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sativa L.) extracts
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Research Group, Korea Food Research Institute (KFRI), Wanju, Republic of Korea
Aging leads to a decline in the mass and function of skeletal muscles, a condition

known as sarcopenia. It was previously reported that aging-related alterations in

protein degradation, chronic inflammation, and deterioration of mitochondrial

metabolism affect the acceleration of muscle atrophy in the elderly. However,

the detailed mechanism or substantial causes for age-related muscle loss are still

lacking, yet exercise or an increment in dietary protein intake are suggested as

effective approaches to mitigate muscle atrophy. This study aims to investigate

the regulatory effect of black soybean (Rhynchosia nulubilis) and black rice

(Oryza sativa L.) mixture extract (BBME), which are rich in protein and bioactive

compounds, in 12-month-old aged mice and L6 myotubes. BBME was orally

administered at 300 and 600 mg/kg/day (low and high doses) for 12 weeks, and

its effects on systemic glucose homeostasis and skeletal muscle metabolism

were evaluated. Consequently, BBME at a high dose marginally ameliorated

muscle loss and significantly improved glucose metabolism. BBME also reduced

cellular senescence markers and enhanced mitochondrial biogenesis in aged

skeletal muscles. Additionally, BBME exerted insulin-like activity by promoting

glucose metabolism in L6 myotubes. These findings suggest the potential of

BBME as a functional food ingredient in alleviating aging-induced muscle loss by

modulating mitochondrial activity and glucose metabolism.
KEYWORDS
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1 Introduction

Skeletal muscle is the largest organ that comprises about 40% of body weight. It is well

known that skeletal muscle is involved in physical performance, breathing, thermogenesis,

and posture (1). Besides, skeletal muscle contributes to basal energy metabolism and serves

as a reservoir for ingested nutrients while providing fuels for other tissues (2). Moreover,
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skeletal muscle is the main site where many different metabolic

processes occur including glucose metabolism and glycogen

synthesis (3). In particular, muscle tissues have been regarded as

modulators of glucose homeostasis. In healthy individuals,

approximately 80% of extracellular glucose is utilized by skeletal

muscle under the postprandial state. Under insulin or contraction-

stimulated conditions, glucose transporter proteins, including the

most abundant glucose transporter 4 (GLUT4), carry glucose

molecules into muscle cells, playing a pivotal role in glucose

homeostasis (4, 5).

Skeletal muscles are exhibited to sensitively respond to

environmental changes through their structural and functional

plasticity (6). In this regard, a well-balanced diet with appropriate

physical exercise leads to muscle hypertrophy, yet malnutrition and

aging may result in muscle atrophy with an increased risk of

metabolic syndrome (7). Accordingly, aging-induced loss of

muscular function and mass in the elderly severely causes a

decrement in longevity and healthy life span. Several studies have

suggested mitochondrial dysfunction, increment of protein

degradation, and chronic inflammation as the main factors in the

decline of muscle function, but detailed mechanisms are still

unknown (8, 9). Since age-related changes may affect the function

and structure of skeletal muscle, energy metabolism and synthesis

are altered in muscle tissues (8, 10). Furthermore, the deterioration

of glucose metabolism with aging impairs skeletal muscle and

exacerbates the aforementioned factors (11). Thus, the

maintenance of glucose homeostasis and related metabolism

might be a key factor in achieving successful aging with the

inhibition of muscular loss (12).

Black soybean (Rhynchosia nulubilis) is widely used as a dietary

protein source and is also rich in bioactive compounds such as

anthocyanins, isoflavones, and saponins (13). Likewise, black rice

(Oryza sativa L.) contains not only essential nutrients including

carbohydrates and proteins but also beneficial components like

anthocyanins, vitamins, phytosterols, and phenolic compounds

(14). Several studies have reported anti-inflammatory, anti-

obesity, anti-diabetic, and anti-cancer properties of anthocyanins

and isoflavones extracted from black soybean and black rice

(15–17). In addition to bioactive compounds, black soybean and

black rice are known for their high protein content, which is crucial

for muscle growth and hypertrophy (18). Furthermore, increasing

protein intake may lead to suppressed muscle loss by promoting

skeletal muscle protein synthesis in the elderly (19–21). Although

numerous studies have been conducted to investigate the health-

promoting effects of anthocyanins, isoflavones, and phytosterols

extracted from black soybean and black rice, few studies have

investigated their effects on muscle function or glucose

metabolism (22).

