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Atherosclerosis (AS), as the primary pathological basis of cardiovascular and

cerebrovascular diseases, is closely associated with chemokines in its occurrence

and progression. CXCL16 establishes a new link between chemokines and AS. We

briefly introduced the structural characteristics of CXCL16 and its specific

receptor CXCR6, as well as related signaling pathways. Furthermore, the

significant role of CXCL16 in the progression of AS was elaborated from the

perspective of pathological mechanisms and signal pathways. Meanwhile, we

objectively evaluated the potential arterial protective effects of CXCL16. Finally,

we discussed various novel therapeutic strategies to alleviate AS by targeting the

inhibition of CXCL16 and its regulatory pathways. This review systematically

summarizes the multifaceted roles of CXCL16 in AS, providing theoretical

foundations and research insights for the precise prevention and treatment of AS.
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1 Introduction

Cardiovascular and cerebrovascular diseases, as global health issues, are characterized

by high mortality, high disability, and high recurrence rates (1). Atherosclerosis (AS) is the

main underlying cause of these diseases (2). Major risk factors for AS include hypertension

(3), diabetes (4), hyperlipidemia (5), smoking (6), and excessive alcohol consumption (7).

These factors synergistically contribute to the occurrence and progression of AS (8). In

recent years, numerous studies have demonstrated that chemokines play an important role

in the pathological process of AS, influencing all stages of its development (such as

endothelial cell injury, inflammatory cell recruitment, and smooth muscle cell

proliferation) (9).

Chemokines are small secreted proteins whose core function is to mediate the

directional migration of immune cells through chemotaxis (10). According to the

arrangement pattern of conserved cysteine residues at the N-terminus, chemokines can
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be classified into four subfamilies: CXC, CC, CX3C and C (11).

Among these, the CXC subfamily is the most diverse. According to

whether or not they contain the ELR (glutamate-leucine-arginine)

protein sequence, CXC chemokines can be further divided into

functional subgroups with either pro-angiogenic (ELR+) or anti-

angiogenic (ELR-) activity (12) (Table 1). CXCL16 is a member of

the CXC family (13). CXCL16 is generally considered an

independent risk factor for AS (14, 15). However, a small number

of studies suggest that CXCL16 may have protective effects against

AS (16, 17).

This article elucidates the mechanisms of CXCL16 in AS and its

associated signaling, while also summarizing relevant

targeted therapies.
2 CXCL16 and its receptor

CXCL16 was first cloned in 2000 by Shimaoka et al. (31). Its

structure primarily consists of four functional domains: a

transmembrane region, a short cytoplasmic domain, an

extracellular N-terminal chemokine domain, and a glycosylated

mucin-like stalk (32). Along with CX3CL1, it is currently

recognized as one of only two known transmembrane
Frontiers in Immunology 02
chemokines (33). Beyond its classical chemokine functions,

CXCL16 exhibits two additional biological roles as an adhesion

molecule and a scavenger receptor (34). CXCL16 exists in two

different forms: membrane binding (mCXCL16) and soluble

CXCL16 (sCXCL16) (35, 36). The generation of these forms

depends on proteolytic cleavage of the extracellular domain by

the metalloproteinase ADAM10 (37, 38). These two molecular

forms demonstrate distinct biological functions (35, 36).

mCXCL16 functions as both an adhesion molecule and a

scavenger receptor (39). It primarily mediates the recognition and

uptake of oxidized low-density lipoproteins (oxLDL) and

phosphatidylserine (PS) (40). Therefore, it was initially named the

scavenger receptor for phosphatidylserine and oxidized lipoproteins

(SR-PSOX) (41). CXCR6 is a seven-transmembrane G protein-

coupled receptor (GPCR) (42). It was originally identified as a co-

receptor for human immunodeficiency virus (HIV) in CD4+ and

CD8+ T cells (43, 44). It is also known as CD186, Bonzo, STRL, or

TYMSTR (42, 45). CXCR6 is the specific receptor for sCXCL16.

Through their specific binding, sCXCL16 induces proliferation and

migration of CXCR6-expressing cells, while activating downstream

signaling pathways (including NF-kB, PI3K/AKT, MAPK

pathways) to regulate the occurrence and progression of AS (32,

46). (Figure 1).
TABLE 1 Chemokines in the CXC family and their role in atherosclerosis.

Classification Chemokines Receptors The role in atherosclerosis Mechanism References

ELR+ CXCL1 CXCR2 promotion Proliferation, migration and Tube
formation of endothelial cells

(18)

CXCL2 CXCR2 promotion Mediates inflammatory response (19)

CXCL3 CXCR2 promotion Inflammation and oxidative stress (20)

CXCL5 CXCR1/
CXCR2

inhibition/
promotion

– (21, 22)

CXCL6 CXCR1/
CXCR2

promotion – (23)

CXCL7 CXCR2 promotion Acts as a chemotactic factor
for neutrophils

(24)

CXCL8 CXCR2/
CXCR3

promotion Mediates inflammatory response (25)

ELR- CXCL4 CXCR3 promotion Mediates inflammatory response and
inhibit the function of
scavenger receptors

