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Pediatric solid tumors represent a significant subset of childhood cancers,

accounting for approximately 60% of new diagnoses. Despite advancements in

therapeutic strategies, survival rates remain markedly disparate between high-

income and resource-limited settings, underscoring the urgent need for novel

and effective treatments. Lipid metabolic reprogramming is a fundamental

hallmark of cancer, driving tumor progression, therapeutic resistance, and

immune evasion through enhanced fatty acid uptake, increased de novo lipid

synthesis, and activated fatty acid b-oxidation (FAO). Ubiquitination, a dynamic

post-translational modification mediated by the ubiquitin-proteasome system

(UPS), plays a crucial role in regulating lipid metabolism by modulating the

stability and activity of key metabolic enzymes and transporters involved in

cholesterol and fatty acid pathways. This review comprehensively examines the

complex interplay between ubiquitination and lipid metabolic reprogramming in

pediatric solid tumors. It delineates the mechanisms by which ubiquitination

influences cholesterol biosynthesis, uptake, efflux, and fatty acid synthesis and

oxidation, thereby facilitating tumor growth and survival. Furthermore, the review

identifies potential UPS-mediated therapeutic targets and explores the feasibility

of integrating ubiquitination-based strategies with existing treatments. By

targeting the UPS to disrupt lipid metabolism pathways, novel therapeutic

avenues may emerge to enhance treatment efficacy and overcome resistance

in pediatric oncology. This synthesis of current knowledge aims to provide a

foundation for the development of innovative, precision medicine approaches to

improve clinical outcomes for children afflicted with solid tumors.
KEYWORDS

ubiquitin-proteasome system (UPS), lipid metabolism, pediatric solid tumor, cholesterol
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1 Introduction

Pediatric cancer, defined as malignancies in individuals under

19 years, poses a significant global health challenge due to its unique

biological characteristics arising from developmental differences

compared to adults (1–3). From 2018-2020, a research from

China indicates that nearly 60% of newly diagnosed patients are

solid tumor patients, followed by leukemia(30.56%) and lymphoma

(10.06%) (4). Despite treatment advancements, five-year survival

rates exceed 80% in high-income countries but drop below 30% in

resource-limited settings, highlighting stark disparities in treatment

access and the urgent need for novel therapies (5, 6).

Lipid metabolic reprogramming is a hallmark of cancer, driving

tumor progression, therapeutic resistance, and immune evasion (7).

Tumor cells exploit lipid metabolism by upregulating fatty acid

uptake, enhancing de novo synthesis, and activating fatty acid b-
oxidation (FAO) to meet their energy and biosynthetic demands

(8–10). This dysregulated lipid metabolism also supports cancer cell

survival in hypoxic and nutrient-deprived environments. Although

FAO and the TCA cycle are typically oxygen-dependent, tumor

cells adapt to hypoxia through metabolic reprogramming, including

HIF-1a-mediated lipid uptake and storage, as well as alternative

substrates such as short-chain fatty acids that may sustain FAO

activity (10–16). Elevated de novo fatty acid synthesis and

cholesterol levels further contribute to tumor progression,

immune evasion, and drug resistance, making lipid metabolism a

compelling therapeutic target (17–21). Moreover, aberrant lipid

metabolism modulates immune cell functions within the tumor

microenvironment; for example, a lipid-rich milieu can skew

tumor - a s so c i a t ed mac rophage s (TAMs) t oward an

immunosuppressive M2 phenotype (22–28) and impair T cell

(29–31) antitumor activity via excessive fatty acid uptake that

leads to ferroptosis and reduced expression of key cytotoxic

molecules (32–37). In addition, enzymes involved in arachidonic

acid metabolism—such as cytosolic phospholipase A2,

cyclooxygenase, and lipoxygenase—have been linked to tumor

resistance to radiotherapy (38). Targeting key lipid metabolic

enzymes, including ACAT2 and SOAT, may help overcome these

challenges and improve therapeutic outcomes (39).

The ubiquitin-proteasome system (UPS) is a key regulator of

intracellular protein turnover and metabolic homeostasis. By

governing the degradation of approximately 80% of intracellular

proteins (40), ubiquitination orchestrates processes such as

metabolic adaptation, tumor progression, and immune regulation

(41–43). Recent studies reveal its crucial role in lipid metabolism,

where ubiquitination of enzymes and transporters like CD36

modulates lipid uptake and utilization. Dysregulation of this

system contributes to metabolic rewiring, fueling tumor growth

(44–46).

This review explores the interplay between ubiquitination and

lipid metabolic reprogramming in pediatric solid tumors. By

examining how ubiquitination drives lipid metabolism and tumor

progression, we identify potential therapeutic targets and discuss

the integration of ubiquitination-based strategies with current
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treatments to disrupt tumor metabolism and improve outcomes

in pediatric oncology.
2 Overview of ubiquitination

Ubiquitination is a fundamental post-translational modification

that regulates protein stability, localization, and activity by attaching

ubiquitin molecules to target proteins through a cascade of enzymatic

reactions involving three core enzymes: E1 ubiquitin-activating

enzymes, E2 ubiquitin-conjugating enzymes, and E3 ubiquitin

ligases (47–49). Beyond its primary role in protein degradation,

ubiquitination also governs various non-proteolytic processes,

including the regulation of protein activity, subcellular localization,

and protein complex formation (50). Notably, ubiquitin (Ub) chains

linked through alternative residues (K6, K27, K33, K63, and M1) are

predominantly involved in non-degradative functions, such as

selective autophagy, DNA damage repair, and innate immunity

(51, 52). Furthermore, ubiquitination plays a crucial role in

maintaining DNA integrity and regulating gene expression, thereby

facilitating the activation of diverse metabolic pathways in response

to environmental changes (13). While comprehensive reviews, such

as those by Liu (47) and Zhu (49), have extensively characterized the

ubiquitination machinery and its roles in various cancers, their focus

is primarily on adult malignancies, leaving the unique aspects of

pediatric tumors largely unaddressed.”

In mammals, the ubiquitination system comprises two E1

enzymes, approximately 40 E2 enzymes, and over 600 E3 ligases,

with E3 ligases conferring substrate specificity. E3 ligases are

classified into three families based on their ubiquitin transfer

mechanisms: RING (Really Interesting New Gene), HECT

(Homologous to the E6AP Carboxyl Terminus), and RBR (RING-

between-RING) ligases (53, 54).

Ubiquitination primarily determines protein fate through

proteasomal or lysosomal degradation, with most ubiquitinated

proteins being processed by the 26S proteasome. Deubiquitinating

enzymes (DUBs) recycle ubiquitin molecules during this process.

Beyond protein degradation, ubiquitination regulates diverse

cellular processes, including protein trafficking, DNA repair, and

signal transduction (55).

Dysregulated ubiquitination, driven by genetic or epigenetic

aberrations such as mutations, amplifications, or deletions of

ubiquitination-related genes, is strongly implicated in cancer (9).

The functional outcomes of ubiquitination are influenced by the

type of ubiquitin linkage and site of attachment, which affect

processes like proteasomal degradation, protein activity, and

subcellular localization. While lysine residues are the primary

ubiquitination sites, other amino acids, such as N-terminal

residues and cysteines, contribute to the complexity of

ubiquitination’s regulatory roles (56).

The versatility of ubiquitination, driven by its diverse enzymes

and linkages, is essential for maintaining cellular homeostasis and

responding to stress. Its dysregulation in cancer underscores its

potential as a promising therapeutic target.
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3 Lipid metabolism reprogramming in
tumors: distinct mechanisms in adult
and pediatric cancers

Adult and pediatric tumors exhibit significant differences in

biological characteristics, metabolic profiles, and nutritional

intervention strategies. Adult tumors typically develop following

long-term environmental exposures, lifestyle factors, chronic

inflammation, and the gradual accumulation of genetic mutations,

resulting in a high mutation burden and adaptive metabolic

reprogramming. In contrast, pediatric tumors are more often

driven by congenital genetic alterations and abnormal

developmental signaling, leading to notable heterogeneity and

distinct metabolic requirements—partly due to embryonic

regulatory influences (57, 58).
3.1 Differences in lipid metabolism

3.1.1 Differential dependency on fatty acid
metabolism

Adult tumors generally rely on high levels of de novo fatty acid

synthesis. For instance, cancers such as breast, prostate, and liver

cancer commonly exhibit significant upregulation of fatty acid

synthase (FASN) (59–61). In pediatric tumors, however, the

reliance on fatty acid synthesis versus degradation varies by

tumor type. For example, neuroblastoma(NB) primarily depends

on FAO for energy metabolism (62), whereas medulloblastoma

tends to favor lipid synthesis (63). Moreover, pediatric tumors may

depend on alternative targets for exogenous lipid uptake. For

instance, Fatty acid transport protein 2 (FATP2) plays a critical

role in MYCN-amplified NB (64), whereas adult tumors more

commonly depend on fatty acid transport proteins such as CD36

to enhance lipid absorption and metabolic reprogramming (65).