Chronic, low-grade inflammatory milieu with aging has been

indicated as a major risk factor for a decline in muscle mass and

function (23). In this regard, a previous study has shown an anti-

inflammatory effect of black soybean and black rice mixture extract

(BBME) in elderly mice (24). Therefore, this study aimed to

determine whether BBME supplementation could mitigate aging-

induced muscle decline by modulating cellular senescence,
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inflammation, and mitochondrial function. The dietary effect of

BBME on aged skeletal muscle function was investigated, and its

underlying mechanism was examined by evaluating glucose uptake

and utilization in L6 myotubes.
2 Materials and methods

2.1 Black soybean and black rice mixture
extract preparation

Black soybean and black rice extracts were prepared according

to the procedures previously described (24). Briefly, black soybean

(Bibong herb, Yangju, Korea) and black rice (Bibong herb) were

mixed at the ratio of 4:1 (w:w) and extracted in 30% ethanol at 60°C

for 6 h. Black soybean and black rice mixture extract was then

filtered and concentrated. The black soybean and black rice mixture

extract was stored at -20°C until further use.
2.2 Animal study

12-month-old elderly male C57BL/6 mice were purchased from

Korea Basic Science Institute (KBSI, Gwangju, Korea) and

syngeneic young male mice at 4 weeks after birth were obtained

from Raon Bio (Yongin, Korea). Mice were housed at 20°C in a 12 h

light/dark cycle. AIN-76A rodent diet and water were provided ad

libitum during the experimental period. Aged mice were randomly

divided into three groups (Aged control, BBME-L, and BBME-H)

after 1 week of acclimation. Elderly mice in BBME-L group were

orally gavaged with BBME of 300 mg/kg/day, while BBME-H group

received 600 mg/kg/day BBME for 12 weeks (n = 6). Young and

aged control mice were orally gavaged with tap water during the

dietary intervention. The body weight and food intake of mice were

monitored twice a week. One week before sacrifice, an oral glucose

tolerance test (OGTT) was performed by gavaging 2 g/kg of glucose

following overnight fasting. The blood glucose concentration of tail

veins was measured by a glucometer (Accu-Check Performa, Roche

Diagnostics GmbH, Mannheim, Germany) at 0 (before oral

gavage), 30, 60, 90, 120 min after glucose treatment and the area

under the curve was calculated (25). Following OGTT, mice were

fed appropriate diets for another week. At the end of the dietary

intervention, mice were euthanized via CO2 inhalation. Blood

samples were collected by cardiac puncture and stored at 4°C for

3 h. Then, blood sera were obtained by centrifugation at 300 ×g for 5

min. Blood glucose levels in blood sera were measured with a

clinical analyzer (Hitachi, Tokyo, Japan). Gastrocnemius, tibialis

anterior, extensor digitorum longus, and soleus tissues were

collected and stored at – 80°C for further experiments.
2.3 Cell culture and BBME treatment

Rat L6 myoblasts were purchased from Korean Cell Line Bank

(KCLB, Seoul, Korea). L6 myoblasts were grown in Dulbecco’s
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modified Eagle’s medium (DMEM, Welgene, Gyeongsan, Korea)

containing 10% fetal bovine serum (FBS, Welgene) and 1%

antibiotic/antimycotic solution (10,000 U/mL penicillin G, 10,000

mg/mL streptomycin, and 25 mg/mL amphotericin B, Welgene).

Cells were then seeded in 24-well plate for differentiation into

myotubes by culturing in DMEM with 2% horse serum (HS,

Thermo Fisher Scientific, Waltham, MA, USA) for 5 days. The

differentiation medium was changed every 2 days. Differentiated

cells were serum-starved for 4 h in serum-free medium. Then,

serum-starved cells were treated with BBME for 3 h or insulin for 1

h before further experiments.
2.4 Glucose uptake assay

Glucose uptake was assessed using 2-(N-(7-Nitrobenz-2-oxa-

1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG, Thermo Fisher

Scientific) solution diluted in Krebs-Ringer-Phosphate-HEPES

(KRPH) buffer (Bio-solution, Suwon, Korea) following BBME or

insulin treatment. Cells were washed twice with phosphate-buffered

saline (PBS, Welgene) and incubated with 100 mM of 2-NBDG

solution at 37°C for 30 min. Residual glucose was washed with pre-

chilled PBS and cells were detached with Trypsin-EDTA (Thermo

Fisher Scientific). Then, cells were resuspended in PBS for flow

cytometry analysis. Glucose uptake was determined by measuring

mean fluorescence intensity (MFI) at FL1 channel of a BD Accuri

C6 flow cytometer (BD Biosciences, San Jose, CA, USA).
2.5 Measurements of glycolytic rate and
mitochondrial respiration