(26)

CXCL9 CXCR3 promotion Recruits activated T cells (27)

CXCL10 CXCR3 promotion Recruits activated T cells (27)

CXCL11 CXCR3 promotion Recruits activated T cells (27)

CXCL12 CXCR4 promotion Dyslipidemia, inflammation, neointimal
hyperplasia, angiogenesis, and

insulin resistance

(28)

CXCL13 CXCR5 promotion Reduces the secretion of protective IgM (29)

CXCL14 – promotion Smooth muscle cell migration
and proliferation

(30)

CXCL16 CXCR6 promotion/
inhibition

See below
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2 The pro-atherosclerotic effect of
CXCL16

CXCL16 plays an important role in the occurrence, progression,

and plaque destabilization of AS. During the early disease stage,

CXCL16 promotes inflammatory cell infiltration and foam cell

formation, accelerating lipid deposition and vascular endothelial

injury (47). In the advanced stage, it further stimulates smooth
Frontiers in Immunology 03
muscle cell proliferation andmigration, inducing intimal thickening

and fibrous cap formation (48). At the late stage, sustained

inflammatory responses, blood cell aggregation, and pathological

neovascularization can lead to fibrous cap thinning, increasing

plaque rupture risk (Figure 2) (49). Mechanistic studies reveal

that CXCL16 mediates vascular inflammatory responses, intimal

remodeling, and angiogenesis through regulation of PI3K/AKT,

MAPK, and NF-kB signaling pathways, thereby multi-
FIGURE 2

The Role of CXCL16 in AS. After endothelial cell injury, CXCL16 on the endothelial cells surface mediates the recruitment and adhesion of both
inflammatory cells and pro-inflammatory cytokines to the damaged surface. Recruited macrophages subsequently infiltrate the intimal layer, where
CXCL16 facilitates their phagocytosis of LDL and oxidized LDL (oxLDL). Additionally, CXCL16 acts as a scavenger receptor, providing receptors for
oxLDL. INF-g produced by T cells increases the production of CXCL16. Furthermore, CXCL16 can promote the aggregation of other blood cells and
the formation of new blood vessels, leading to plaque instability.
FIGURE 1

CXCL16 and CXCR6 structure. CXCL16 consists of a transmembrane region, a short cytoplasmic domain, an extracellular N-terminal chemokine
domain. CXCR6 is a seven-transmembrane GPCR. CXCL16 binds to CXCR6, activating downstream signaling pathways.
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dimensionally promoting AS progression (Figure 3) (50). Thus, a

comprehensive understanding of CXCL16’s pathological role

(Figure 4) and molecular mechanisms in AS will provide crucial

theoretical foundations for developing targeted intervention

strategies for AS.
2.1 CXCL16 induces vascular inflammatory
response

Chemokines drive sustained low-level chronic inflammatory

responses by recruiting inflammatory cells and factors to the lesion

sites (51). This persistent inflammatory state not only facilitates

atherosclerotic plaque formation but also leads to plaque

destabilization and rupture (52) (Table 2).

CXCL16 specifically chemoattracts various CXCR6-expressing

immune cells, including monocytes/macrophages, T cells, NK cells,

invariant natural killer T cells and plasma cells (46). In the early

stages of AS, when the vascular endothelial barrier is destroyed,

CXCL16 recruits monocytes from circulation to the subendothelial

space through chemotaxis, facilitating their differentiation into

macrophages (53). In the murine model of myocardial infarction,

CXCL16-mediated activation of NF-kB and p38MAPK pathways

drives upregulation of CCL4 and CCL5, resulting in amplified

monocyte recruitment and subsequent aggravation of cardiac

injury (54). In human umbilical vein endothelial cells (HUVECs)

and macrophages, LPS and the proinflammatory cytokine TWEAK

can induce CXCL16 production through NF-kB signaling pathways

(55–57). It is noteworthy that CXCL16 serves not only as a

chemokine but also plays an equally important role as a

scavenger receptor (58). It can recognize and mediate the

phagocytosis of oxLDL by macrophages, promoting the formation

of foam cells, which is a critical step in the development of AS

(59, 60).
Frontiers in Immunology 04
With the continuous development of AS, the continuous

accumulation of oxLDL can activate T cells, promoting their

secretion of pro-inflammatory factors such as IFN-g and TNF-a
(61, 62). Notably, these cytokines (particularly TNF-a and IFN-g)
can further stimulate T cells to produce CXCL16, continuously

recruiting macrophages, and maintaining inflammatory

microenvironment (63–65). Once T cells infiltrate the plaques,

they may undergo clonal proliferation and secrete large amounts

of inflammatory cytokines (66). This process ultimately leads to

plaque destabilization and even rupture (67). CXCL16 can promote

the secretion of inflammatory factors (including IL-6, IL-1b,
VCAM-1, ICAM-1 and IL-17A) in macrophages and T cells of

plaques through activation of the p38 MAPK signaling pathway,

thereby exacerbating plaque instability and contributing to adverse

cardiovascular events (68–72). Furthermore, excessive activation of

the CXCL16/CXCR6 axis upregulates the expression of matrix

metalloproteinases (MMPs), leading to the abnormal degradation

of elastin and collagen in the vascular extracellular matrix and

promoting calcium salt deposition. These pathological changes

ultimately result in fibrous cap thinning and rupture (68, 73).

