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Background: People with HIV (PWH) have an increased risk of pulmonary

comorbidities compared to people without HIV. The gut microbiome regulates

host immunity and is altered in PWH. This study aims to determine potential

associations between gut microbiome, lung function decline, and airflow

limitation in PWH.

Methods: PWH from the Copenhagen Comorbidity in HIV Infection (COCOMO)

Study with available lung function testing and microbiome data were included

(n=385). The gut microbiome was characterized using shotgun metagenomic

sequencing. Associations between gut microbiome, rapid lung function decline,

and airflow limitation were analysed in multivariable logistic regressions adjusted

for traditional and HIV-associated risk factors for lung disease.

Results: Several bacterial species were significantly enriched in PWH with rapid

lung function decline, including opportunistic pathogenic bacterial species

Bacteroides coprophilus, Klebsiella michiganensis, and Clostridium perfringens.

A gut microbial dysbiosis index based on compositional changes was associated

with rapid lung function decline (adjusted odds ratio (aOR) 1.18, 95% confidence

interval (CI) [1.11-1.27], p<0.001), and airflow limitation (aOR 1.16, 95% CI [1.04-

1.29], p=0.007) in adjusted multivariable logistic regression analyses.
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Conclusion: Associations between the gut dysbiosis index and rapid lung

function decline and airflow limitation suggest a potential role of certain gut

bacterial species in the pathogenesis of pulmonary comorbidities in PWH.
KEYWORDS

HIV, gut microbiome, pulmonary comorbidity, lung function decline, airflow
limitation, spirometry
1 Introduction

PWH, even well-treated, have a higher risk of chronic

pulmonary comorbidities compared to the background

population, in particular chronic obstructive pulmonary disease

(COPD) (1, 2). In fact, chronic lung disease was the most prevalent

comorbidity in a recent study investigating trends in non-AIDS

related comorbidities over a 10-year period in hospitalized PWH in

New York (3), and respiratory mortality is one of the few causes of

death in PWH that has not declined over the last 20 years (4).

Importantly, a Dutch study showed a decline in forced

expiratory volume in one second (FEV1) and forced vital capacity

(FVC) in PWH compared with controls (5). Likewise, a recent work

from the COCOMO study showed that even well-treated PWH

with no history of smoking had faster lung function decline than

population-based controls (2). Yet, the underlying mechanisms

involved in the pathogenesis of pulmonary comorbidities and

faster lung function decline in PWH are poorly understood. Risk

factors may include smoking, which is more prevalent in PWH than

in the background population, older age, history of pneumonia,

oxidative stress, immune cell activation, and chronic airway

inflammation (6). Indeed, increased eosinophilic airway

inflammation, as measured by higher exhaled nitric oxide level,

was observed in PWH in the COCOMO study (7). Furthermore, a

recent study showed that elevated interleukin (IL)-1b and IL-10

were independently associated with faster lung function decline in

PWH, suggesting that dysregulated systemic inflammation may

play a role in the pathogenesis of pulmonary comorbidities (8).

The human gut microbiome has a fundamental impact on

immune system and inflammation, contributing to disease or

exacerbating pre-existing conditions (9). Recent studies, including

our own (10, 11), have shown that the gut microbiome and its

metabolic by-products differ in PWH versus controls, even after

adjustment for known confounders such as age and sexual

orientation, and that these alterations correlate with previous

immunodeficiency and present chronic inflammation (10).

Changes in the gut microbiome may contribute to pulmonary

diseases through effects on systemic inflammation, microbial

translocation, or microbial metabolites via a potential gut-lung

axis (12, 13). Dysbiosis in the respiratory microbiome has in

previous studies been linked to increased risks of adverse

pulmonary outcomes in PWH (14, 15). However, little is known
02
about the association between gut microbiome, pulmonary disease,

and lung function decline in PWH, as well as the potential of gut-

lung microbiome connections in the HIV-associated

pulmonary disease.

The primary aim of this study was to determine the potential

associations between the gut microbiome including microbial

species and their pathways, and lung function decline in PWH.

The secondary aim was to determine the associations between the

gut microbiome and airflow limitation as defined by Global

Initiative for Chronic Obstructive Lung Disease (GOLD) (16).
2 Materials and methods

2.1 Study design and participants

The Copenhagen Comorbidity in HIV Infection (COCOMO)

study is an ongoing longitudinal cohort study designed to

determine the burden of, and risk factors for, non-AIDS

comorbidities in PWH in Copenhagen, Denmark (17).