3.1.2 Distinct regulation of cholesterol
metabolism

Cholesterol metabolism plays a crucial role in both adult and

pediatric tumors, though its regulation and clinical intervention

strategies differ markedly. In adult tumors—such as prostate cancer

and certain subtypes of breast cancer—upregulated cholesterol

metabolism can promote cancer cell proliferation. Statins block

HMG-CoA reductase and have been shown to slow disease

progression in both precursor T-cell acute lymphoblastic

leukemia and adult cancers like prostate and breast cancer (66,

67). In contrast, the application of statins in pediatric patients is

generally limited due to safety concerns (68). In pediatric solid

tumors, research on cholesterol metabolism remains sparse, and no

specific clinical interventions targeting this pathway have been

established, indicating a need for further exploration into its role

in tumorigenesis and progression.
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3.2 Impact of other regulatory factors and
environmental influences

Recent studies suggest that the fatty acid-binding protein

(FABP5) exerts age-dependent effects in tumor biology. In adult

tumors, such as glioma, cervical cancer, and liver cancer, FABP5

promotes malignant transformation via activation of the NF-kB
pathway (69–71). Conversely, in high-risk pediatric gliomas,

elevated FABP5 levels have been associated with a more favorable

prognosis, highlighting clear differences in regulatory mechanisms

between age groups (72). Furthermore, dietary factors and obesity

influence lipid metabolism differently across age groups. In adults,

high-fat diets—particularly those rich in saturated and trans fats—

are closely linked to colorectal, prostate, and liver cancers,

underscoring the role of diet-induced metabolic dysregulation in

tumor development (73–75). In the pediatric population, maternal

high-fat diets during pregnancy may increase the risk of offspring

developing leukemia and NB (76, 77), although some large-scale

epidemiological studies have not confirmed a strong association

(78). Additionally, despite children generally having lower fat

reserves and muscle mass, their higher basal energy requirements

render their lipid metabolic balance more vulnerable (79). Certain

cancer treatments may also elevate triglyceride and free cholesterol

levels, potentially increasing long-term health risks and recurrence

probabilities (79–82).
3.3 The role of MYCN in lipid metabolic
reprogramming

In NB, the proto-oncogene MYCN serves as a key driver of

tumorigenesis by regulating the expression of multiple proteins

involved in lipid metabolism, including FASN, stearoyl-CoA

desaturase 1 (SCD1), and FATP2. These targets are particularly

critical in MYCN- or MYC-driven tumors, while they may not be

the primary oncogenic regulators in other cancer types (64).

In summary, the regulation of lipid metabolism varies markedly

between tumors arising in different age groups. This heterogeneity

reflects distinct underlying molecular biology and metabolic needs,

emphasizing the importance of developing age-specific metabolic

intervention strategies in future precision oncology.
4 Cholesterol metabolism in pediatric
tumors

Cholesterol metabolism plays a critical role in pediatric tumor

progression by supporting rapid cell proliferation (83), immune

evasion (84, 85), and therapy resistance (86). Beyond serving as a

structural component of cellular membranes, cholesterol mediates

key signaling pathways that protect tumor cells from lipid

peroxidation and enhance their metabolic adaptability within the
frontiersin.org
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tumor microenvironment (87). Additionally, cholesterol

accumulation promotes immune suppression by altering dendritic

cell maturation and dampening anti-tumor immune responses (88).

Cholesterol biosynthesis is essential for tumor growth and

survival in pediatric cancers. Elevated cholesterol levels are linked

to poor prognosis in NB (89). Moreover, combining caffeine

treatment or FOXM1 inhibition with statins enhances the anti-

tumor efficacy of statins against NB (90). Similarly, enhanced

cholesterol biosynthesis drives tumor progression and oncogenic

signaling, such as Hedgehog pathway activation, in Wilms’ tumor

and medulloblastoma (91, 92).

The UPS plays a key role in this regulatory network by

modulating the stability of proteins involved in cholesterol

metabolism. When intracellular cholesterol levels are high, the

UPS promotes the ubiquitination and subsequent degradation of

proteins responsible for cholesterol biosynthesis and uptake, while

the ubiquitination of proteins involved in cholesterol efflux is

reduced to maintain adequate export function. Conversely, when
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cholesterol levels decrease, the UPS reduces the ubiquitination of

biosynthetic and uptake proteins—thereby prolonging their half-life

—while enhancing the ubiquitination of efflux transporters to limit

cholesterol loss (93). In this way, the UPS tightly regulates

cholesterol metabolism, and dysregulation of this system

contributes to the metabolic reprogramming observed in pediatric

tumors, involving specific E3 ligases and deubiquitinases

(Figure 1) (94).
4.1 Transcriptional regulation of
cholesterol metabolism in pediatric solid
tumors

In pediatric solid tumors, cholesterol metabolism is tightly

regulated by two key transcription factors: sterol regulatory

element-binding protein 2 (SREBP2) and liver X receptors

(LXRs). SREBP2 primarily drives cholesterol biosynthesis and
FIGURE 1

Ubiquitination and fatty acid (FA) metabolism in pediatric cancers. (Created in https://BioRender.com.) FA metabolism is driven by key enzymes and
regulators, many of which are subject to ubiquitination and deubiquitination, marked in orange and green boxes, respectively. Sterol regulatory element-
binding protein 1 (SREBP1) plays a central role in regulating FA synthesis. It is ubiquitinated by the Skp1-Cul1-FBW7 (SCF^FBW7) E3 ligase complex and
Ring Finger Protein 20 (RNF20). Stabilized expression of SREBP1 promotes tumor progression. FA also activates peroxisome proliferator-activated
receptors (PPARs), which are fine-tuned by UPS. PPAR activation induces the expression of cluster of differentiation 36 (CD36), a receptor involved in FA
uptake. CD36, regulated by PARKIN-dependent ubiquitination, is associated with tumor progression, immune evasion, and metastasis in pediatric
cancers, correlating with poor prognosis. However, the TSP-1/CD36 axis can inhibit angiogenesis under certain conditions. Internalized free fatty acids
(FFAs) are converted into monoglycerides (MGs), diglycerides (DGs), and triglycerides (TGs), which are stored in lipid droplets (LDs). Upon energy
demand, TGs are hydrolyzed by adipose triglyceride lipase (ATGL), which is ubiquitinated by COP1 and RNF213. FFAs can also be used to generate
unsaturated fatty acids (e.g., MUFAs and PUFAs), a process requiring carnitine palmitoyltransferase 2 (CPT2), ATP-citrate lyase (ACLY), acetyl-CoA
carboxylase (ACC), fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), and fatty acid-binding proteins FABP4 and FABP5. CPT2 is essential for
FA transport into mitochondria. These enzymes (CPT2, ACLY, ACC, FASN, SCD1, FABP4, and FABP5) are frequently overexpressed in pediatric cancers
and are drivers of tumor progression and poor prognosis.
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uptake, while LXRs promote cholesterol efflux by inducing genes

such as ABCA1, ABCG1, and APOE. Their activities are interlinked

in a feedback loop that maintains cholesterol homeostasis; under

high intracellular cholesterol conditions, LXRs can antagonize

SREBP2 activity to prevent excessive cholesterol accumulation.

Disruption of this balance—either through hyperactivation of

SREBP2 or insufficient LXR-mediated clearance—leads to

cholesterol accumulation that supports tumor growth, membrane

synthesis, and oncogenic signaling.
4.2 The SREBP axis: sculpting tumor
cholesterol homeostasis through UPS fine-
tuning

SREBP2 plays a critical role in tumor cholesterol metabolism,

driving proliferation and survival by inducing the expression of

mevalonate pathway genes to enhance cholesterol and isoprenoid

synthesis (95). Normally, the SCAP-SREBP2 complex is retained in

the ER by insulin-inducible gene protein (Insig), preventing

activation. Tumor cells bypass this regulation through

mechanisms such as EGFR-induced the SREBP cleavage-

activating protein (SCAP) glycosylation, enabling SREBP2

activation and increased lipogenesis (96). This dysregulation

supports rapid proliferation and metabolic adaptability in

glioblastoma, hepatocellular carcinoma, and NB. Inhibiting

SREBP2 enhances statin efficacy and overcomes drug resistance,

highlighting its therapeutic potential in pediatric tumors (90,

97, 98).

The UPS imposes an additional layer of control on SREBP2.