This finding has been experimentally validated in ApoE-/- mice:

lentivirus-mediated CXCL16 overexpression significantly

upregulated inflammatory mediators (including MMPs, CCL2,

VCAM-1, and TNF-a) and markedly aggravated plaque

instability (74).
2.2 CXCL16 induces intimal thickening

In the advanced stages of AS, vascular intimal hyperplasia not

only exacerbates the retention of lipoprotein in the intima but also

accelerates significantly the progression of AS (86). Vascular

smooth muscle cells (VSMCs) play a crucial role in phenotypic

switching and functional dysregulation (87). Current studies have
FIGURE 3

The regulatory pathways of CXCL16.
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confirmed that CXCL16 promotes VSMCs proliferation and

migration by multiple mechanisms (48, 60, 88). Bysani

Chandrasekar et al. demonstrated that CXCL16 enhanced aortic

smooth muscle cell proliferation and migration in a PI3K/AKT-

dependent manner (88). Similarly, Chandrasekar, B. et al. found

that CXCL16 increased intercellular adhesion and stimulated

VSMC proliferation by activating the NF-kB signaling pathway

(60). Additionally, the uptake of oxLDL induced by IFN-g depends
on the upregulation of CXCL16 expression in VSMCs (48).

Inflammatory cytokines boost CXCL16 expression by inducing c-

Jun binding to the CXCL16 promoter, thereby promoting VSMC

proliferation and contributing to AS (88, 89). In addition, aging

VSMCs exhibit increased expression of chemokines (such as

CXCL16), adhesion molecules (such as ICAM-1), and innate

immune receptors (such as Toll-like receptors 4) (82, 85). These

changes collectively establish a persistent pro-inflammatory

microenvironment that further promotes the progression of AS.

Although the precise mechanisms of CXCL16 in VSMCs remain

unclear, targeting this chemokine may offer a new therapeutic

strategy to mitigate post-angioplasty restenosis (88).
2.3 CXCL16 induces angiogenesis

As the lesion progresses, pathological thickening of the vascular

wall leads to luminal stenosis, significantly reducing local tissue

perfusion and inducing a hypoxic state (90). The abnormal

accumulation of lipids and the formation of necrotic core in plaques

create a vicious cycle, continuously stimulating the upregulation of

hypoxia-inducible factor-1a (HIF-1a) expression (91). This chronic
FIGURE 4

CXCL16/CXCR6 Axis in Different Cells and at Different Stages.
TABLE 2 The Mechanism of CXCL16 Chemotaxis of Various Cells,
Cytokine Secretion, and Involvement in Atherosclerosis.

Cell type Cytokines Effect on
atherosclerosis

References

Monocyte-
Macrophage

MMPs Plaque Instability (73, 75)

CCL4 CCL5 Chemotaxis (54)

IL-6 Induces Inflammation (68)

IL-1b Induces Inflammation (68)

TNF-a Induces Inflammation (68)

T cells INF-g Activates Macrophages (63)

TNF-a Amplifies
Inflammatory
Response

(65)

IL-17A Induces Inflammation (69)

PD-1 Induces Inflammation (76–78)

Endothelial
Cells

HIF-a Induces Angiogenesis (79)

VEGF Induces Angiogenesis (80, 81)

CXCL8 Induces Angiogenesis (80, 81)

ICAM-1 Adhesion (82)

MMPs Plaque Instability (83)

Smooth
Muscle Cells

IFN-g Uptakes of oxLDL (48)

MMPs Smooth Muscle
Cell Proliferation

(84)

ICAM-1 Induces Inflammation (85)
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hypoxic microenvironment activates pro-angiogenic signaling

pathways, inducing the formation of pathological neovascularization

within plaques. These structurally fragile neovessels not only increase

the risk of intraplaque hemorrhage but also significantly elevate the

potential for plaque rupture (92).

In 2009, Zhuge, X. et al. revealed that CXCL16 is a angiogenic

factor with multifunctional regulatory properties (93). CXCL16

promotes pathological neovascularization in a dose-dependent

manner (79). Immunohistochemical analysis found that CXCL16

was strongly expressed in endothelial cells of pathological

neovascularization (94). CXCL16 promotes angiogenesis through

multiple mechanisms. Firstly, the hypoxic microenvironment of

atherosclerotic plaques induces HIF-1a, which in turn upregulates

CXCL16 expression (95). Conversely, CXCL16 secreted by

HUVECs further enhances HIF-1a-mediated vascular endothelial

growth factor (VEGF) production by activating the PI3K/AKT

signaling pathway, forming a pro-angiogenic vicious cycle (96,

97). Additionally, prior studies confirmed that CXCL16 markedly

enhanced the proliferative capacity, chemotactic motility, and

vascular network formation of HUVECs in vitro by activating the

ERK pathway (93). Secondly, CXCL16 can induce endothelial cells

to produce the potent pro-angiogenic factor CXCL8/IL-8 (98),

indirectly promoting angiogenesis through this paracrine

mechanism (80, 81). Thirdly, CXCL16 also induces the expression

of MMPs in endothelial cells. These enzymes degrade the

extracellular matrix and release stored pro-angiogenic factors,

ultimately contributing to plaque instability (99).
3 The protective effect of CXCL16
against AS