Energy metabolism such as glycolysis and oxidative

phosphorylation in differentiated myotubes was evaluated by an

extracellular flux analyzer (Seahorse XF, Agilent Technologies, Palo

Alto, CA, USA). L6 myoblasts were seeded in XF cell culture plate

and differentiated into myotubes. L6 myotubes were then serum-

starved and further treated with BBME or insulin. For measuring

glycolysis in differentiated myotubes, glycolytic rate assay was

performed. The oxygen consumption rate (OCR) and

extracellular acidification rate (ECAR) were assessed by injecting

5 mM rotenone & antimycin A (Rot/AA) and 500 mM

2-dexoyglucose (2-DG) sequentially. The glycolytic proton efflux

rate (glycoPER), the rate of protons extruded during glycolysis, was

determined by using OCR and ECAR. Basal glycolysis (last

glycoPER before rotenone/antimycin A injection) and

compensatory glycolysis (maximum glycoPER after rotenone/

antimycin A injection) of myotubes were calculated following

measurement (26). To evaluate mitochondrial oxidative

phosphorylation, real-time OCR was assessed under basal

condition and after treatment of oligomycin, carbonyl cyanide-4

(trifluoromethoxy)phenylhydrazone (FCCP), and rotenone/

antimycin A. The mitochondrial respiration parameters, basal

respiration, maximal respiration, ATP production, and spare

respiratory capacity, were calculated by following equations:
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Basal respiration = (Last OCR before oligomycin injection)

− (Non�mitochondrial Respiration Rate)

Maximal respiration = (Maximum OCR after FCCP injection)

− (Non�mitochondrial Respiration Rate)

ATP production = (Last OCR before oligomycin injection)

− (Minimum OCR after oligomycin injection)

Spare respiratory capacity = (Maximal respiration)

− (Basal respiration)

Following energy metabolism measurements, protein contents

of the cells were quantified by bicinchoninic acid (BCA) assay

(Abcam, Cambridge, UK) for normalization of the metabolic

profiles of differentiated myotubes to the protein content per well

as an indicator of cell counts.
2.6 RNA extraction and qRT-PCR

BBME-treated and insulin-stimulated myotubes were harvested

to assess the transcription of glucose transporter 4 (GLUT4). Total

RNA was isolated from harvested cells with HiGene Total RNA

Prep Kit (Biofact, Daejeon, Korea) following the manufacturer’s

instructions. Collected hindlimb muscles were used to analyze the

effect of BBME on aging-related changes in muscle function. Total

RNA was extracted by homogenizing tissues with Tri-reagent

(Favorgen, Taiwan). The purity and concentration of RNA were

measured with Nanodrop One Microvolume UV-Vis

Spectrophotometer (Thermo Fisher Scientific). Quantitative

reverse transcriptase PCR (qRT-PCR) was conducted using 2X

One step qRT-PCR Master Mix (SYBR Green, Biofact) and CFX

Connect™ Real-Time PCR detection system (Bio-Rad, Hercules,

CA, USA) under the 2 step conditions: 50°C for 30 min, 95°C for 15

min, and 40 cycles of 95°C for 20 s and 60°C for 40 s. The sequences

of primers used for qRT-PCR are listed in Table 1. Relative mRNA

quantification was determined using the delta-delta Ct method

(2–DDCt). The delta Ct value was calculated by subtracting Ct

value of the reference gene (GAPDH or b-actin) from Ct value of

target gene. Then, the delta delta Ct value was determined by

evaluating difference between average Ct value of control group and

Ct value of experimental group.
2.7 Statistical analysis

All data are expressed as mean ± standard error of the mean

(SEM). Statistical significance of results was analyzed with one-way

analysis of variance (ANOVA) and post-hoc Tukey’s multiple

comparison test using Prism 9 software (GraphPad Software, La

Jolla, CA, USA). p < 0.05 was considered as statistically significant.

Significant differences between experimental groups were indicated

as different alphabets.
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2.8 Ethics statement

All procedures and experiments were confirmed by the

Institutional Animal Care and Use Committee (IACUC) of

Kyung Hee University (Approval ID: KHGASP-21-057).
3 Results

3.1 Marginal increment of skeletal muscles
in aged mice by BBME

As aging-associated body weight gain increases the risk of

metabolic diseases including obesity and diabetes (27, 28), the

effects of BBME administration on body weight and muscle mass

in agedmice were initially assessed. Following oral intervention for 12

weeks, there was no significant difference in body weight change

among aged mice (Supplementary Figure 1A). Since aging involves

the loss of muscle functioning, the mass of skeletal muscles was

measured and normalized to whole body weight. As expected, elderly

mice exhibited a significantly decreased ratio of muscle mass/whole

body weight (7.94 ± 0.36 mg/g) as compared to that of young mice

(11.52 ± 0.50 mg/g, p < 0.05), indicating aging diminishes the mass of

muscles in mice. In these elderly mice, BBME exhibited an increasing

tendency of muscle mass (BBME-L 8.39 ± 0.40, and BBME-H 8.90 ±

0.55 mg/g) (p > 0.05, Supplementary Figure 1B).
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3.2 Amelioration of impaired glucose
tolerance in aged mice by BBME