The E3 ligase translocation in renal cancer from chromosome 8

(TRC8), initially identified as a tumor suppressor in renal cell

carcinoma (99), inhibits tumor growth by regulating SREBP

activation, likely through blocking ER-to-Golgi transport or

promoting precursor degradation (100, 101). Similarly, the ring

finger protein 145 (RNF145) targets SCAP for ubiquitination,

limiting SREBP2 activation and cholesterol biosynthesis (102).

gp78, another key E3 ligase, targets HMG-CoA reductase, a rate-

limiting enzyme in the mevalonate pathway, for degradation to

maintain cholesterol homeostasis (103). This differential regulation

highlights the nuanced interplay between UPS components in

balancing cholesterol synthesis and efflux.

Insig proteins further modulate this process. Insig-1, which is

ubiquitinated and rapidly degraded, facilitates SREBP2 activation,

while Insig-2 resists degradation under oxidative stress, protecting

against lipid overload (104, 105). This interplay between SCAP,

Insig proteins, and UPS ensures a balance between cholesterol

synthesis and efflux.

Deubiquitination fine-tunes SREBP2 activity. Ubiquitin-specific

protease 28 (USP28) stabilizes the active nuclear form of SREBP2 by

removing ubiquitin chains, enhancing the expression of mevalonate

pathway enzymes and supporting tumor metabolic demands. This

dynamic regulation allows tumor cells to adapt to the metabolic

requirements of growth and survival (106).
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4.3 LXRs: cholesterol-sensing nuclear
receptors in tumor metabolism

LXRs function as cholesterol sensors and are central to

maintaining cholesterol homeostasis. Upon activation, LXRs

induce the transcription of cholesterol efflux genes, including

ATP-binding cassette transporter A1(ABCA1), ATP binding

cassette transporter G1 (ABCG1), and apolipoprotein E (APOE),

which reduce intracellular cholesterol levels. LXRs also regulate

cholesterol uptake by inducing E3 ligases such as low-density

lipoprotein (LDL) receptor (IDOL) (107) and RNF145, which

ubiquitinate and degrade the low-density lipoprotein receptor

(LDLR) to prevent cholesterol overaccumulation (108, 109).

In pediatric tumors, LXRs exhibit context-specific roles that

influence tumor progression and prognosis. In NB, LXR activation

upregulates ABCG1, promoting cholesterol efflux, protecting cells

from oxidative stress, and enhancing survival (110). Conversely, in

osteosarcoma(OS), LXRa functions as a tumor suppressor, with its

activation reducing proliferation and sensitizing tumors to

chemotherapy through mTOR signaling modulation. Combining

LXR agonists with chemotherapeutics such as doxorubicin has

shown to enhance efficacy and overcome chemoresistance (111).

The UPS adds another layer of regulation to LXR activity.

SIRT1-mediated deacetylation increases LXR ubiquitination and

turnover, altering its transcriptional activity in a context-dependent

manner (112). However, the roles of specific E3 ligases or DUBs in

regulating LXRs remain unclear.
4.4 Cholesterol uptake: LDL receptor
pathway and its dysregulation

Cholesterol uptake is essential for tumor cells to meet their

increased energy and biosynthetic demands. LDLR family mediates

cholesterol endocytosis, playing a central role in lipid homeostasis.

In pediatric tumors like osteosarcoma, LR3, a member of the LDLR

family, promotes tumor proliferation and invasion, underscoring

the role of LDLR signaling in metabolic reprogramming (113).

Targeting the mTOR-LDLR axis with agents such as rapamycin has

been shown to restore LDLR regulation and suppress tumor growth

by limiting cholesterol uptake (114).

LDLR expression is tightly controlled by intracellular

cholesterol levels. SREBP2 upregulates LDLR during cholesterol

scarcity, enhancing cholesterol uptake, while LXRs induce the E3

ligase IDOL (Inducible Degrader of LDLR) under high cholesterol

conditions, targeting LDLR for ubiquitination and lysosomal

degradation (115–117).In pediatric tumors, this balance is often

disrupted. Pathways such as mTOR activation bypass the LXR-

IDOL axis, leading to persistent LDLR expression and excessive

cholesterol uptake. In osteosarcoma, sustained LDLR activity

supports tumor growth and metastasis (114).

Beyond transcriptional control, LDLR levels are modulated

post-translationally. Proprotein convertase subtilisin/kexin type 9

(PCSK9) binds to LDLR and directs it to lysosomal degradation,
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exacerbating LDLR dysregulation in tumors (107, 118, 119). In

pediatric cancers such as medulloblastoma, PCSK9 acts as a tumor-

specific neoantigen, triggering T-cell responses and presenting

potential as an immunotherapy target (120). Elevated PCSK9

expression has been associated with poor prognosis, drug

resistance, and reduced progression-free survival (PFS) in certain

cancers, highlighting its dual role in cancer progression and

immune modulation (84, 121).
4.5 Cholesterol biosynthesis: from acetyl-
CoA to cholesterol

Cholesterol biosynthesis is a tightly regulated pathway essential

for tumor growth and metabolic reprogramming. Key enzymes,

including HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase)

and squalene monooxygenase (SQLE), play central roles in

maintaining cholesterol homeostasis and supporting cancer

cell proliferation.

4.5.1 HMGCR: a key regulator in cholesterol
biosynthesis

HMGCR, the rate-limiting enzyme of cholesterol biosynthesis, is

extensively regulated by UPS. E3 ligases such as RNF145, gp78, and

HRD1 promote HMGCR degradation, while ubiquitin-specific

protease 20 (USP20) stabilizes HMGCR, enhancing cholesterol

synthesis and driving tumor growth (122–126). Dysregulation of this

balance, such as reduced RNF139 activity, results in HMGCR

overexpression, contributing to drug resistance and tumor progression.

Clinically, HMGCR overexpression is frequently observed in

pediatric cancers such as NB, rhabdomyosarcoma, and

osteosarcoma, where it promotes proliferation, invasion, and

survival while reducing therapy efficacy (127–130). Statins,

including lovastatin, inhibit HMGCR, blocking cholesterol

biosynthesis, inducing apoptosis, and sensitizing tumor cells to

chemotherapy and radiotherapy. Statins also target the

mevalonate pathway, disrupting Ras/Rho protein prenylation and

enhancing antitumor immunity (131, 132).

4.5.2 Squalene monooxygenase
SQLE catalyzes a critical step in cholesterol biosynthesis and is

strongly associated with chemoresistance and poor prognosis in

cancers, including osteosarcoma. Inhibitors like FR194738 deplete

intracellular cholesterol, suppress FAK/PI3K/Akt/mTOR signaling,

reduce malignancy, and restore chemosensitivity (133–135).

Beyond its role in cholesterol biosynthesis, SQLE plays a pivotal

role in regulating ferroptosis and cuproptosis, modulating the

tumor microenvironment and potent ia l ly enhancing

immunotherapy efficacy (134). Ferroptosis, characterized by iron-

dependent lipid peroxidation and reduced glutathione peroxidase 4

(GPX4) activity, leads to oxidative damage and cell death (136).

QLE promotes ferroptosis by enhancing reactive oxygen species

(ROS) production and lipid peroxidation. Cuproptosis, a form of

cell death triggered by copper toxicity, disrupts the TCA cycle via

protein–lipid interactions in mitochondria, leading to protein
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aggregation and cell death (134, 137–140). SQLE may regulate

cuproptosis by modulating intracellular copper metabolism and

mitochondrial function.

Like HMGCR, SQLE is regulated by the UPS via the E3 ligase

Membrane-associated ring-CH-type finger 6 (MARCHF6), which

promotes its degradation under conditions of elevated cholesterol.

MARCHF6 also regulates other enzymes in the cholesterol

biosynthetic pathway, including DHCR24 and LDM, highlighting

the UPS’s central role in maintaining cholesterol homeostasis.

Cholesterol enhances MARCHF6 activity to degrade SQLE,

whereas unsaturated fatty acids inhibit this process by disrupting

their interaction (141–143).
4.6 Cholesterol efflux: transport and
removal mechanisms

Cholesterol efflux is critical for maintaining cellular cholesterol

balance, preventing cytotoxic accumulation, and supporting cellular

integrity. ATP-binding cassette (ABC) transporters, particularly

ABCA1 and ABCG1, mediate cholesterol efflux to apolipoproteins

and HDL, enabling reverse cholesterol transport (144). Dysregulated

cholesterol efflux in pediatric tumors drives metabolic

reprogramming, therapy resistance, and immune evasion.

