment targets, we ran survival analyses

on the nine main genes in the prognostic model. Kaplan-Meier

survival curve analysis showed that ALL patients with high FBXO8

expression had significantly improved survival rates, whereas those

with low FBXO8 expression had significantly worse outcomes, both

in the training and validation cohorts (Figures 8A, B, p < 0.001).

qPCR analysis showed that shFBXO8 therapy dramatically reduced

FBXO8 expression relative to the shNC control group (Figure 8C, p

< 0.001). In cell proliferation experiments, the shFBXO8 group’s

proliferation rate was significantly higher than the control group

(Figure 8D, p < 0.001). Flow cytometry analysis showed a significant

decrease in Annexin V-positive cells after shFBXO8 treatment.

(Figures 8E, F, p < 0.01). This suggests that FBXO8 knockdown

decreases apoptosis in ALL cells.

Given the variations in T cell invasion and function shown by

the immune landscape study, we focused on developing a T-ALL

mice model for further investigation. FBXO8 expression decreased

significantly after knockdown (Figure 8G, p < 0.01). Tumor burden

tests demonstrated that the shFbxo8 group exhibited a notably

faster growth of GFP+ leukemia cells compared to the control group

(Figure 8H, p < 0.001). Flow cytometry showed a significant

decrease in Annexin V-positive cells in the shFBXO8 group

(Figure 8I, p < 0.001), indicating that FBXO8 knockdown inhibits

apoptosis in vivo. Furthermore, Kaplan-Meier survival analysis

revealed that mice in the shFBXO8 group had a considerably

reduced survival rate compared to controls (Figure 8J, p <

0.0001), highlighting the crucial function of FBXO8 in

ALL progression.
4 Discussion

Although the overall cure rate of cALL is high, high-risk

subtypes face limited treatment efficacy and high recurrence rates,

with treatment resistance and long-term toxicity remaining

pressing clinical challenges (27, 28). Extensive studies have

demonstrated the critical and multifaceted role of ubiquitination

in ALL. Comprehensive research into the ubiquitination landscape

in ALL can offer valuable insights into tumorigenesis mechanisms

and guide the development of precision therapies (29–31). Our

study integrated ubiquitination-related genes with transcriptome

sequencing data of ALL from the TARGET dataset, identifying four

distinct ubiquitination subtypes through consensus clustering.

Using methods such as LASSO and COX regression, we

constructed a prognostic prediction model based on nine

ubiquitination-related genes, which effectively stratifies patients by

risk and predicts their prognosis. Among these genes, FBXO8

emerged as the most promising target for ubiquitination-related

regulatory intervention in ALL. Its role in ALL progression was

further validated through in vivo and in vitro experiments.

Our study highlights significant associations between patient

age, gender, and prognosis in ALL. Age is a well-established
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prognostic factor in ALL, with pediatric patients generally

exhibiting different prognosis compared to adolescents and adults.

Pediatric ALL is frequently associated with favorable genetic

alterations, such as ETV6-RUNX1 fusion or hyperdiploidy, which

confer sensitivity to chemotherapy (28). In contrast, adult ALL is

enriched in high-risk genetic subtypes (e.g., BCR-ABL1 or KMT2A

rearrangements) and somatic mutations (e.g., TP53), which drive

chemoresistance and relapse (28, 32). Additionally, pediatric

patients typically retain robust immune surveillance, characterized

by higher cytotoxic T cell activity and lower immunosuppressive

cell infiltration (24). Gender may also have impact on prognosis of

cALL patients. Females exhibit bi-allelic expression of X-

chromosome genes, which may buffer against mutations in

critical tumor suppressors (e.g., UTX) located on the X

chromosome (33).

In this study, we constructed a prognostic model based on nine

key URGs (ATL2,MKRN1, FBXW8, FBXO8,DCAF16,WSB1, CHFR,

MDM2, and SOCS2), providing new insights into the molecular

mechanisms underlying ALL progression. Among the nine genes

identified, several have been implicated in cancer development and

progression through their involvement in protein ubiquitination and

degradation. ATL2 dysfunction may impact ER stress responses,

which may link to leukemogenesis and drug resistance in leukemia

cells (34). It has been reported that MKRN1 contains a functional

ring-finger structural domain of E3 ubiquitin ligase which may

activate TGF-b signaling pathway to promote colorectal cancer

metastasis (35). Paradoxically, our analysis identified MKRN1 as a

risk-reducing factor. In ALL, MKRN1 may predominantly act as an

RNA stabilizer for pro-survival transcripts, warranting mechanistic

validation. FBXW8 has been shown to be able to bind cullin protein 7

(CUL7), which exerts both tumor promotion and suppression in a

context-dependent manner (36). DCAF16, a substrate receptor for

CRL4 ubiquitin ligases, mediate degradation of DNA repair proteins

(37). Low DCAF16 expression level may impair genomic stability in

ALL patients. WSB1, an E3 ligase component, promotes hypoxia-

inducible factor 1a (HIF-1a) degradation under normoxia, which

promotes cancer invasion and metastasis (38). CHFR (Checkpoint

with Forkhead-associated and RING finger domains) plays a critical

role in regulating mitotic entry and implicated in wide range of

cancer (39). While MDM2 overexpression typically promotes p53

degradation and oncogenesis, recent studies reveal context-

dependent roles: in p53-mutant ALL, MDM2 may instead degrade

pro-survival proteins like NF-kB or stabilize p73, an apoptotic

effector (17). SOCS2 (Suppressor of Cytokine Signaling 2)

modulates cytokine signaling and ferroptosis of tumor cells,

potentially shaping the ALL tumor microenvironment (40).