Spirometry was performed at baseline from March 2015 until

November 2016, and at subsequent follow-up visits between April

2017 and April 2019 with a median follow-up time of 2.3 years, as

described previously (2). Eligibility criteria for this study were

participants in COCOMO aged ≥25 years with two valid

spirometry tests separated by at least 2 years of follow-up. Only

PWH who had received antiretroviral therapy (ART) for a

minimum of 6 months at baseline and had available fecal samples

were included in the present study. Participants who provided fecal

samples were older than participants who did not provide fecal

samples (53 vs 49 years old, p<0.001), but they did not differ on any

of the other parameters when adjusted for age (all p>0.05).
2.2 Lung function testing

Lung function was assessed by spirometry using an ultrasonic

spirometer (EasyOne, ndd Medical, Zürich, Switzerland).

Prebronchodilator forced expiratory volume in 1 second (FEV1)

and forced vital capacity (FVC) were measured at baseline and at

follow-up in accordance with the European Respiratory Society/

American Thoracic Society recommendations (18). Predicted
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values for FEV1 and FVC, along with z-scores and the lower limit of

normal for the FEV1/FVC ratio, were determined using the multi-

ethnic reference equations from the Global Lung Function Initiative

(19). Lung function decline was measured as changes in FEV1

milliliter (mL) per year (8). In relation to each test, a quality grading

from A to F was automatically generated by the EasyOne

spirometer, spirometry data with grade A-C were defined as high

quality and were used for sensitivity analyses.
2.3 Outcomes definition

The primary outcome was rapid lung function decline defined

as FEV1 decline >40 mL/year as previously described (2). The

secondary outcome was airflow limitation defined as FEV1/FVC

<0.70 and FEV1 <80% of the predicted value corresponding to

COPD of moderate or worse severity (≥2 COPD grade) according

to the GOLD (16).
2.4 Inflammatory markers measurements

Plasma concentrations of pro- and anti-inflammatory cytokines

were measured using Luminex immunoassays (R&D systems,

Minneapolis, Minnesota), as previously described in detail (8). In

brief, the multiplex assay kits included the proinflammatory

markers interleukin 1-beta (IL-1b), interleukin 2 (IL-2), IL-6,

interferon gamma (IFN-g), and tumor necrosis factor alpha

(TNF-a) and the anti-inflammatory marker interleukin 10 (IL-

10). The concentrations of microbial translocation marker soluble

CD14 (sCD14) and monocyte activation marker soluble CD163

(sCD163), were measured in plasma by high sensitivity enzyme-

linked immunosorbent assay kits (R&D systems, Minneapolis,

Minnesota) at the Research Institute of Internal Medicine,

Division of Surgery, Inflammatory Diseases and Transplantation,

Oslo University Hospital, Rikshospitalet, Oslo, Norway. High-

sensitivity CRP (hs-CRP) was measured using a turbidimetric

assay at the Department of Clinical Biochemistry, Herlev

Hospital, Copenhagen, Denmark.
2.5 Fecal sample collection and processing

At study inclusion, participants were instructed to collect fecal

samples using a standardized sampling device and collection tubes

with DNA Stabilizer (Stratec Molecular). Samples were frozen at

−80°C on arrival and eventually shipped on dry ice to Oslo for

microbiome analyses. DNA was extracted using the PSPSpin Stool

DNA-Plus Kit (Stratec Molecular), following the manufacturer’s

protocol, slightly modified by adding a bead-beating step, as

described elsewhere (10).
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2.6 Shotgun metagenome sequencing and
microbiome profiling

In the COCOMO study, which included 1099 participants, 385

individuals had both lung function measurements and fecal samples

collected at baseline. Shotgun metagenome sequencing was

performed on these samples using 150 bp paired-end sequencing

on the MGISEQ-T7 platform at MGI Tech, Mārupe, Latvia. The

pre-processing of the raw reads was conducted using the

KneadData pipeline (v0.10.0). Initially, raw reads were trimmed

to a Phred score of 20 and reads below the specified minimum

length were removed using Trimmomatic (version 0.39), which was

integrated within the KneadData pipeline (20). Subsequently,

trimmed reads were aligned against the human reference genome

using bowtie2 (21), reads aligning to the human genome were

eliminated from further analysis. Taxonomic profiling was

performed using MetaPhlAn (v3.0.0.0) by default including

reference genomes of bacteria, archaea, and eukaryotes (22).

HUMAnN3 (v3.0.0) (22) was employed for functional profiling

(genes and pathways), incorporating MetaPhlAn, DIAMOND

0.9.36 (23), and the databases uniref90 (v201901) (24) and

mpa_v30_CHOCOPhlAn_201901. Additionally, metabolic

pathways were identified from the MetaCyc database (metacyc.org).