4.6.1 ABCA1 and ABCG1: key transporters in
cholesterol homeostasis

ABCA1 and ABCG1 exhibit context-specific roles in pediatric

cancers. ATP-binding cassette subfamily B member 1 (ABCB1)

effluxes doxorubicin, reducing its intracellular accumulation and

diminishing both its toxicity and the immunogenic cell death it

induces, thereby contributing to chemoresistance in osteosarcoma

(145). In contrast, ABCA1 expels isopentenyl pyrophosphate (IPP),

a molecule that activates anti-tumor Vg9Vd2 T cells. Enhancing

ABCA1-dependent IPP efflux may help overcome ABCB1-

mediated resistance (145). Conversely, in medulloblastoma,

ABCA1 overexpression confers radiation resistance, likely by

altering cholesterol efflux and membrane lipid composition,

which could affect DNA repair and stress response pathways

(146). Although the molecular basis underlying this discrepancy

remains to be fully elucidated, these differences may reflect tumor-

specific downstream signaling or microenvironmental factors that

modulate ABCA1 function. In NB, ABCA1-mediated cholesterol

efflux protects tumor cells from oxidative stress, facilitating survival

under metabolic stress (110).

ABCG1 supports cancer stem-like cells (CSCs) in osteosarcoma

and Ewing sarcoma, enhancing cholesterol efflux to sustain CSC

viability and multidrug resistance. In NB, the LXR-ABCG1 axis

protects tumor cells from oxidative damage caused by oxidized

cholesterol. Targeting ABCG1 in CSCs could reduce tumor

recurrence and improve therapeutic outcomes (110, 147).

UPS tightly regulates ABCA1 and ABCG1 by modulating their

degradation and stability. E3 ligases such as HUWE1, NEDD4-1,

and HECTD1 ubiquitinate these transporters, reducing their

cholesterol efflux capacity and contributing to metabolic
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dysregulation (148, 149). Additionally, ubiquitin-protein E3 ligase

A (UBE3A)-mediated ubiquitination of ABCA1 has been

implicated in myelin-induced foam cell formation in models of

CNS repair (M. Loix et al., unpublished). Furthermore, Cullin-3, a

cullin-RING ubiquitin E3 ligase, is activated through thrombin–

protease-activated receptor (PAR1) signaling, leading to the

degradation of ABCA1 and further disrupting cholesterol

homeostasis (150, 151). Activation of Cullin-3 requires

neddylation, a post-translational modification in which the

ubiquitin-like protein NEDD8 conjugates to cullins, enhancing

their ubiquitin ligase activity (152). The COP9 signalosome

(CSN) acts as a key regulatory complex that counteracts this

process by removing NEDD8 from Cullin-3, thereby modulating

its activity in a reversible manner (153).

4.6.2 Other cholesterol transporters in tumor
progression

Other ABC transporters also contribute to pediatric tumor

progression. For instance, ABCG8, degraded by E3 ligases such as

RNF5 and HRD1, correlates with metastasis in osteosarcoma,

serving as a prognostic biomarker (154, 155). Conversely, ABCA6

exhibits tumor-suppressive properties in Ewing sarcoma, reducing

intracellular cholesterol levels and inhibiting oncogenic pathways

like IGF1R/AKT/MDM2. Enhancing ABCA6 expression improves

chemosensitivity, particularly in combination with statins (156).

Meanwhile, ABCB1 (P-glycoprotein) overexpression in NB

promotes therapy resistance by effluxing cytotoxic drugs, with

signaling pathways like Ras/ERK1/2/HIF-1a further exacerbating

ABCA1 suppression and cholesterol dysregulation (145, 157).
4.7 Cholesterol esterification

Cholesterol esterification, mediated by ACAT1 and ACAT2, is

essential for converting free cholesterol into cholesteryl esters,

promoting lipid droplet formation and supporting tumor survival

in cholesterol-rich environments. This metabolic adaptation drives

tumor progression and therapy resistance in pediatric cancers.

ACAT1 plays a central role in NB by facilitating cholesterol

esterification and lipid droplet accumulation. While this process

supports tumor survival, it can induce oxidative stress and cell death

under ER dysfunction. Silencing ACAT1 reduces COX2 expression

and restores protective PKC/ERK signaling, highlighting its

potential as a therapeutic target (158, 159). In glioblastoma,

ACAT1 enhances cholesteryl ester synthesis to support

membrane production and proliferation (160). Interestingly,

ACAT1 inhibition also enhances the cytotoxic function of CD8

(+) T cells, suggesting a potential immunomodulatory role in

controlling tumor growth (161).

The UPS tightly controls ACAT enzyme stability, influencing

cholesterol esterification and tumor metabolism. gp78 and INSIG

mediate ROS-induced ubiquitination of ACAT2, promoting sterol

storage and metabolic adaptation (161). In contrast, USP19

stabilizes ACAT1 by removing ubiquitin chains, enhancing
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cholesterol esterification and supporting tumor growth, as

observed in hepatocellular carcinoma (162).
5 UPS-mediated regulation of FA in
pediatric tumors

Fatty acids (FAs) are essential for membrane synthesis, energy

production, and cellular signaling. Dysregulated FA metabolism in

pediatric tumors supports proliferation, therapy resistance, and

survival by balancing lipid storage and oxidative stress, such as

lipid peroxidation (LPO) and ferroptosis (163). The UPS plays a

central role in regulating key aspects of FA metabolism, including

de novo synthesis, uptake, and b-oxidation (Figure 2).
5.1 Ubiquitination in de novo fatty acid
synthesis

De novo fatty acid synthesis provides critical lipids for tumor

membrane production and growth, with its key enzymes tightly

regulated by the UPS.

ATP Citrate Lyase (ACLY), which links glucose metabolism to

lipid synthesis, is ubiquitinated by the CUL3-KLHL25 E3 ligase,

suppressing tumor growth by reducing lipid production (164).

Conversely, deubiquitinases USP13 and USP30 stabilize ACLY,

promoting tumor progression in cancers such as ovarian and liver

cancers (165, 166). In osteosarcoma, ACLY drives tumor growth

and metastasis via the XIST/miR-655/ACLY axis, while miR-22

downregulates ACLY to inhibit lipogenesis, highlighting its

potential as a therapeutic target (167, 168).

Acetyl-CoA Carboxylase (ACC), a rate-limiting enzyme in FA

synthesis, is ubiquitinated by COP1 under normal conditions to

suppress lipogenesis (169). However, in certain cancers, ACC

evades degradation through interactions with AKR1B10,

enhancing FA synthesis and driving tumor progression (170).

Additionally, AKR1B10 is strongly associated with chemotherapy

resistance (171).

FASN, a key enzyme in lipogenesis, is upregulated in pediatric

tumors such as osteosarcoma, NB, and medulloblastoma. In

osteosarcoma, FASN promotes anoikis resistance and metastasis to

the lungs (172, 173). In NB, FASN and SCD1 regulate unsaturated FA

metabolism to enhance immune evasion and survival (173–176).

Similarly, in medulloblastoma, FASN-driven lipid synthesis sustains

tumor proliferation (177). The UPS critically regulates FASN. COP1

ubiquitinates FASN to prevent excessive lipid accumulation, while

mutations in SPOP impair FASN degradation, promoting tumor

growth (170). Deubiquitinases such as USP2a and USP14 stabilize

FASN, enhancing lipogenesis and contributing to therapy resistance.

For example, in retinoblastoma, USP14-mediated FASN stabilization

suppresses ferroptosis and promotes resistance to cisplatin (61, 178,

179). Conversely, USP2a binds to and stabilizes MDM4, which in

turn increases the mitochondrial localization of p53 and promotes

apoptosis in glioma cells (180).
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5.2 UPS-mediated control of fatty acid
uptake and transport

Fatty acid (FA) uptake and transport are vital for tumor

metabolism, influencing tumor cell proliferation, immune evasion,

and the tumor microenvironment (TME). The UPS regulates key FA

transporters, such as CD36 and fatty acid-binding proteins (FABPs),

modulating lipid metabolism and tumor progression.

5.2.1 CD36: a dual role in tumor metabolism and
immunity

CD36, a key FA transporter, plays a complex role in tumor

metabolism and immunity. Parkin-mediated mono-ubiquitination

enhances CD36 activity, increasing FA uptake, while deubiquitinases

like UCHL1 and USP14 stabilize CD36, preventing degradation (44,

181, 182). Dysregulated CD36 activity impacts both tumor growth

and immune cell function.
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In immune cells, CD36 overexpression impairs antitumor

immunity. Excessive FA uptake in CD8+ T cells induces lipid

peroxidation and ferroptosis, reducing cytotoxicity and

immunotherapy efficacy (29). In TAMs and Tregs, CD36

promotes an immunosuppressive environment, supporting tumor

growth. Targeting CD36 restores immune function and enhances

antitumor responses (30, 183).