Aging also increases the risk of diabetes, which highlights the

importance of appropriate glucose metabolism for the prevention of

geriatric diseases (29, 30). Therefore, the current study sought the

effect of BBME on glucose metabolism, as determined by an oral

glucose tolerance test. Elderly control and BBME-L-fed mice

exhibited a steep increase of blood glucose concentration after

oral gavage, while BBME at the higher dose (BBME-H) revealed a

comparable slope to that of Young control (Figure 1A). The area

under the curve (AUC) also significantly increased in Aged group

(841.50 ± 23.55 mg×min/dL) and BBME-L group (800.40 ± 55.52

mg×min/dL) compared to Young group (606.90 ± 15.49 mg×min/

dL) (p < 0.05, Figure 1B). Of interest, a high concentration of BBME

(BBME-H: 711.50 ± 54.31 mg×min/dL) attenuated increment of

AUC without any statistical difference to Aged control group (p >

0.05). Besides OGTT which assesses the short-term utilization of

glucose following oral administration, fasting serum glucose

concentration in a physiological status was further measured after

the sacrifice. Aging significantly increased serum glucose

concentration, which may reflect the deterioration of glucose

homeostasis. As shown in Figure 1C, the glucose concentration of

Aged (209.40 ± 27.40 mg/dL) and BBME-L (186.40 ± 20.14 mg/dL)

mice were significantly higher than that of young mice (102.80 ±

10.06 mg/dL, p < 0.05). In comparison, a high dose of BBME

(BBME-H) to elderly mice lowered serum glucose (140.60 ± 12.21

mg/dL) statistically comparable to young mice. Taken together,

BBME at a high dose marginally improved glucose homeostasis in

aged mice, potentially reducing the risk of age-related

metabolic diseases.
3.3 Suppression of aging-induced muscular
senescence and inflammation by BBME

Since BBME exerted a tendency to improve glucose homeostasis

with aging, the dietary effect of BBME on the decline in muscle

function was further examined. Diverse stimuli up-regulate p53 and

p16 pathways in muscle cells during aging and induce cellular

senescence. Cells then exhibit the senescence-associated secretory

phenotype (SASP), as characterized by the production of

inflammatory cytokines, immune modulators, growth factors, and

proteases, following activation of NF-kB signaling pathway (31, 32).

In this regard, the transcription levels of cellular senescence and

inflammation-related indicators were measured by qRT-PCR in

muscle tissue lysates following dietary intervention of BBME in

elderly mice. Aging-induced up-regulation of p53 transcription was

suppressed with oral gavage of BBME, especially at a higher dose

(BBME-H) with comparable transcription to that of Young control

(p < 0.05, Figure 2A). A similar tendency was observed in the

transcription of p16, for which a high dose of BBME (BBME-H) also

significantly down-regulated p16mRNA transcription compared to

Young group (p < 0.05, Figure 2B). In addition, oral administration

of BBME also attenuated muscle inflammation by decreasing tnfa
TABLE 1 Primer sequence.

Gene Primer sequence

glut4 (Slc2a4)_Rat Forward: 5′-GGCTGTGCCATCTTGATGAC-3′
Reverse: 5′-CACGATGGACACATAACTCATGGA-3′

GAPDH_Rat Forward: 5′-ATGACTCTACCCACGGCAAG-3′
Reverse: 5′-CTGGAAGATGGTGATGGGTT-3′

p53 Forward, 5′-CCGACCTATCCTTACCATCATC-3′
Reverse, 5′-TTCTTCTGTACGGCGGTCTC-3′

p16 Forward, 5′-CCCAACGCCCCGAACT-3′
Reverse, 5′-GCAGAAGAGCTGCTACGTGAA-3′

il6 Forward, 5′-CAAAGCCAGAGTCCTTCAGA-3′
Reverse, 5′-TTGGTCCTTAGCCACTCCTT-3′

tnfa Forward, 5′-AAATGGCCTCCCTCTCATCAG-3′
Reverse, 5′-GTCACTCGAATTTTGAGAAGATGATC-3′