FBXO8 (F-box only protein 8) is a member of the F-box protein

family and a critical component of the E3 ubiquitin ligase complex.

F-box proteins interact with the SCF complex to mediate the

ubiquitination of specific protein substrates (41). Although

research on FBXO8 in solid tumors and hematological

malignancies is still in its early stages, evidence suggests it plays a

potential role in tumor initiation and progression. Current studies

on FBXO8 in digestive system tumors indicate its predominantly

protective role. Downregulation of FBXO8 expression has been
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observed in liver cancer (42), gastric cancer (43), renal cancer (44)

and colorectal cancer (45), with its reduced expression closely

associated with poor patient prognosis. Mechanistically, one study

have identified GSTP1 as a substrate of FBXO8-mediated

ubiquitination, which suppresses malignant behaviors in
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colorectal cancer (46). Additionally, research by F. F. Wang et al.

revealed that mTOR protein is another ubiquitination substrate of

FBXO8 (47). Regarding upstream regulators, the same research

team demonstrated that FBXO8’s function is influenced by non-

coding RNA miR-223 (47). Furthermore, Hyun Jung Cho et al.
FIGURE 8

Impact of FBXO8 Knockdown on ALL Progression (A, B) Kaplan-Meier survival curves showing significantly better survival in patients with high
FBXO8 expression (p < 0.001). (C–F) Cellular experiments demonstrating reduced FBXO8 expression after knockdown (C), promotion of proliferation
(D), and suppression of apoptosis as indicated by Annexin V-positive cells (E, F). (G-J) Animal experiments confirming reduced FBXO8 expression
(G), enhanced tumor growth (H), inhibited apoptosis (I), and lower survival rates (J) in the shFBXO8 group (p<0.05*, p<0.01**, p<0.001***).
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reported that FBXO8 interacts with c-Myc, suggesting that c-Myc

expression inhibits FBXO8 activity, thereby promoting tumor

malignancy (48). A study by Xiaohui Zhu et al. proposed a novel

tumor-suppressive mechanism for FBXO8, showing that it

upregulates epithelial and stem cell markers linked to tumor cell

dormancy while downregulating mesenchymal and proliferation

markers, thereby promoting metastatic dormancy in colorectal

cancer cells (45).

These findings emphasize FBXO8’s intricate regulatory network

in solid hematological malignancies, as well as its diverse role.

Although fewer research have been conducted on different cancers,

FBXO8 generally suppresses tumors through a variety of methods.

For example, Hajime Yano et al. discovered that FBXO8 regulates

the ubiquitination and degradation of the GTP-binding protein

ARF6, which reduces breast cancer invasiveness. Ying Yu et al.

found a link between FBXO8 expression and both pathological

grade and prognosis in low-grade gliomas using extensive clinical

specimen analysis. Notably, FBXO8 has not yet been investigated in

ALL. In our study, prognostic analysis using the TARGET database

found FBXO8 as a protective factor in ALL patients. In vitro and in

vivo, shutting down FBXO8 increased ALL cell proliferation while

suppressed apoptosis. These data indicate that targeting FBXO8 has

great promise as a unique treatment strategy for ALL.

Despite the hopeful results, this study has a number of

drawbacks. First, while the predictive model and the involvement

of FBXO8 were validated through in vitro and in vivo investigations,

the clinical relevance of these findings needs to be proven in larger,

independent patient cohorts. Second, while our experiments

focused on FBXO8 knockdown to elucidate its protective role, the

impact of FBXO8 overexpression on ALL progression was not

systematically explored. Third, our functional validations

primarily relied on cell lines and murine models. The absence of

patient-derived xenograft (PDX) models or primary ALL cell

validations may restrict the translational relevance of our findings

to human clinical scenarios. Subsequent research should prioritize

validating these results in patient-derived samples to enhance

therapeutic applicability. Finally, using normoxic culture

conditions in in vitro research may not fully replicate the hypoxic

tumor microenvironment seen in ALL. Future research combining

clinical validation, deeper mechanistic investigations, and more

physiologically relevant models is required to increase the

translational potential of these discoveries.
5 Conclusion

This study identifies FBXO8 as a pivotal prognostic biomarker

and therapeutic target in ALL. Knockdown of FBXO8 promotes

tumor progression and inhibits apoptosis, underscoring its

potential for therapeutic applications. These findings offer

valuable insights into the pathogenesis of high-risk ALL and

emphasize the importance of further research into ubiquitination-

related mechanisms.
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