In pediatric tumors, CD36 has diverse effects. In osteosarcoma,

CD36 drives proliferation and immune evasion through the CD36-

MYD88 axis, correlating with poor prognosis. However, its

interaction with Thrombospondin-1 (TSP-1) produces anti-

angiogenic vasculostatin, suppressing tumor growth (184–186). In

NB, CD36-mediated uptake of long-chain FAs like palmitic acid

induces metabolic stress and cell damage, which can be alleviated by

CD36 inhibition (187, 188). Beyond pediatric settings, CD36

enrichment in glioblastoma stem cells and other adult tumors

associates with metastatic potential and poor outcomes (189, 190).
FIGURE 2

The role of ubiquitination in cholesterol metabolism and tumor prognosis. Cholesterol uptake: LDL receptor (LDLR) mediates cholesterol uptake.
PCSK9 promotes LDLR degradation via the lysosome, while the E3 ubiquitin ligase IDOL ubiquitinates LDLR, targeting it for proteasomal degradation,
reducing cholesterol uptake; Cholesterol Synthesis: The rate-limiting enzyme HMG-CoA reductase (HMGCR) is ubiquitinated by RNF145, gp78,
HRD1, and RNF139, leading to degradation. Squalene epoxidase (SQLE) is ubiquitinated by MARCH6, affecting cholesterol biosynthesis; Cholesterol
Efflux: ATP-binding cassette transporters ABCA1 and ABCG1 mediate cholesterol efflux. Their regulation involves ubiquitination by HUWE1, NEDD4-
1, and others; Cholesterol Esterification: Acyl-CoA:cholesterol acyltransferase (ACAT) facilitates cholesterol storage in lipid droplets (LDs), regulated
by gp78 and UPS19; Transcriptional Regulation: The sterol regulatory element-binding protein (SREBP) pathway controls cholesterol biosynthesis.
SCAP facilitates SREBP transport from the ER to the Golgi, where it is activated. The INSIG-SCAP-SREBP complex is regulated via ubiquitination by
gp78 and TRC8, while RNF145 and RNF5 ubiquitinate SCAP to modulate its stability. LXR activation induces genes like ABCA1, ABCG1, and IDOL,
affecting cholesterol homeostasis. Cancer Metabolism and Prognostic Markers: EGFR signaling and glucose metabolism enhance SREBP activation,
contributing to tumor lipid metabolism. Ubiquitination (orange boxes) and deubiquitination (green boxes) modulate key enzymes and pathways,
influencing tumor progression and prognosis. Markers with red arrows (↑,↓) indicate prognostic impact, where upregulated elements are linked to
poor prognosis, while downregulated components improve prognosis.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1554311
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1554311
Fatty acid-binding proteins (FABPs) regulate intracellular FA

transport and contribute to tumor progression. Although direct

UPS regulation of FABPs is unclear, their roles in tumor

metabolism and immune evasion are well-documented. FABP4

enhances pro-tumoral TAM phenotypes in NB, driving tumor

progression. FABP4+ macrophage enrichment in metastatic

osteosarcoma correlates with immune evasion and poor prognosis

(191–193). FABP5 promotes growth in osteosarcoma through the

Akt/mTOR pathway and mediates therapy resistance in

medulloblastoma, underscoring its role in tumor survival and

progression (194–196).
5.3 Ubiquitination in FAO

FAO is a crucial energy source for lipid-dependent pediatric

tumors. The UPS regulates key enzymes in this pathway, influencing

tumor progression, metastasis, and therapeutic outcomes.

Carnitine Palmitoyltransferase 1A (CPT1A), the rate-limiting

enzyme in FAO, is regulated by UPS-mediated ubiquitination,

which modulates its mitochondrial localization and activity.

Elevated CPT1A expression promotes epithelial-mesenchymal

transition (EMT), cancer stemness, and metastasis. In NB, high

CPT1A levels correlate with poor prognosis, linking FAO activation

to aggressive tumor behavior (21, 197). Conversely, CPT1B, a

paralog of CPT1A, is associated with improved outcomes in

osteosarcoma, highlighting isoform-specific roles in pediatric

tumors (198).

CPT2, another key FAO enzyme, is regulated by the E3 ligase

HRD1, which restricts FAO by targeting CPT2 for ubiquitination

and degradation. Reduced HRD1 expression enhances CPT2

activity, driving FAO and tumorigenesis, as observed in triple-

negative breast cancer (TNBC). Although direct evidence in

pediatric tumors is limited, similar regulatory mechanisms are

likely involved (199). Furthermore, Acyl-CoA Dehydrogenases

(ACADs), key enzymes in the FAO pathway, are degraded by the

UPS, restricting FAO activity and sensitizing tumor cells to energy

deprivation. This regulation may present therapeutic opportunities

by targeting energy metabolism in lipid-dependent tumors.
5.4 Cross-talk between ubiquitination and
lipid droplets

Lipid droplets (LDs) act as dynamic energy reserves, releasing

free fatty acids (FFAs) and cholesterol through cytosolic lipolysis or

lipophagy to prevent lipotoxicity and support tumor metabolic

demands. The UPS plays a crucial role in regulating LD turnover,

enabling tumor cells to adapt to fluctuating energy needs.

The LD-associated protein AUP1 links LDs to the UPS by

recruiting the E2 conjugase Ube2g2, facilitating ubiquitination on

the LD surface (200). Coating proteins such as PLIN2 is

ubiquitinated by the Itch E3 ligase, facilitating lipid droplet

(LD) degradation and releasing free fatty acids (FFAs) to

support tumor metabolism (201). SPART/SPG20 (Spartin)
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functions as an adaptor for Itch by binding to the LD-associated

protein PLIN3, promoting the recruitment and activation of Itch.

This leads to the ubiquitination of PLIN2 and the subsequent

recruitment of the autophagy receptor SQSTM1/p62, triggering

macrolipophagy (201, 202). Additionally, under nutrient stress,

LDs can also undergo autophagy through ubiquitin-independent

mechanisms (203).

Key enzymes regulating LD dynamics, such as ATGL and

FSP27 (204), are also modulated by the UPS. For example, E3

ligases like COP1 and RNF213 ubiquitinate ATGL, reducing

triglyceride hydrolysis and leading to increased LD accumulation.

This shift not only augments the energy reserve of tumor cells but

also enhances their metabolic flexibility—that is, the capacity to

adjust fuel utilization and energy production in response to varying

nutrient and stress conditions—which in turn supports tumor

progression (205, 206). RNF213 suppresses carcinogenesis and

affects MAPK/JNK signaling pathway in glioblastoma (207).

These UPS-mediated mechanisms allow tumors to optimize

energy utilization, contributing to their survival and growth under

varying metabolic conditions (204, 208).
5.5 Transcriptional regulation of FA
metabolism by UPS

The UPS regulates transcription factors such as PPARg and

SREBP1, which are central to fatty acid (FA) metabolism.

5.5.1 Peroxisome proliferator-activated receptors
(PPARs)

PPARg, a nuclear receptor regulating FAmetabolism and glucose

homeostasis, plays dual roles in lipid metabolism and tumor biology.

Highly expressed in pediatric cancers, PPARg activation promotes

tumor differentiation, inhibits proliferation, and induces apoptosis.

For instance, PPARg agonists enhance pro-apoptotic pathways (e.g.,
p21 and Bax), suppressing osteosarcoma growth (209, 210), and

improve therapeutic responses in high-risk NB by promoting

differentiation and metabolic reprogramming (211, 212). PPARg is

a critical regulator in tumor progression, and its expression is

modulated by factors such as miR-27b and TRIM46, which in turn

influence its impact on diseases like OS (213, 214).

The UPS provides post-translational control of PPARg activity.
Ligand-bound PPARg undergoes K48-linked ubiquitination,

limiting transcriptional activity (215). Under inflammatory

conditions, E3 ligases such as Siah2 and NEDD4–1 mediate the

ubiquitination and degradation of PPARg . In contrast,

deubiquitinases (DUBs) like USP22 remove K48-linked ubiquitin

chains from PPARg, stabilizing it. This stabilization enhances

PPARg’s transcriptional activity, leading to increased expression

of lipogenic enzymes, including ACC and ACLY, which promote de

novo fatty acid synthesis (216–218). Interestingly, PPARg also acts

as an E3 ligase, mediating ubiquitination at Lys28 and leading to

p65 proteasomal degradation, directly linking lipid metabolism to

immune modulation in the tumor microenvironment

(219).Targeting the UPS-PPARg axis holds potential for
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modulating FA metabolism and inflammation, particularly in

pediatric cancers like osteosarcoma and NB (209–214, 220).

5.5.2 Sterol regulatory element-binding protein 1
(SREBP1)

SREBP1 is a master regulator of lipogenic genes, driving FA

synthesis to support tumor growth and metabolic adaptation.

Although its role in pediatric cancers is underexplored, UPS-

mediated regulation is essential for maintaining lipid homeostasis.

The SCF-FBXW7 E3 ligase complex degrades SREBP1 via GSK3-

dependent phosphorylation, restricting FA synthesis under

metabolic stress (221). In contrast, another study demonstrates

that SREBP2 targets FBXW7 to regulate miR-182, establishing a

feedback loop that modulates SREBP transcriptional activity (222,

223). Conversely, SREBP1 acetylation stabilizes the protein by

competing with ubiquitination, enhancing lipogenic activity (224).