hexokinase II Forward, 5′-GGAACCCAGCTGTTTGACCA-3′
Reverse, 5′-CAGGGGAACGAGAAGGTGAAA-3′

pyruvate kinase Forward, 5′-TTGACTCTGCCCCCATCAC-3′
Reverse, 5′-GCAGGCCCAATGGTACAAAT-3′

glut4_Mouse Forward, 5′-ATGGCTGTCGCTGGTTTCTC-3′
Reverse, 5′-ACCCATGCCGACAATGAAGT-3′

pgc1a Forward, 5′-TTCCACCAAGAGCAAGTAT-3′
Reverse, 5′-CGCTGTCCCATGAGGTATT-3′

b-actin_Mouse Forward, 5′-AGGCCCAGAGCAAGAGAG-3′
Reverse, 5′-GGGTGTTGAAGGTCTCAAAC-3′

GAPDH_Mouse Forward, 5′-AACACTGAGCATCTCCCTCA-3′
Reverse, 5′-GTGGGTGCAGCGAACTTTAT-3′
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mRNA transcription (p < 0.05, Figure 2C), a hallmark of SASP,

although BBME did not significantly affect transcription of il6 in

aged mice (p > 0.05, Figure 2D). These findings suggest that a potent

of BBME in mitigating cellular senescence and inflammation,

thereby improving muscle function during aging.
3.4 Modulation of glucose metabolism and
mitochondrial biogenesis by BBME in
skeletal muscle

It was reported that aging-induced obesity, as well as high fat

feeding to middle-aged rats, decreases the expression of GLUT4 in

skeletal muscles by shortening its mRNA poly(A) tails (33, 34). To

elucidate metabolic changes, the transcription of glucose

transporter glut4, glycolytic hexokinase, and pyruvate kinase was

quantified by qRT-PCR following BBME administration

(Figures 3A–C). In aged mice, an increasing tendency was

observed, but BBME did not exhibit any statistical change (p >

0.05) in the mRNA transcription, indicating that BBME mitigates

inflammaging-induced muscle loss and SASP independently of

glucose metabolism. Furthermore, as aged muscle is characterized

by impaired mitochondrial function and biogenesis, the

transcription level of peroxisome proliferator-activated receptor-

gamma coactivator 1-alpha (pgc1a), a regulator of mitochondrial

function, was assessed (Figure 3D). At higher dose, BBME

significantly up-regulated transcription of pgc1a as compared to

Aged mice (p < 0.05). While BBME did not affect glucose
Frontiers in Immunology 05
metabolism in aged muscles, an increment of pgc1a indicates

BBME may enhance mitochondrial function and energy

metabolism in aged muscles, which is critical for maintaining

muscle health.
3.5 Promoted glucose transport and
utilization in L6 myotubes by BBME

As evidenced in OGTT and fasting blood glucose concentration,

BBME aids in the lowering of blood glucose. Therefore, the effect of

BBME on the glucose transport and utilization in skeletal muscle

cells was further studied in L6 myotubes at 100 ppm determined by

preliminary cell cytotoxicity assay (Supplementary Figure 2). The

cellular glucose uptake was determined by measuring the mean

fluorescence intensity (MFI) of transported 2-NBDG. BBME

significantly increased glucose uptake to 12,414.43 ± 606.59 MFI

compared to non-treated control (7,885.31 ± 298.59 MFI),

exhibiting a similar increment with insulin-stimulated cells

(11,844.20 ± 1,421.30 MFI) (p < 0.05, Figure 4A). Similarly,

mRNA transcription of glut4 was also significantly up-regulated

following BBME treatment (p < 0.05, Figure 4B).

Considering that BBME-treated cells showed a similar tendency

in glucose uptake with insulin-stimulated myotubes, further

assessments of glycolysis and mitochondrial oxidative

phosphorylation (OXPHOS) were conducted to determine

whether increased glucose uptake would lead to the activation of

energy metabolism. The glycolytic parameters were first measured
FIGURE 1

Oral glucose tolerance test (OGTT) result and fasting blood glucose level of aged mice. During the oral administration of BBME, OGTT was
performed in young and aged mice (A). Area under the curve (AUC) was calculated (B). After the sacrifice of mice, serum blood glucose levels were
measured (C). Data are presented as mean ± SEM (n = 5). Significant differences are expressed with different letters (p < 0.05) [BBME-L, low dose of
BBME (300 mg/kg/day); BBME-H, high dose of BBME (600 mg/kg/day)].
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1554941
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Park et al. 10.3389/fimmu.2025.1554941
FIGURE 2