A few studies have reported that CXCL16 has a protective effect

against AS. Aslanian, A. M. et al. found that atherosclerotic plaque

burden was unexpectedly increased in LDLR-/- mouse models with

CXCL16 gene knockout. The authors attributed this phenomenon

primarily to impaired scavenger receptor function caused by

CXCL16 deficiency, which subsequently reduced the efficiency of

apoptotic cell clearance. Additionally, this study demonstrated that

CXCL16 knockout significantly reduced oxLDL binding and

internalization by macrophages in vitro (16). These findings

markedly contradict previous research conclusions regarding the

pro-atherogenic roles of classical scavenger receptors such as SR-A

and CD36 (100, 101). We speculate that the bidirectional regulatory

effects of CXCL16 stem from its dual functional properties

(chemokine vs scavenger receptor). In different pathological

microenvironments, when one function becomes dominant,

corresponding phenotypic characteristics emerge (16). In

addition, the choice of animal models and the impact of gene

knockout may affect further investigations. Similarly, a study

reported that the level of CXCL16 were reduced in patients of

coronary AS (17). However, this study only included a small

number of patients with stable or unstable angina. And the

results of this study were overturned in a larger cohort study

(102). Van Lieshout A. W.,et al. questioned the results of this
Frontiers in Immunology 06
study (103). Based on current research, we believe that the

conclusions of this study require further exploration.
4 Targeted therapy

Atherosclerotic cardiovascular disease currently stands as the

leading global cause of mortality (104). Although lipid-lowering

medications can effectively reduce blood lipid and inflammatory

cytokine levels, some individuals still exhibit residual cardiovascular

risk, highlighting the need for further therapeutic interventions (105).

As key regulators of leukocyte migration, chemokines play a central

role in immune surveillance and inflammatory responses. In recent

years, drug development targeting the chemokine system has become

a major focus in the treatment of inflammatory diseases (106).

Throughout the entire process of AS development, the chemokine

network participates in regulating multiple pathological pathways,

making it a highly promising therapeutic target (9). Among these,

CXCL16 and its signaling pathway play significant roles by mediating

inflammatory cell infiltration, regulating the proliferation of vascular

endothelial and smooth muscle cells, and influencing angiogenesis

(47–49). Although early studies suggested that CXCL16 may possess

dual regulatory properties, recent evidence consistently indicated that

its pro-atherogenic effect dominated. Considering the limitations of

previous studies proposing a “protective role” hypothesis, we propose

that selective inhibition of CXCL16 and its signaling pathway may

serve as an effective strategy to delay the progression of AS (Table 3).
4.1 Anti-atherosclerotic effects by
inhibiting CXCL16, CXCR6 and proteases

Compared with non-atherosclerotic tissues, atherosclerotic

plaques contain significantly higher levels of inflammatory cells,

inflammatory factors, and lipid deposits (107, 108). Studies showed

that targeting CXCL16 could effectively modulate this pathological

process. For instance, in murine models of myocardial infarction,

administration of anti-CXCL16 neutralizing antibodies inhibits

monocyte infiltration and improve cardiac function after

myocardial infarction (54). Similarly, in murine models of

glomerulonephritis, anti-CXCL16 neutralizing antibodies reduced

the expression of IL-4 and IL-10 (109). In a murine model of

Salmonella enterica serovar Enteritidis infection, anti-CXCL16

neutralizing antibodies reduced the expression of IFN-g (110).

Additionally, lentivirus-mediated CXCL16 knockdown can inhibit

macrophage transformation into foam cells and reduce lipid

deposition in the arterial walls of ApoE-/- mice (111, 112). These

findings collectively indicated that targeting CXCL16 could reduce

the accumulation of inflammatory cells, cytokines, and lipids,

thereby mitigating the development of AS.

In addition to the direct inhibition of CXCL16, studies have

found that the promoter region of CXCL16 contains the binding

site of FOXO3, and targeting FOXO3 could reduce the expression of

CXCL16 (113). In addition, the basic amino acid residues in the

CXCL16 chemokine domain are critical for its function. Point
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mutation of basic amino acid plays a key role in CXCL16 function.

Disrupting these key residues can attenuate the pro-atherogenic

effects of CXCL16 (114, 115). The presence of these molecular

recognition elements demonstrates the druggability of this target.

Currently, some available drugs (including aspirin, ticagrelor,

irbesartan, PCSK9-blocking monoclonal antibody, P2X7R

inhibitor A438079) can reduce the release of CXCL16 and

inflammatory responses (37, 55, 116–121).