Other E3 ligases, such as RNF20 and RNF139, promote SREBP1

degradation or inhibit precursor synthesis under nutrient-limiting

conditions (221, 225). Additionally, SIRT1-mediated deacetylation

facilitates SREBP1 ubiquitination and degradation, linking lipid

metabolism to cellular stress responses (226).

Upstream, mTORC1 integrates SREBP1 activation with tumor

cell biosynthetic and energy demands, particularly under lipid-rich

conditions, further enhancing SREBP1-driven FA synthesis to meet

the needs of rapidly proliferating tumor cells (221, 227). We

summarized lipid metabolism-related genes and their roles in

tumor prognosis: regulation by the UPS in (Table 1).
6 Ubiquitin ligases indirectly influence
tumor lipid reprogramming

E3 ubiquitin ligases play critical roles in tumor lipid

reprogramming by targeting regulatory proteins for degradation,

driving tumor progression and therapy resistance. In Group 3

medulloblastoma, RNF126 ubiquitinates FSP1, altering its plasma

membrane localization and disrupting the CoQ/CoQH2 balance,

thereby suppressing ferroptosis and preventing phospholipid

peroxidation. RNF126 overexpression correlates with poor

prognosis in this subtype (228). In triple-negative breast cancer

(TNBC), depletion of RNF126 increased sensitivity to irradiation

(229). Similarly, in NB, TRIM59 promotes chemoresistance and

tumor growth by degrading p53 and suppressing ferroptosis,

enabling tumor survival under stress (230).

FBW7 regulates lipid metabolism by targeting c-Myc for

degradation. Loss of FBW7 stabilizes c-Myc, resulting in abnormal

lipid accumulation, uncontrolled proliferation, and therapy resistance

(231). In osteosarcoma, FBW7 downregulation reduces the degradation

of KCa1.1, a potassium channel localized in lipid rafts, which enhances

drug resistance. Pharmacological inhibition of KCa1.1 restores

chemosensitivity, demonstrating its therapeutic potential (232).

By modulating ferroptosis, lipid raft dynamics, and energy

metabolism, E3 ligases such as RNF126, TRIM59, and FBW7 enable

tumors to adapt to metabolic stress and evade apoptosis, making them

promising targets for disrupting tumor lipid reprogramming.
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7 Lipid regulation of ubiquitination in
tumor progression and resistance

Lipids, categorized into eight classes by the LIPID MAPS

system, are essential for cellular metabolism and signaling (233).

Their interplay with ubiquitination reprograms tumor lipid

metabolism, influencing key protein degradation and regulation.

Imbalances in lipid ratios and dysregulated lipid metabolism-

related genes drive abnormal lipid synthesis, uncontrolled cell

growth, and tumor progression.

In Ewing sarcoma, ceramide triggers cleavage of the

intracellular domain of GPR64, which translocates to the nucleus

and promotes ubiquitination of RIF1 through the Cullin3-RING E3

ligase complex and SPOP, driving tumor growth (234). Similarly,

lyso-Gb3, a deacylated lipid derivative, enhances ubiquitination of

molecular chaperones like HSP90 and HSP60, inducing cytotoxicity

and disrupting protein homeostasis (235). In osteosarcoma,

M2 macrophage-derived exosomal Apoc1 facilitates ACSF2

ubiquitination and degradation, suppressing ferroptosis and

promoting tumor progression (236).

Lipid metabolites also contribute to therapeutic resistance. For

example, Prostaglandin E1 (PGE1) activates cAMP-PKA signaling

via the EP4 receptor, promoting GLI2 ubiquitination and

degradation to suppress Hedgehog signaling, overcoming GLI2

amplification-associated drug resistance in medulloblastoma

models (237). Additionally, FASN modulates cell cycle regulation

by stabilizing p27^Kip1 through Skp2 suppression, linking lipid

metabolism to tumor cell cycle arrest (238). Mitochondrial lipids

like cardiolipin and phosphatidic acid regulate mitochondrial

dynamics via MARCH5 ubiquitination. Cardiolipin accelerates

MARCH5 self-ubiquitination, promoting mitochondrial turnover,

while phosphatidic acid stabilizes MARCH5 to preserve

mitochondrial homeostasis (239). Furthermore, PD-1 signaling

facilitates MARCH5-mediated g-chain ubiquitination, impairing

antitumor immunity. Combining PD-1 blockade with MARCH5

inhibitors and IL-2 enhances immune responses and therapeutic

efficacy (240).

A recent study by Sakamaki et al. demonstrated that phospholipids,

such as phosphatidylethanolamine (PE), can be ubiquitinated in

endosomal and lysosomal compartments by the ubiquitin enzymes

Uba1 (E1), Ubc4/5 (E2), and Tul1 (E3). These findings provide insights

into the novel roles of lipids beyond metabolic substrates (241). This

reciprocal interaction between lipid metabolism and ubiquitination

offers novel insights into tumor biology and identifies potential

therapeutic targets.
8 Therapeutic strategies and
discussion: targeting the UPS in
pediatric tumors

Current research has demonstrated that the UPS plays a crucial

role in the regulation of pediatric solid tumors, including NB (242).

The ubiquitination pathway has been explored for drug
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TABLE 1 Lipid metabolism-related genes and their roles in tumor prognosis: regulation by the UPS.

Gene/ Ub/Dub Enzyme Disease Effect Impact on lipid Metabolism/Other Functions Notes Reference
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Gene/ Ub/Dub Enzyme Disease Effect Impact on lipid Metabolism/Other Functions Reference
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Protein Relevance

Lipid Droplets (LDs)

AUP1 UBE2G2 Undefined Undefined Links lipid droplets (LDs) to UPS, mediating protein ubiquitination
on the LD surface through Ube2g2.

PLIN2,
PLIN5

Itch Undefined Poor prognosis PLIN2 and PLIN5 are ubiquitinated by Itch, linking lipid droplets
(LDs) to the UPS for protein turnover and metabolic regulation.

Spartin Itch Undefined Poor prognosis Acts as an adaptor factor for autophagy-dependent lipid droplet
(LD) turnover during nutrient deprivation.

ATGL COP1, RNF213 Undefined Undefined Ubiquitination inhibits triglyceride hydrolysis, increasing lipid
droplet (LD) content and disrupting lipid metabolism.

FSP27 COP1, RNF213 Undefined Undefined UPS regulates the stability of FSP27, indirectly affecting lipid
droplet homeostasis.

Transcriptional Regulation of Fatty Acid Metabolism

PPAR Siah2, NEDD4-
1, TRIM46

MB, NB, OS Improve prognosis PPAR activation promotes tumor differentiation, apoptosis, and
metabolic regulation. TRIM46-mediated PPAR ubiquitination
enhances NF-kB signaling, promoting tumor growth and poor
prognosis in OS.USP22

SREBP1 SCF-FBXW7, RNF20,
RNF139, SIRT1,

Undefined poor prognosis Ubiquitination (via SCF-FBXW7, RNF20, RNF139) or deacetylatio
(via SIRT1) promotes SREBP1 degradation, inhibiting fatty acid
metabolism and maintaining lipid homeostasis. mTORC1 activatio
and SREBP1 acetylation enhance its stability and promote lipid
metabolism, supporting tumor growth.

Transcriptional Regulation of Cholesterol Metabolism

SREBP2 RNF145, SCF-
FBXW7, TRC8

NB poor prognosis Ubiquitination (via RNF145, SCF-FBXW7, TRC8) inhibits SREBP2
activation, reducing cholesterol synthesis and tumor growth.
Deubiquitination by USP28 stabilizes SREBP2, enhancing cholester
synthesis and lipid metabolism.USP28

LXRs
(LXRa,
LXRb)

IDOL, RNF145, SIRT1 NB Improve prognosis 24SOHC induces LXR-mediated adaptive responses; enhanced
ABCG1 expression protects against 7KC-induced cytotoxicity;
ABCA1 plays a less critical role in NB.
24(S)-hydroxycholesterol upregulates ApoE, ABCA1, and ABCG1 i
astrocytes; NR Modulators inhibit mTOR signaling via DDIT4
in OS.
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Cholesterol uptake and LDLR (Low-Density Lipoprotein Receptor) pathway

LDLR SREBP2, mTOR,
IDOL, PCSK9

NB, OS poor prognosis Activation of LXR induces IDOL, which ubiquitinates LDLR
promotes lysosomal degradation, and inhibits cholesterol up
During cholesterol deprivation, LDLR expression is induced,
enhancing cholesterol uptake; PCSK9 binds to LDLR and dir
to lysosomal degradation, reducing LDLR levels on the cell s
and subsequently decreasing LDL uptake. mTOR activation c
bypass the LXR-IDOL axis, maintaining high LDLR expressi
thereby promoting cholesterol uptake and tumor metabolism

Cholesterol biosynthesis pathway
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USP20

SQLE,
DHCR24,
LDM

MARCHF6 OS
(High-Risk)

Poor Prognosis Elevated SQLE promotes chemoresistance; suppression reduc
malignancy, enhances chemosensitivity; regulates ferroptosis
and cuproptosis.