Taxonomic profiles obtained from MetaPhlAn were imported

and analyzed using the phyloseq v1.40.0 (25) package in R. To

evaluate taxonomic and functional richness as well as diversity,

several alpha diversity indices including the Shannon index and

inverse Simpson index were employed. Beta-diversity was assessed

by calculating the Bray–Curtis dissimilarity index. Ordinations were

constructed using Principal Coordinate Analysis (PCoA).

PERMANOVA was performed with adjustment for the

significantly different covariates between groups (Table 1), using

the vegan::adonis2 function between the groups with 999

permutations. Benjamini-Hochberg (BH) method was used to

control the false discovery rate for multiple comparisons.

Differential abundance (DA) analyses were conducted to test the

differences in the relative abundance in microbial taxa, genes, and

metabolic pathways between groups, using the DESeq2 package with

the Wald test and parametric fitting (26), and further adjusted for

smoking status, which was associated with rapid lung function

decline as well as airflow limitation (Table 1). Log2 (fold-change)

and BH-adjusted p values (< 0.05) were extracted for each

comparison from the model. Analyses were carried out at different

taxonomic (i.e., species, genus, and family), and functional (i.e., genes

and pathways) levels. Based on differentially abundant microbial

species from the DESeq2 analysis, a microbial dysbiosis index

(quantitative measure used to assess the balance or imbalance of

microbial communities), was calculated as log10 (sum of the

abundances of the species increased in rapid decliners/sum of the

abundances of species decreased in rapid decliners), as first reported

by Gevers et al. (27), and in accordance with other microbiome
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studies from the COCOMO cohort (10, 28). In addition, Mann–

Whitney U test was performed further as a sensitivity analysis of

differentially abundant species identified by DESeq2, and taxa with a

p-value >0.10 were removed from the dysbiosis index.
2.7 Statistics

Descriptive statistics were presented by expressing continuous

variables as mean ± standard deviation and categorical variables as

numbers and percentages. Differences in distributions of

continuous variables were tested using Mann–Whitney U tests.

DA analyses in DESeq2 were adjusted for significant covariate

smoking status at follow-up (current, former, never) for both the

primary outcome (rapid lung function decline), and the secondary

outcome (airflow limitation).

Associations between the microbial dysbiosis index and

primary outcome was further adjusted for other traditional (age,

sex, BMI, ethnicity) and HIV-related (transmission mode, nadir

CD4 count, HIV duration) risk factors for lung disease in model 1,

using multivariable logistic regressions, and further adjusted for

soluble levels of IL-1b and IL-10 (previously associated with rapid
Frontiers in Immunology
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lung function decline in PWH (8)) in model 2, to verify if the

microbial dysbiosis index associated with rapid lung function

decline was robust and independent of these potential

confounders. Moreover, a sensitivity analysis was performed by

excluding those with self-reported history of pneumonia in the

decade prior to fecal sampling to rule out its potential confounding

effect on rapid lung function decline.

We further tested if the microbial dysbiosis index was also

associated with the secondary outcome airflow limitation. Due to

the low sample size of airflow limitation, association between the

dysbiosis index and airflow limitation was separately adjusted for

age, BMI, and a third significant covariate (Table 1) at a time.

Spearman’s correlation analysis was performed between

differentially abundant species from DESeq2 analysis and HIV-

related clinical parameters, and visualized by the ggcorrplot (Ver

0.1.4.1) package in R.

The co-occurrence network plots were generated for rapid

decliners and normal decliners using the iGraph R package (V

2.1.1) using the subset of top abundant taxonomy profiles, including

the differentially abundant taxa from DESEq2 analysis, from

MetaPhlAn3 to assess the correlations among microbial taxa

based on their Spearman’s correlations.
TABLE 1 Demographic characteristics of PWH in present sub-study of COCOMO.