Targeting the specific receptor CXCR6 of CXCL16 can also

attenuate the development of AS. Studies found that CXCR6

knockout in mice inhibited monocyte infiltration into vascular

walls, reduced inflammatory response and myocardial ischemia-

reperfusion injury (122). Elena Galkina et al. revealed that CXCR6-

deficient ApoE-/- mice reduced T cell and macrophage infiltration

in aortic walls along with suppressed production of pro-

inflammatory cytokine IFN-g (123). The Gi receptor inhibitors

(pertussis toxin) exert protective effects by both blocking cell

adhesion and inhibiting aortic smooth muscle proliferation (60).

These findings collectively indicated that targeting CXCR6

produced effects comparable to those observed with CXCL16

inhibition. Postea, O. et al. found that homocysteine could

enhance CXCR6-mediated lymphocyte recruitment, thereby

promoting the progression of AS (124). This suggests that
Frontiers in Immunology 07
homocysteine-lowering medications potentially reduce

inflammatory cell accumulation. Some compounds (such as

compound 81 and compound 17) have been found to reduce the

expression of CXCR6 (125). With their favorable oral

bioavailability, these compounds represent promising candidates

for next-generation anti-atherosclerotic therapies.

ADAM10 serves as the key protease mediating the conversion

of mCXCL16 to sCXCL16 (126). Gough, P. J. et al. showed that

knocking down ADAM10 reduced this constitutive shedding of

CXCL16. ADAM10 inhibitors, such as resveratrol, can effectively

block the proteolytic processing of CXCL16 (116, 126). A small

molecule compound (GI254023X) has been identified as ADAM10

inhibitor that reduces the release of sCXCL16 (127). Simvastatin, a

commonly used clinical drug, has also been found to inhibit the

activity of ADAM10 (116).
4.2 Anti-atherosclerotic effects by
inhibiting the regulatory mechanisms of
CXCL16

CXCL16 exerts anti-inflammatory effects by modulating

multiple signaling pathways including NF-kB, PI3K/AKT, and
MAPK, thereby attenuating AS progression (50). Various

pharmacological agents, such as NF-kB inhibitors (JSH-23,

SN50), aspirin, rapamycin, PI3K/AKT inhibitors, and irbesartan,

have been demonstrated to downregulate CXCL16 expression (55,

118, 128, 129). Various NF-kB inhibitors have proven effective in

reducing inflammatory cell infiltration and suppressing

atherosclerotic plaque formation (54, 55). Aspirin can inhibit the

nuclear translocation of the NF-kB p65 subunit, thus reducing the

progression of AS (130). The PI3K inhibitor (LY294002 or

wortmannin), AKT inhibitor (SH-6) and JNK inhibitor

(SP600125) can reduce platelet adhesion and smooth muscle cell

proliferation (60, 79, 131). The p38 inhibitors and ERK inhibitors

(PD98059) inhibit HUVEC proliferation, migration, tube formation

and HIF-1a expression. Notably, the HIF-1a selective inhibitor

(PX-12) not only inhibits these biological processes but also

suppresses CXCL16 production (79).

In this section, we have highlighted that numerous existing

drugs can effectively reduce CXCL16 or modulate its receptor,

protease, and related signaling pathways. This drug repurposing

strategy offers the advantage of accelerating clinical validation while

significantly reducing development costs. However, it should be

noted that currently there are no drugs specifically targeting

CXCL16. Therefore, the development of CXCL16-specific probes

and advanced nanodelivery technologies has become an imperative

research direction.
5 Conclusion

CXCL16 is an important chemokine and immune regulator,

which is widely expressed in various cells such as endothelial cells,

monocytes, macrophages, and T cells. Previous studies showed that
TABLE 3 The anti-atherosclerotic effects of various drugs and
compounds at the chemokine molecular level.

Drugs or
molecules

Mechanisms References

Anti-CXCL16
neutralizing
antibodies

Inhibition of monocyte infiltration
and inflammatory cytokine secretion

(54, 109, 110)

P2X7R inhibitor Reduction of CXCL6 expression and
lipid accumulation

(119, 120)

PCSK9 inhibition
monoclonal
antibody

Limits leukocyte-endothelial
cell interactions

(121)

Pertussis toxin Inhibits cell adhesion and smooth
muscle proliferation

(60)

Compound 17 Reduction of CXCR6 expression. (125)

Compound 81 Reduction of CXCR6 expression. (125)

Resveratrol Reduce ADAM10-mediated cleavage
of CXCL16 and T cell recruitment

(126)

Statins Reduces the release of ADAM10 (116)

Aspirin Reduces endotoxin production in
macrophages and oxidative stress in
the body

(55)

Ticagrelor Reduces platelet activation, adhesion,
and aggregation

(37)

Irbesartan Reduces the production of
inflammatory factors

(118)

Docosahexaenoic
acid (DHA)

Reduces the production of
inflammatory factors

(132)

MAPKK inhibitor Production of CXCL16 and the tube
formation process of endothelial cells

(93)
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CXCL16 played a complex dual regulatory role in the development of

AS. In this review, we summarize the key pathological mechanisms

and related signaling pathways of CXCL16 in promoting AS, while

also providing an objective evaluation of its potential protective effects.