Cholesterol efflux
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Astrocytoma,
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Poor prognosis in
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Protective role in
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regulates osteosarcoma progression and metastatic potential.
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Increased expression linked to drug resistance in OS, NB, and GBM;
reduces intracellular drug accumulation, impairing
treatment efficacy.

hemoresistance in OS via Ras/ERK1/2/HIF-1 axis;
hibits efflux in NB to enhance YM155 cytotoxicity;
ith methylation-driven drug resistance in GBM.

(157)

Promotes cholesteryl ester formation in GBM and 24S-OHC-
induced neurotoxicity in NB.

4S-OHC esterification in NB causes neuronal death;
ivity drives cholesteryl ester biosynthesis in GBM.

(158)

ROS-induced ubiquitination of ACAT2 enhances its degradation,
promoting cholesterol storage and metabolic adaptation.

(161)

, medulloblastoma; GC, gastric cancer; HCC, hepatocellular carcinoma; WT, wild oblastoma; ES, Ewing sarcoma; AD, Alzheimer’s disease; Astrocytoma.
CoA carboxylase; SCD1, stearoyl‐CoA desaturase 1; CD36, FABP4/5, fatty acid-bin /5; CPT1B/CPT2, carnitine palmitoyltransferase 1B/2; AUP1, PLIN2/5, Spartin,

P1/2, sterol regulatory element-binding protein 1/2; HMGCR, 3-hydroxy-3-methyl eductase; YAP1 denotes Yes-associated protein 1.
PCSK9, proprotein convertase subtilisin/kexin type 9; ABCA1/ABCG1/ABCA6/ABC TP-binding cassette transporters; ACAT1/2, acyl-CoA cholesterol acyltransferase
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, SREBF1/2, ER, ACR, ATPB, TSP-1, RPARP-AS1, mTOR, NFkB, AMPK, HER2, , SERPINE2, DDIT4, 24SOHC, 7KC, ApoE, IGF-I, MDM2.
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Tumor types – OS, osteosarcoma; RMS, rhabdomyosarcoma; NB, neuroblastoma; MB
Enzymes/Proteins – ACLY, ATP citrate lyase; FASN, fatty acid synthase; ACC, acetyl
ATGL, FSP27.
Transcriptional Regulators – PPAR, peroxisome proliferator-activated receptor; SREB
Cholesterol Metabolism Components – IDOL, inducible degrader of the LDL receptor;
1/2.
Ubiquitination/Deubiquitination Enzymes – CUL3-KLHL25, USP13, USP30, COP1, US
HUWE1, NEDD4-1, HECTD1, UBE3A, Cullin-3, RNF5.
Others – XIST, miR-22, miR-195, miR-424, NBASP, CRABP-II, MAPK, MYCN, E2F
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development in various diseases, including cancer (243–246). 这

However, directly targeting E3 ligases is challenging due to their

multiple substrates, which may lead to unintended effects. A more

effective approach could be inhibiting downstream pathways or

specific protein-protein interactions (PPIs) relevant to cancer.

Currently, drug development targeting the ubiquitination

pathway focuses on three main strategies:
Fron
Inhibiting proteasome-mediated proteolysis to disrupt protein

degradation and affect tumor cell homeostasis.

Targeted protein degradation (TPD) using techniques like

PROTACs to selectively degrade oncogenic proteins.

Inhibiting key factors, particularly E3 ligases, to regulate

tumor progression.
The ubiquitination pathway is highly complex and can have

oncogenic or tumor-suppressive effects depending on the specific

context (243, 244, 247, 248). Notably, both E3 ligases and

deubiquitinating enzymes (DUBs) play key roles in lipid biosynthesis

and degradation, processes closely linked to tumor progression. However,

a comprehensive understanding of the clinical relevance of these lipid

metabolism-related UPS components in pediatric tumors is still lacking.

The following sections summarize current strategies, preclinical

findings, and future perspectives.
8.1 Proteasome inhibitors

Bortezomib—a proteasome inhibitor approved by the FDA for

multiple myeloma and mantle cell lymphoma—has demonstrated

promising preclinical activity in pediatric tumor models (249). In

animal studies, bortezomib not only suppressed the growth of NB

cells injected into mice (249) but also induced apoptosis in human

medulloblastoma cells by inhibiting key signaling pathways,

including AKT and NF−kB (250). Based on both in vitro

experiments and mouse xenograft models, Yang et al. proposed

that bortezomib might be effective for treating pediatric MBs (250).

Additionally, bortezomib effectively inhibits NB cell growth and

angiogenesis (251). However, its limited ability to cross the blood–

brain barrier may restrict its efficacy in treating central nervous

system (CNS) tumors (252). In the clinical setting, besides

bortezomib (252–254), other FDA-approved proteasome

inhibitors such as carfilzomib (255, 256) and ixazomib (257, 258)

are currently used to treat myeloma (248, 259, 260).

The effects of proteasome inhibitors on apoptosis are

multifaceted and depend heavily on the cellular context. The UPS

governs a variety of proteins involved in programmed cell death.

For example, in HL60 leukemia cells, these inhibitors promote

apoptosis (261), yet in sympathetic neurons, they might have a

protective, anti-apoptotic effect (262). Research by Bobba et al.

demonstrated that in 7-day-old rat cerebellar granule neurons,

proteasome inhibition can prevent the release of cytochrome c

during apoptosis, suggesting that normal proteasomal function is

crucial for initiating cell death and that its inhibition may rescue
tiers in Immunology 15
cells from dying (263). Complementary work by Butts et al. revealed

a dual-phase response in 7- to 8-day-old rat cerebellar granule cells:

brief inhibition boosts cell survival by upregulating factors like

MEF2D, whereas extended inhibition elevates pro-death molecules

such as c-JUN and Bim, ultimately causing toxicity (264). These

results emphasize that the duration and concentration of

proteasome inhibitor exposure are key factors in determining

whether the response will be protective or deleterious, with

malignant cells generally undergoing apoptosis in response

(264–266).
8.2 Deubiquitination module

8.2.1 USP22
USP22 plays a pivotal role in tumor cell tolerance to

chemotherapy by promoting the repair of DNA strand breaks

(267). In osteosarcoma, silencing ALKBH5 increases m6A

modifications that destabilize USP22 and RNF40, leading to the

downregulation of genes involved in the cell cycle, DNA replication,

and repair, whereas enhanced ALKBH5 activity drives USP22/

RNF40-dependent oncogenic processes (268).Moreover, USP22

contributes to osteosarcoma progression by modulating glycolytic

pathways that affect cell proliferation, apoptosis, migration, and

invasion (269). In hepatocellular carcinoma, USP22 knockdown or

inhibition via agents like SO2 markedly increases the sensitivity of

HCC LR and primary HCC cells to lenvatinib, while also diminishing

Treg-mediated immunosuppression and enhancing CD8+ T cell

infiltration, suggesting a promising role in cancer immunotherapy

(270, 271). Similarly, in non-small cell lung cancer, USP22 inhibition

improves gefitinib sensitivity and induces ferroptosis, offering a novel

strategy to overcome chemoresistance (272).

Structure-based virtual screening has identified selective USP22

inhibitors such as rottlerin and morusin, which elevate histone

monoubiquitination and lower Sirt1 and PD-L1 expression, thereby

exhibiting significant antitumor activity in vivo(273). Additionally,

overexpression of miR-200b-5p, a regulator of USP22, suppresses

gastric cancer cell proliferation and migration by targeting the NF

−kB pathway, highlighting its potential as a new therapeutic target

in gastric cancer (274).
8.2.2 USP13
Recent studies highlight USP13’s critical role in tumor

progression. In osteosarcoma, Spautin-1–mediated inhibition of

USP13 degrades METTL3, destabilizing ATG5 mRNA and

impairing autophagy and glycolysis, which ultimately suppresses

tumor growth (275). In glioblastoma, both Spautin-1 treatment and

USP10/USP13 knockdown reduce cell proliferation and migration

(276). Notably, high USP13 expression in glioma stem cells

stabil izes c-Myc, while its depletion enhances c-Myc

ubiquitination and degradation, effectively inhibiting tumor

growth; conversely, overexpression of FBXL14 promotes c-Myc

degradation, leading to stem cell differentiation and further tumor

suppression (277).
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8.2.3 USP30
Biochemical and structural studies have identified selective

inhibitors for USP30. For instance, the benzosulfonamide

compound USP30inh shows high selectivity and potency for

USP30 over 49 other deubiquitylating enzymes in a NB cell line

(278). Similarly, the N−cyano pyrrolidine FT3967385 is a highly

selective USP30 inhibitor that accelerates the PINK1−dependent

generation of phospho−Ser65 ubiquitin in cells (279). In parallel,

the long non−coding RNA USP30−AS1 has emerged as a valuable

prognostic marker; high expression of USP30−AS1 is associated

with poor survival in both primary and recurrent glioma patients,

likely due to its repression of mitophagy and disruption of

mitochondrial homeostasis (280). Moreover, USP30−AS1 is

currently under investigation as a potential biomarker for

osteosarcoma prognosis (281).