Characteristic
Rapid lung function decline (FEV1 > 40 mL/year) Airflow limitation

No, n = 1921 Yes, n= 1551 No, n = 3481 Yes, n = 371

Age, years 53.3 (10.9) 53.3 (10.7) 52.5 (10.5) 61.8 (10.5)*

Sex, male 162 (84%) 135 (87%) 275 (87%) 22 (73%)

BMI, kg/m2 24.6 (3.6) 24.9 (3.9) 24.8 (3.7) 23.6 (4.8)*

Smoking status

Current smoker 40 (21%) 42 (28%)* 69 (22%) 13 (45%)*

Former smoker 79 (42%) 59 (40%)* 124 (40%) 14 (48%)*

Never smoker 71 (37%) 48 (32%)* 117 (38%) 2 (6.9%)*

HIV duration, years 16.0 (9.1) 15.5 (9.3) 15.2 (9.1) 21.8 (8.5)**

Ethnicity

Caucasian 171 (89%) 136 (88%) 279 (88%) 28 (93%)

Other 21 (11%) 19 (12%) 38 (12%) 2 (6.7%)

IL-1b§, pg/mL 0.2 (0.2) 0.2 (0.2) 0.2 (0.2) 0.2 (0.2)

IL-10§, pg/mL 0.9 (1.5) 0.7 (0.6) 0.8 (1.1) 1.2 (1.7)

CD4 count, cells/mm3 706.1 (278.1) 719.1 (262.3) 708.7 (273.1) 744.4 (261.9)

Nadir CD4 count <200 cells/µL 72 (21.6%) 61 (17.6%)* 125 (32.5%) 11 (2.9%)

cART time, years 12.0 (6.5) 11.7 (6.8) 11.4 (6.6) 15.6 (6.2)**

HIV RNA at baseline <50 copies/mL 186 (97%) 148 (95%) 304 (96%) 30 (100%)
Continuous data as mean (standard deviation), *p<0.05, **p<0.001
1n (%)
§None of the inflammatory markers (described in Methods) were statistically different between groups including IL-1b and IL-10, which were however presented and included in multivariable
logistic regression model as they were associated with faster lung function decline in the total cohort (8).
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3 Results

3.1 Baseline characteristics of PWH with
lung function abnormalities

Among 385 participants who had lung function measurement

and metagenome data at baseline, 347 had valid lung function data

also at follow-up, thus had measured FEV1 decline, and 155 (44.7%)

presented with rapid lung function decline (Table 1). PWH with

rapid lung function decline were overrepresented by current

smokers, whereas airflow limitation was associated with current

smoking, older age, lower BMI, longer HIV duration and

cART time.
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3.2 Association between gut microbiome
and rapid lung function decline in PWH

No statistically significant difference in microbial alpha diversity

at species level measured by Shannon and inverse Simpson index

was observed between PWH with and without rapid lung function

decline (Figures 1A, B). No difference in microbiome composition

at species level (beta diversity) was observed between the two

groups (Figure 1C). Similarly, no difference in microbial alpha or

beta diversity was observed at genus or family level (Supplementary

Figures S1A–E, G).

On the compositional level, after adjusting for smoking status

(current, former, never) in DESeq2, several bacterial species were
FIGURE 1

Gut microbiome profiles at species level in PWH with and without rapid lung function decline. (A), Shannon diversity index. (B), inverse Simpson
diversity index. (C), Beta-diversity assessed by the Bray–Curtis dissimilarity index, visualized using Principal Coordinate Analysis (PCoA). (D), Bacterial
species differentially abundant between PWH with and without rapid lung function decline, analyzed using the DESeq2 package, adjusted
for smoking.
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significantly enriched in PWH with rapid lung function decline

compared to those with normal lung function decline (Figure 1D).

After removing non-significant taxa from Mann Whitney U test,

species enriched in PWH with rapid lung function decline included

Bacteroides coprophilus, Klebsiella michiganensis, Catabacter

hongkongensis, Clostridium perfringens, Lactobacillus oris,

Lactobacillus paragasseri, while the relative abundance of two

species, Cloacibacillus porcorum and Absiella dolichum were

decreased in rapid decliners. These differentially abundant species

between rapid and normal lung function decliners were used to

define a microbial dysbiosis index as previously described (27), and

explained in the Methods section. At the genus level, the relative

abundances of Helicobacter, Catabacter, and Parascardovia were

significantly enriched, while the relative abundances of 6 genera

were decreased in rapid decliners compared to normal decliners

(Supplementary Figure S1F). At the family level, the relative

abundance of Helicobacteraceae was significantly increased, while

the relative abundance of Spirochaetaceae, Entamoebidae,

Hafniaceae were decreased in rapid decliners (Supplementary

Figure S1H).