Senescence-associated secretory phenotype (SASP) gene transcription in skeletal muscles. Skeletal muscle tissues were dissected and the
transcription of SASP factors (A) p53, (B) p16, (C) tnfa, and (D) il6 was assessed by qRT-PCR. Relative transcript levels of genes were calculated using
the delta-delta Ct method (2−DDCt). Values are presented as mean ± SEM (n = 5) and different letters indicate statistically significant differences (p <
0.05, n.s., no significant difference) [BBME-L, low dose of BBME (300 mg/kg/day); BBME-H, high dose of BBME (600 mg/kg/day)].
FIGURE 3

Relative transcript levels of glycolytic enzymes and mitochondrial regulator in aged muscles. Transcription of glucose metabolism-related genes (A)
glucose transporter 4 (glut4), (B) hexokinase, and (C) pyruvate kinase was evaluated. The mRNA transcription level of mitochondrial regulator, pgc1a
was assessed by qRT-PCR (D). The relative gene expression was calculated with delta-delta Ct method (2−DDCt). Data are expressed as mean ± SEM
(n = 5). Significant differences were indicated with different letters (p < 0.05, n.s., no significant difference) [BBME-L, low dose of BBME (300 mg/kg/
day); BBME-H, high dose of BBME (600 mg/kg/day)].
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in differentiated myotubes. The slight increases were observed in

basal and compensatory glycolysis in BBME and insulin-treated

cells without any statistical significance (p > 0.05, Figures 5A, B)

(Basal glycolysis; CTRL: 73.88 ± 4.66, BBME: 90.79 ± 7.76, and

Insulin: 86.06 ± 8.22 pmoles/min/mg protein) (Compensatory

glycolysis; CTRL: 126.07 ± 10.79, BBME: 148.36 ± 9.90, and

Insulin: 153.76 ± 14.08 pmoles/min/mg protein). Even though

BBME significantly up-regulated cellular uptake of glucose, its

oxidation by glycolysis was marginally increased.

Acetyl-CoA, the cytoplasmic metabolite of glycolysis, further

enters into mitochondrial respiration for the production of ATP

(35, 36). In order to assess the effect of BBME on specific phases of
Frontiers in Immunology 07
mitochondrial energy metabolism, OCR of myotubes was analyzed

following sequential injection of oligomycin, FCCP, and rotenone &

antimycin A. As shown in Figure 5C, oxidative phosphorylation

was increased with the treatment of BBME compared to non-

treated control group (CTRL). Specifically, BBME and insulin

significantly increased basal respiration (BBME: 17.20 ± 1.17 and

Insulin: 17.43 ± 1.53) within experimental group (CTRL: 11.67 ±

0.11 pmoles/min/mg protein). In parallel, BBME significantly

elevated maximal respiration (47.43 ± 3.30) compared to non-

treated control group (17.70 ± 1.46) exhibiting insulin-like activity

(Insulin: 39.40 ± 5.01 pmoles/min/mg protein). Accordingly, ATP

production was increased in both BBME and insulin-treated groups
FIGURE 5

Metabolic profiles in L6 myotubes. (A) The glycolytic proton efflux rate of myotubes was evaluated by Seahorse extracellular flux analyzer with
sequential injection of rotenone & antimycin A and 2-DG (2-deoxyglucose). (B) Basal glycolysis and compensatory glycolysis were calculated and
normalized with protein concentration. (C) The real-time oxygen consumption rate of differentiated myotubes was measured by Seahorse
extracellular flux analyzer treating oligomycin, FCCP, and rotenone & antimycin A. (D) Basal respiration, maximal respiration, ATP production, and
spare respiratory capacity were calculated and normalized with protein concentration. Data are presented as mean ± SEM (n = 3). Significant
differences are indicated with different letters (p < 0.05, n.s.: no significant difference) (CTRL, non-treated control group).
FIGURE 4

Glucose transport and uptake in differentiated L6 myotubes. Following incubation with 100 nM of insulin and 100 ppm of BBME, (A) 2-NBDG uptake
of myotubes and (B) transcription of glucose transporter 4 (glut4) were assessed by flow cytometry and qRT-PCR, respectively. Values are expressed
as mean ± SEM (n = 3). Different letters show statistically significant differences (p < 0.05, n.s., no significant difference) (CTRL, non-treated
control group).
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(CTRL: 9.23 ± 0.21, BBME: 9.95 ± 0.60, and Insulin: 13.34 ± 1.30