Based on current evidence, we propose that the pro-inflammatory and

pro-atherogenic effects of CXCL16 dominate in AS. Therefore,

targeted inhibition of CXCL16 represents a promising therapeutic

approach for AS. Although the development of CXCL16-targeted

drugs still faces numerous challenges such as target selectivity and

optimization of drug delivery methods, advances in both mechanistic

understanding and novel drug delivery technologies are expected to

lead to breakthrough progress. These studies may not only yield more

effective treatments but also uncover new intervention targets, thereby

opening new avenues for the prevention and treatment of AS.
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et al. The role of CXCL16 in the pathogenesis of cancer and other diseases. Int J Mol Sci.
(2021) 22. doi: 10.3390/ijms22073490

51. Terkeltaub R, Boisvert WA, Curtiss LK. Chemokines and atherosclerosis. Curr
Opin Lipidol. (1998) 9:397–405. doi: 10.1097/00041433-199810000-00003

52. Hermans L, O'Sullivan TE. Send it, receive it, quick erase it: A mouse model to
decipher chemokine communication. J Exp Med. (2024) 221. doi: 10.1084/
jem.20240582

53. Linke B, Meyer Dos Santos S, Picard-Willems B, Keese M, Harder S, Geisslinger
G, et al. CXCL16/CXCR6-mediated adhesion of human peripheral blood mononuclear
cells to inflamed endothelium. Cytokine. (2019) 122:154081. doi: 10.1016/
j.cyto.2017.06.008

54. Zhang J, HaoW, Zhang J, Li T, Ma Y,Wang Y, et al. CXCL16 promotes ly6Chigh
monocyte infiltration and impairs heart function after acute myocardial infarction. J
Immunol. (2023) 210:820–31. doi: 10.4049/jimmunol.2200249

55. Lehrke M, Millington SC, Lefterova M, Cumaranatunge RG, Szapary P, Wilensky R,
et al. CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in
humans. J Am Coll Cardiol. (2007) 49:442–9. doi: 10.1016/j.jacc.2006.09.034

56. Xiao Q, Zhu X, Yang S, Wang J, Yin R, Song J, et al. LPS induces CXCL16
expression in HUVECs through the miR-146a-mediated TLR4 pathway. Int
Immunopharmacol. (2019) 69:143–9. doi: 10.1016/j.intimp.2019.01.011

57. Ruiz-Ortega M, Ortiz A, Ramos AM. Tumor necrosis factor-like weak inducer of
apoptosis (TWEAK) and kidney disease. Curr Opin Nephrol Hypertens. (2014) 23:93–
100. doi: 10.1097/01.mnh.0000437331.23794.81

58. Wuttge DM, Zhou X, Sheikine Y, Wågsäter D, Stemme V, Hedin U, et al.
CXCL16/SR-PSOX is an interferon-gamma-regulated chemokine and scavenger
receptor expressed in atherosclerotic lesions. Arterioscler Thromb Vasc Biol. (2004)
24:750–5. doi: 10.1161/01.ATV.0000124102.11472.36

59. Schielke L, Zimmermann N, Hobelsberger S, Steininger J, Strunk A, Blau K, et al.
Metabolic syndrome in psoriasis is associated with upregulation of CXCL16 on
monocytes and a dysbalance in innate lymphoid cells. Front Immunol. (2022)
13:916701. doi: 10.3389/fimmu.2022.916701

60. Chandrasekar B, Bysani S, Mummidi S. CXCL16 signals via Gi,
phosphatidylinositol 3-kinase, Akt, I kappa B kinase, and nuclear factor-kappa B and
induces cell-cell adhesion and aortic smooth muscle cell proliferation. J Biol Chem.
(2004) 279:3188–96. doi: 10.1074/jbc.M311660200

61. Poznyak AV, Bezsonov EE, Popkova TV, Starodubova AV, Orekhov AN.
Immunity in atherosclerosis: focusing on T and B cells. Int J Mol Sci. (2021) 22.
doi: 10.3390/ijms22168379

62. Wu MY, Li CJ, Hou MF, Chu PY. New insights into the role of inflammation in
the pathogenesis of atherosclerosis. Int J Mol Sci. (2017) 18. doi: 10.3390/ijms18102034

63. Wu F, Mao C, Mou X, Xu C, Zheng T, Bu L, et al. Decreased b-catenin
expression contributes to IFNg-induced chemokine secretion and lymphocyte
infiltration in Hashimoto's thyroiditis. Endocr Connect. (2022) 11. doi: 10.1530/EC-
21-0451

64. van der Voort R, van Lieshout AW, Toonen LW, Slöetjes AW, van den Berg WB,
Figdor CG, et al. Elevated CXCL16 expression by synovial macrophages recruits
memory T cells into rheumatoid joints. Arthritis Rheum. (2005) 52:1381–91.
doi: 10.1002/art.21004

65. Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, et al. Exosomes derived from
mature dendritic cells increase endothelial inflammation and atherosclerosis via
membrane TNF-a mediated NF-kB pathway. J Cell Mol Med. (2016) 20:2318–27.
doi: 10.1111/jcmm.2016.20.issue-12