8.2.4 USP2
USP2 is a deubiquitinating enzyme that modulates key signaling

pathways by regulating protein stability. It stabilizes b−catenin, thereby
promoting epithelial-to-mesenchymal transition (EMT) and altering

chemosensitivity (282). In sorafenib−resistant Huf7−SR cells, USP2

inhibition reduces cFILP expression, induces apoptosis, and enhances

sorafenib sensitivity (283), whereas USP2 overexpression in renal

carcinoma cells (A498 and CAKi−1) suppresses proliferation, migration,

and invasion (284).Therapeutically, USP2 is an attractive target; ML364 is

themost extensively studiedUSP2 inhibitor, with other inhibitors likeQ29,

STD1T, and LCAHA under investigation (285). In mantle cell lymphoma,

ML364 facilitates the degradation of CCND1 and b−catenin, arresting the
cell cycle and impeding tumor growth (286). Moreover, agents such as 6

−thioguanine (6−TG) are clinically employed for AML and CML (287,

288). Additionally, USP2, recruited by VCP, enhances the stability of fatty

acid synthase (FASN) by removing K48−linked ubiquitin chains, a process

whose inhibition reverses pro-tumorigenic effects in osteosarcoma cells

(289). Elevated USP2 expression is also associated with poor prognosis in

medulloblastoma (290).

8.2.5 USP28
Additionally, inhibitors of USP25/28 (e.g., CT1113) effectively

lower MYCN expression in NB, as confirmed in patient-derived

xenograft models (291). USP28 is similarly overexpressed in

glioblastoma, contributing to tumorigenicity through MYC

regulation (292).
8.3 Ubiquitination module

8.3.1 ITCH
ITCH, a HECT-type E3 ubiquitin ligase, plays critical roles in

regulating apoptosis, cell growth, and inflammation. Dysregulated

ITCH expression can impair the apoptotic response to conventional

chemotherapy (293–295). In NB, ITCH downregulates TAp73

levels, thereby contributing to chemoresistance (296). Desmethyl-

clomipramine (DCMI), the active metabolite of clomipramine,
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inhibits both ITCH autoubiquitylation and its ubiquitylation of

p73, enhancing the cytotoxic effects of standard chemotherapeutics

in various cancers (297, 298) In glioblastoma, gain-of-function

TP53 mutations in astrocytes upregulate ITCH, leading to ferritin

heavy chain (FTH) degradation and increased free iron levels (299).

Conversely, in NB, ITCH cooperates with UBE4B to promote the

polyubiquitination of Ku70 and c-FLIPL, thereby enhancing

apoptosis (300). Additionally, nanoparticle-mediated silencing of

ITCH sensitizes tumor cells to irradiation, offering a potential

strategy for combined chemo- and radiotherapy, particularly in

p53-deficient tumors (301).
8.3.2 NEDD4
I3C, a natural inhibitor derived from Brassicaceae, effectively

targets NEDD4 and WWP1, and has been shown to inhibit

NEDD4–1 activity (302). In temozolomide (TMZ)-resistant

glioblastoma cells, NEDD4–1 contributes to redox imbalance by

promoting PTEN degradation and activating the AKT/NRF2/HO-1

pathway, while I3C treatment suppresses tumorsphere formation,

migration, and invasion in resistant cell lines (303).

8.3.3 FBXW7
FBXW7 is a key tumor suppressor whose dysregulation contributes

to malignant progression across multiple cancer types. In Ewing

sarcoma, for instance, KDM5B attenuates FBXW7 transcription,

leading to CCNE1 accumulation and enhanced proliferation (304).

Similarly, in glioblastoma, miR-92b targets FBXW7 and TRIP13

suppresses its transcription, thereby stabilizing oncogenic proteins

like c−MYC and driving tumorigenesis (305, 306). In osteosarcoma,

the lncRNAGClnc1 facilitates tumor progression by stabilizing NONO

and preventing FBXW7-mediated ubiquitination (307), whereas

targeting miR-27a−3p can restore FBXW7 expression to sensitize

Taxol−resistant cells (308). Exosomal miR-25−3p in glioblastoma

also promotes proliferation and temozolomide resistance by targeting

FBXW7 (309).

Our own findings further support the pivotal role of FBXW7.

Agents such as IPA and N6−BA modulate GBM cell proliferation

by regulating the turnover of key proteins—like SREBPs and Mcl1

—thereby influencing malignant progression and chemoresistance

(306). In MYC−driven medulloblastoma, inhibition of PLK1

stabilizes FBXW7, underscoring its tumor‐suppressive function,

while blocking ELK1−mediated transcription activates FBXW7

and suppresses MCL1, leading to cytotoxicity (310) (311). In the

context of MYCN−amplified neuroblastoma, Aurora−A inhibitors

(e.g., MLN8054 and MLN8237) disrupt the protective Aurora−A/N

−Myc complex, promoting FBXW7−mediated degradation of N

−Myc and thus inhibiting tumor growth (291).

Moreover, insights from yeast have provided a structural basis

for targeting this pathway. SCF−I2, an inhibitor of the yeast F−box

protein Cdc4 (the homolog of human FBXW7), binds to the Skp1–

Cdc4 complex through an allosteric mechanism—a mode of action

distinct from inhibitors like nutlin, which block protein–protein

interactions directly (PDB: 3MKS) (312).
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8.3.4 RNF5
High RNF5 expression in neuroblastoma and melanoma is

associated with improved patient survival, suggesting a tumor-

suppressive role. Activation of RNF5 with the agonist Analog-1

reduces cell viability by inhibiting F1F0 ATPase activity (313). This

inhibition limits glutamine supply and elevates oxidative stress,

together delaying tumor growth (313).
8.4 Future challenges and innovative
directions

8.4.1 Mechanistic complexity
A deeper, context-specific understanding of the UPS’s

regulatory networks in pediatric tumors is essential. Future

research must elucidate how dist inct E3 l igases and

deubiquitinases coordinate to regulate lipid metabolic pathways,

thereby offering insight into novel, age-specific vulnerabilities.

8.4.2 Selective targeting and drug development
Given the complex, large-scale interactions involved in

substrate–E3 binding, the development of small-molecule

inhibitors that are both selective and minimally toxic remains a

formidable challenge. Innovative strategies—such as leveraging

high-throughput screening and structure-based drug design—are

needed to identify agents that precisely modulate these interactions.

8.4.3 Resistance mechanisms and combination
therapies

Tumor cells may develop resistance through adaptive metabolic

rewiring and alterations in UPS regulation. Addressing this requires

exploring combination therapies that integrate UPS inhibitors with

established modalities (chemotherapy, radiotherapy, or

immunotherapy) to preempt and overcome resistance.

8.4.4 Age-specific therapeutic strategies
The distinct metabolic and developmental characteristics of

pediatric tumors call for tailored therapeutic approaches. Future

clinical strategies must account for these differences, optimizing

dosing and safety profiles to ensure effective, child-specific treatments.

8.4.5 Integration of immune modulation
As lipid metabolism also shapes the tumor immune

microenvironment, future research should investigate how

targeting the UPS could concurrently modulate immune

responses. This dual approach might not only impede tumor

growth but also enhance immunotherapeutic efficacy, paving the

way for more comprehensive treatment regimens.

In summary, while the UPS-driven regulation of lipid

metabolism presents a promising frontier in pediatric oncology,

realizing its full therapeutic potential will require overcoming
Frontiers in Immunology 17
significant mechanistic and translational challenges. Advancing

our understanding in these areas promises to yield innovative,

targeted strategies that can more effectively disrupt tumor

metabolism and improve outcomes for pediatric cancer patients.
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17. Ruiz-Pérez MV, Sainero-Alcolado L, Oliynyk G, Matuschek I, Balboni N,
Ubhayasekera S, et al. Inhibition of fatty acid synthesis induces differentiation and
reduces tumor burden in childhood neuroblastoma. iScience. (2021) 24:102128.
doi: 10.1016/j.isci.2021.102128
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72. Fernández-Garcıá P, Malet-Engra G, Torres M, Hanson D, Rosselló CA, Román R,
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