pmoles/min/mg protein). Spare respiratory capacity of BBME and

insulin-treated cells were also up-regulated (BBME: 30.23 ± 2.46

and Insulin: 21.97 ± 3.53) exhibiting significant difference with non-

treated control group (8.19 ± 0.82 pmoles/min/mg protein) (p <

0.05, Figure 5D). These results demonstrate that BBME not only

enhances glucose uptake but also improves mitochondrial function

in muscle cells, indicating its potential as a dietary supplement for

improving metabol ic heal th and muscle funct ion in

aging populations.
4 Discussion

Skeletal muscle is known to participate not only in body

movement but also in energy metabolism, thereby supporting the

functioning of other tissues (2, 37). However, muscle function

deteriorates naturally with aging, leading to a decline in muscle

mass, strength, and overall functionality (38). Furthermore,

increased inflammation, impaired glucose metabolism, and the

development of metabolic diseases are also known to exacerbate

muscle degeneration during aging (39, 40). While exercise,

increased protein, and nutrient intake, and the targeting of key

metabolic pathways have been proposed to mitigate muscle loss, the

detailed mechanisms underlying aging-related muscle atrophy

remain unclear (41–44).

Black soybean (Rhynchosia nulubilis) and black rice (Oryza

sativa L.) are both rich in bioactive compounds such as

anthocyanins, isoflavones, and saponins (45, 46). These

components have been shown to exert anti-inflammatory,

antioxidant, anti-cancer, and anti-diabetic effects, positioning

black soybean and black rice as valuable dietary components for

promoting overall health (47, 48). In addition to preclinical

findings, several studies have demonstrated the health benefits of

black rice and black soybean in human subjects. Black soybean has

inhibited fact accumulation and improved vascular function in

overweight and obese individuals (49–51). Similarly, black rice

has reduced obesity-related parameters and enhanced cognitive

function in postmenopausal and elderly populations (52, 53).

Given their high protein content and essential amino acids, this

study assessed the dietary effect of BBME extract on aged mice

focusing on aging-induced muscle loss (45, 54).

The body weight change and muscle mass were first measured.

Although BBME administration did not significantly alter body

weight, there was a marginal increase in muscle mass. In this regard,

several studies previously demonstrated enhancement of muscle

function and alleviation of muscle atrophy yet no changes of muscle

mass were observed (55–57).

Furthermore, BBME significantly improved glucose metabolism

in aged mice, as evidenced by the attenuation of glucose spikes

during OGTT and a reduction in fasting blood glucose levels. This

finding is consistent with previous reports that black soybean

extract and anthocyanins from black rice modulated glucose

metabolism in diabetic and obese mice, respectively (58, 59).

These results suggest that BBME has the potential to mitigate
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age-related glucose metabolism deterioration, though further

research is needed to fully understand the underlying mechanisms.

Since BBME, particularly at a high dose, significantly modulated

glucose homeostasis in aged mice, further investigation using

harvested skeletal muscles was conducted by measuring several

factors that induce muscle loss. For cellular senescence and

inflammatory gene transcription, aging increased the

transcription of p53, p16, and tnfa compared to Young control,

the il6 mRNA was slightly increased without statistical significance.

BBME administration, however, significantly reversed aging and

inflammatory gene transcription consistent with a previous study in

which regulation of systemic inflammation was suppressed by

BBME in aged mice (24).

Given that BBME can ameliorate inflammatory state in skeletal

muscles of elderly mice, the underlying mechanisms of metabolic

changes in muscles were further studied by assessment of mRNA

transcription in glucose metabolism and mitochondrial functioning.

Aging-induced muscle hypotrophy has also been shown to cause

malfunctioning of glucose metabolism and mitochondrial respiration

accompanied by a decrement of glycolytic enzymes and metabolites

(60). In addition, to assess metabolic changes in aged skeletal muscles,

the mRNA levels of glucose transporters and glycolytic enzymes were

evaluated. BBME did not affect the transcription of glucose

transporter or glycolytic enzymes, however, BBME significantly

increased pgc1a mRNA level in a dose-dependent manner

compared to Aged control. Given the role of PGC-1a in systemic

inflammation and glucose metabolism, the increment of its

transcription implies that BBME mitigated aging-related

degenerations by reducing inflammatory signals potential in

skeletal muscles (61, 62). BBME mitigated skeletal muscle decline

by enhancing systemic glucose homeostasis, reducing inflammation,

and promoting mitochondrial biogenesis. Several studies have

reported that black soybean, black rice, and their derivatives

promote muscle function by activating the AMPK pathway and

PGC-1a (63, 64). Similarly, the beneficial effects of BBME may also

be attributed to the activation of these pathways.