66. Paulsson G, Zhou X, Törnquist E, Hansson GK. Oligoclonal T cell expansions in
atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc
Biol. (2000) 20:10–7. doi: 10.1161/01.ATV.20.1.10

67. Yu SS, Du JL. Current views on selenoprotein S in the pathophysiological
processes of diabetes-induced atherosclerosis: potential therapeutics and underlying
biomarkers. Diabetol Metab Syndr. (2024) 16:5. doi: 10.1186/s13098-023-01247-y
frontiersin.org

https://doi.org/10.1016/j.ajpath.2017.08.006
https://doi.org/10.1111/j.1365-2265.2011.04119.x
https://doi.org/10.3390/jpm13121669
https://doi.org/10.1136/bmjdrc-2019-001152
https://doi.org/10.1080/15384101.2019.1662678
https://doi.org/10.3389/fphys.2012.00001
https://doi.org/10.1172/JCI6993
https://doi.org/10.1016/j.cca.2019.05.022
https://doi.org/10.1055/s-0039-3400746
https://doi.org/10.1007/s12265-019-09915-z
https://doi.org/10.1007/s12265-019-09915-z
https://doi.org/10.1038/79738
https://doi.org/10.1530/REP-18-0417
https://doi.org/10.3389/fimmu.2020.601639
https://doi.org/10.5551/jat.29942
https://doi.org/10.4049/jimmunol.172.6.3678
https://doi.org/10.4049/jimmunol.172.10.6362
https://doi.org/10.3390/ijms231911066
https://doi.org/10.3390/ijms231911066
https://doi.org/10.1016/j.lfs.2021.119120
https://doi.org/10.1016/j.lfs.2021.119120
https://doi.org/10.1016/j.intimp.2024.112015
https://doi.org/10.1189/jlb.1003465
https://doi.org/10.1074/jbc.C000761200
https://doi.org/10.1074/jbc.C000761200
https://doi.org/10.1016/j.apsb.2022.03.012
https://doi.org/10.1038/40758
https://doi.org/10.1038/40789
https://doi.org/10.1089/08892220050075318
https://doi.org/10.1016/j.intimp.2023.110530
https://doi.org/10.1016/j.intimp.2023.110530
https://doi.org/10.7150/ijms.16724
https://doi.org/10.1016/j.bbrc.2004.10.160
https://doi.org/10.3390/ijms22073490
https://doi.org/10.1097/00041433-199810000-00003
https://doi.org/10.1084/jem.20240582
https://doi.org/10.1084/jem.20240582
https://doi.org/10.1016/j.cyto.2017.06.008
https://doi.org/10.1016/j.cyto.2017.06.008
https://doi.org/10.4049/jimmunol.2200249
https://doi.org/10.1016/j.jacc.2006.09.034
https://doi.org/10.1016/j.intimp.2019.01.011
https://doi.org/10.1097/01.mnh.0000437331.23794.81
https://doi.org/10.1161/01.ATV.0000124102.11472.36
https://doi.org/10.3389/fimmu.2022.916701
https://doi.org/10.1074/jbc.M311660200
https://doi.org/10.3390/ijms22168379
https://doi.org/10.3390/ijms18102034
https://doi.org/10.1530/EC-21-0451
https://doi.org/10.1530/EC-21-0451
https://doi.org/10.1002/art.21004
https://doi.org/10.1111/jcmm.2016.20.issue-12
https://doi.org/10.1161/01.ATV.20.1.10
https://doi.org/10.1186/s13098-023-01247-y
https://doi.org/10.3389/fimmu.2025.1555438
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1555438
68. Wang S, Wu J, Li X, Tan R, Chen L, Yang L, et al. CXCR6 mediates pressure
overload-induced aortic stiffness by increasing macrophage recruitment and reducing
exosome-miRNA29b. J Cardiovasc Transl Res. (2023) 16:271–86. doi: 10.1007/s12265-
022-10304-2

69. Butcher MJ, Wu CI, Waseem T, Galkina EV. CXCR6 regulates the recruitment
of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas.
Int Immunol. (2016) 28:255–61. doi: 10.1093/intimm/dxv068

70. Kwon KH, Ohigashi H, Murakami A. Dextran sulfate sodium enhances
interleukin-1 beta release via activation of p38 MAPK and ERK1/2 pathways in
murine peritoneal macrophages. Life Sci. (2007) 81:362–71. doi: 10.1016/
j.lfs.2007.05.022

71. Yu Q, Zeng K, Ma X, Song F, Jiang Y, Tu P, et al. Resokaempferol-mediated anti-
inflammatory effects on activated macrophages via the inhibition of JAK2/STAT3, NF-
kB and JNK/p38 MAPK signaling pathways. Int Immunopharmacol. (2016) 38:104–14.
doi: 10.1016/j.intimp.2016.05.010

72. Diegelmann J, Seiderer J, Niess JH, Haller D, Göke B, Reinecker HC, et al.
Expression and regulation of the chemokine CXCL16 in Crohn's disease and models of
intestinal inflammation. Inflammation Bowel Dis. (2010) 16:1871–81. doi: 10.1002/
ibd.21306

73. Mir H, Kaur G, Kapur N, Bae S, Lillard JW, Singh S, et al. Higher CXCL16
exodomain is associated with aggressive ovarian cancer and promotes the disease by
CXCR6 activation and MMP modulation. Sci Rep. (2019) 9:2527. doi: 10.1038/s41598-
019-38766-6

74. Yi GW, Zeng QT, Mao XB, Cheng M, Yang XF, Liu HT, et al. Overexpression of
CXCL16 promotes a vulnerable plaque phenotype in Apolipoprotein E-Knockout
Mice. Cytokine. (2011) 53:320–6. doi: 10.1016/j.cyto.2010.11.016

75. Chen Y, Waqar AB, Nishijima K, Ning B, Kitajima S, Matsuhisa F, et al.
Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and
vascular calcification in transgenic rabbits. J Cell Mol Med. (2020) 24:4261–74.
doi: 10.1111/jcmm.15087

76. Qiu MK, Wang SC, Dai YX, Wang SQ, Ou JM, Quan ZW, et al. PD-1 and tim-3
pathways regulate CD8+ T cells function in atherosclerosis. PloS One. (2015) 10:
e0128523. doi: 10.1371/journal.pone.0128523

77. Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein HH, Zernecke A, et al.
Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis
despite expansion of regulatory T cells in atherosclerosis-prone mice. PloS One. (2014)
9:e93280. doi: 10.1371/journal.pone.0093280

78. Wang B, Wang Y, Sun X, Deng G, Huang W, Wu X, et al. CXCR6 is required for
antitumor efficacy of intratumoral CD8(+) T cell. J Immunother Cancer. (2021) 9.
doi: 10.1136/jitc-2021-003100

79. Yu X, Zhao R, Lin S, Bai X, Zhang L, Yuan S, et al. CXCL16 induces angiogenesis
in autocrine signaling pathway involving hypoxia-inducible factor 1a in human
umbilical vein endothelial cells. Oncol Rep. (2016) 35:1557–65. doi: 10.3892/
or.2015.4520

80. Isozaki T, Arbab AS, Haas CS, Amin MA, Arendt MD, Koch AE, et al. Evidence
that CXCL16 is a potent mediator of angiogenesis and is involved in endothelial
progenitor cell chemotaxis: studies in mice with K/BxN serum-induced arthritis.
Arthritis Rheum. (2013) 65:1736–46. doi: 10.1002/art.37981

81. Heidemann J, Ogawa H, Dwinell MB, Rafiee P, Maaser C, Gockel HR, et al.
Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular
endothelial cells are mediated by CXCR2. J Biol Chem. (2003) 278:8508–15.
doi: 10.1074/jbc.M208231200

82. Zeng M, Xie Z, Zhang J, Li S, Wu Y, Yan X, et al. Arctigenin attenuates vascular
inflammation induced by high salt through TMEM16A/ESM1/VCAM-1 pathway.
Biomedicines. (2022) 10. doi: 10.3390/biomedicines10112760

83. Dhoke NR, Kaushik K, Das A. Cxcr6-based mesenchymal stem cell gene therapy
potentiates skin regeneration in murine diabetic wounds.Mol Ther. (2020) 28:1314–26.
doi: 10.1016/j.ymthe.2020.02.014

84. Johnson JL. Metalloproteinases in atherosclerosis. Eur J Pharmacol. (2017)
816:93–106. doi: 10.1016/j.ejphar.2017.09.007

85. Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in
atherosclerosis. Acta Physiol (Oxf). (2015) 214:33–50. doi: 10.1111/apha.
2015.214.issue-1

86. Zhang Y, Fu Y, Zhang C, Jia L, Yao N, Lin Y, et al. MED1 deficiency in
macrophages accelerates intimal hyperplasia via ROS generation and inflammation.
Oxid Med Cell Longev. (2021) 2021:3010577. doi: 10.1155/2021/3010577

87. Ma Z, Mao C, Chen X, Yang S, Qiu Z, Yu B, et al. Peptide vaccine against
ADAMTS-7 ameliorates atherosclerosis and postinjury neointima hyperplasia.
Circulation. (2023) 147:728–42. doi: 10.1161/CIRCULATIONAHA.122.061516

88. Chandrasekar B, Mummidi S, Valente AJ, Patel DN, Bailey SR, Freeman GL,
et al. The pro-atherogenic cytokine interleukin-18 induces CXCL16 expression in rat
aortic smooth muscle cells via MyD88, interleukin-1 receptor-associated kinase, tumor
necrosis factor receptor-associated factor 6, c-Src, phosphatidylinositol 3-kinase, Akt,
c-Jun N-terminal kinase, and activator protein-1 signaling. J Biol Chem. (2005)
280:26263–77. doi: 10.1074/jbc.M502586200

89. Liu C, Wu M, Qu J, et al. JNK and Jag1/Notch2 co-regulate CXCL16 to facilitate
cypermethrin-induced kidney damage. Ecotoxicol Environ Saf. (2022) 238:113582.
doi: 10.1016/j.ecoenv.2022.113582
Frontiers in Immunology 10
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