The main function of skeletal muscle is to maintain glucose

homeostasis, with glucose serving as the primary fuel for muscle

contraction (65). Along with the regulatory effect of BBME in

maintaining glucose homeostasis and mitigating aging-related

changes observed in aged mice, further investigations were

conducted using L6 myotubes to elucidate the role of BBME in

modulating glucose metabolism and mitochondrial function. The

glucose uptake and transcription of glucose transporter were

initially measured in differentiated L6 myotubes. Consequently,

BBME markedly stimulated glucose uptake through up-regulation

of glut4 transcript level in skeletal muscle. Consistent with previous

studies that reported the regulatory effect of anthocyanins from

black bean and black rice in inducing glucose utilization in muscle

cells, the mixture of black soybean and black rice similarly increased

glucose uptake in L6 myotubes (66, 67).

Following glucose uptake, muscle cells mediate mitochondrial

metabolism by up-regulating ATP synthesis through promoted

glucose oxidation and oxidative phosphorylation (68). Therefore,

glycolysis and oxidative phosphorylation in L6 myotubes were
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assessed following the treatment of BBME. A slight increase in basal

and compensatory glycolysis was observed in BBME- or insulin-

treated myotubes, although there were no significant differences

among all experiment groups. However, BBME significantly

increased basal respiration, maximal respiration, and spare

respiratory capacity, similar to insulin-stimulated control,

indicating its potential to enhance mitochondrial function. Taken

together, insulin-stimulated glucose uptake and further improved

mitochondrial function by increasing oxidative phosphorylation as

previously reported (68, 69). Of interest, BBME also up-regulated

glucose uptake and oxidative phosphorylation comparable to

insulin, indicating its potential in regulating glucose metabolism

and mitochondrial respiration.

Consistent with the increased pgc1a transcript level observed in

BBME-treated aged mice, BBME enhanced mitochondrial function

in L6 myotubes. Since PGC-1a activation is closely linked to AMPK

and SIRT1 pathways, BBME may enhance muscle function by

stimulating these metabolic regulators, thereby improving glucose

uptake and mitochondrial respiration (70, 71). The significant

increase in GLUT4 expression in L6 myotubes further supports

this hypothesis, suggesting a role for AMPK activation in BBME-

mediated glucose homeostasis. This aligns with previous reports

demonstrating that black soybean, black rice and their bioactive

compounds promote skeletal muscle function by promoting glucose

uptake and utilization (58, 67, 72). These findings suggest that

BBME may protect against muscle dysfunction by promoting

mitochondrial biogenesis in vivo and enhancing mitochondrial

activity in vitro.

Overall, these results indicate that BBME has the potential to

modulate muscle loss and functional decline associated with aging by

improving glucose metabolism, reducing inflammaging, and

enhancing mitochondrial function. To confirm the potential of

BBME as a dietary intervention for age-related muscle deterioration,

further studies are required to elucidate the mechanism underlying the

protective effect of BBME on age-induced changes. Moreover, as

several studies have demonstrated the dietary effect of anthocyanins or

plant proteins on muscle function, further clinical studies are needed

to validate the potential benefits of BBME on human muscle function,

metabolic health, and sarcopenia.
5 Conclusion

The current study investigated the beneficial effect of dietary

BBME on muscle function in aged mice. As reported, aging can lead

to weight gain, muscle loss, and impaired glucose metabolism,

which were partially reversed by BBME administration. However,

the oral administration of BBME reversed those alterations in aged

mice. Specifically, a high dose of BBME exerted a modulatory effect

on glucose homeostasis and potentially ameliorated senescent

phenotype skeletal muscle, suggesting that BBME has potential

for alleviating age-related changes. BBME also significantly

stimulated glucose uptake and utilization of glucose by promoting

oxidative phosphorylation in L6 myotubes. Interestingly, BBME did

not significantly affect glucose metabolism in aged skeletal muscle
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while stimulating glucose uptake and utilization in vitro. The

discrepancy may result from the lowered absorption and

distribution of active compounds in animals as compared to the

direct, higher treatment of the extracts to cells. Therefore, to

confirm these observations, additional studies on protein

synthesis or muscular structure in aged mice as well as the

molecular mechanism underlying increased glucose metabolism,

are needed to fully elucidate the dietary effect of BBME. Thus,

further human clinical trials are needed to evaluate the efficacy,

optimal dosage, and safety of BBME in the elderly to confirm these

findings in human subjects. Given that aging-induced changes in

muscle, especially loss of weight and function, may lead to

sarcopenia, this study indicates that protein- and anthocyanin-

rich black soybean and black rice could be potential regulators for

alleviating muscle loss caused by aging.
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