At the functional level, no significant difference in gene richness

or diversity was found between rapid and normal decliners

(Supplementary Figures S2A–C). No difference in alpha or beta

diversity in pathways was found between the two groups

(Supplementary Figures S3A–C). No differentially abundant genes

or pathways were found between rapid and normal decliners after

adjusting for smoking status (current, former, never) at follow-up.
3.3 Gut microbiome profiles in PWH with
and without airflow limitation

No statistically significant difference was observed in microbial

alpha or beta diversity between PWH with and without airflow

limitation (Supplementary Figures S4A–C). After adjusting for

smoking status, the relative abundances of five species, including

Bacteroides sp CAG 661 which was also enriched in rapid decliners,

were significantly enriched in PWH with airflow limitation, while

the relative abundances of several species were decreased in this

group (Supplementary Figure S4D).
3.4 Prediction of rapid lung function
decline by gut microbial dysbiosis

Finally, we assessed whether gut microbial dysbiosis could

predict rapid lung function decline independently of relevant

confounders in addition to smoking status. In a multivariable

logistic regression adjusted for other traditional (age, sex, BMI,

ethnicity) and HIV-related (transmission mode, nadir CD4 count,

HIV duration) risk factors for lung disease, the dysbiosis index was

independently associated with rapid lung function decline (aOR

1.18, 95% CI [1.11-1.27], p<0.001). Restricting analyses to PWH

with no self-reported history of pneumonia (62%) did not alter the

association between microbial dysbiosis index and rapid lung
Frontiers in Immunology 06
function decline (aOR 1.25, 95% CI [1.14-1.38], p<0.001).

Furthermore, restricting analyses to PWH with predefined high-

quality spirometry data (86.2%) did not alter the association

between microbial dysbiosis index and rapid lung function

decline either (aOR 1.16, 95% CI [1.09-1.25], p<0.001).

The microbial dysbiosis index was not associated with levels of

inflammatory markers (described in Methods), and adjusting

further for IL-1b and IL-10 which were associated with faster

lung function decline in the total cohort (8) did not alter the

association between microbial dysbiosis index and rapid lung

function decline.

Importantly, the microbial dysbiosis index based on rapid

decliners was associated with airflow limitation in multivariable

analyses adjusted for significant confounders for airflow limitation

(age, BMI, HIV duration, and cART time) (aOR 1.16, 95% CI [1.04-

1.29], p=0.007). No significant correlations between microbial taxa

within the dysbiosis index (i.e., differentially abundant taxa between

rapid and normal decliners) and clinical parameters were found,

with a few exceptions showing weak correlations (Spearman’s

correlation coeffecient < ±0.2), though correlations were observed

between some clinical parameters as anticipated (Supplementary

Figure S5).

A number of microbial taxa were closely correlated in co-

occurrence plots (Spearman’s correlation coeffecient>0.5 and

p<0.05) both in rapid and normal decliners (Supplementary

Figure S6), while no significant correlations were observed among

most taxa within the microbial dysbiosis index (Supplementary

Figure S6, Supplementary Figure S5).
4 Discussion

In this study using a large cohort of well-treated PWH, we

found no significant difference in overall gut microbial diversity

between PWH with and without rapid lung function decline.

However, several microbial species were differentially abundant

between PWH with and without rapid lung function decline after

adjustment for smoking status. After further adjustment for

traditional and HIV-related risk factors for lung disease, as well

as cytokines (IL-1b, IL-10), the gut microbial dysbiosis index was

independently associated with rapid lung function decline.

Importantly, we also found an independent association of the gut

microbial dysbiosis index with the airflow limitation in PWH,

suggesting that the gut dysbiosis based on the lung function

decline may be predictive for airflow limitation. Moreover, we

found no overlap at bacterial genus or family levels between

microbial dysbiosis associated with rapid lung function decline

among PWH in this study and our previously defined HIV-

related microbiome dysbiosis using 16S rRNA gene sequencing

(10), suggesting that microbiome dysbiosis-associated rapid lung

function decline is not related to HIV status per se.

We observed that some opportunistic pathogenic bacterial

species were significantly enriched in PWH with rapid lung

function decline compared to those without, e.g., Bacteroides

coprophilus, Klebsiella michiganensis, Clostridium perfringens.
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Bacteroides coprophilus has been associated with COVID-19 and

multisystem inflammatory syndrome (29). Klebsiella michiganensis,

among other Klebsiella species, has been reported to be dominant in

gut microbiota among infants with lower respiratory infection (30).

Clostridium perfringens produces severe and rapidly fatal

enterotoxemia affecting several organs including lungs, and a

previous study showed that lung endothelial cells are sensitive to

epsilon toxin from C. perfringens (31). The enrichment of these

pathogenic bacterial species may play a role in the pulmonary

pathology in PWH and contribute to rapid lung function decline,

either due to the gut microbiome functioning as a reservoir for the

lung microbiome, or through an indirect effect mediated by e.g.,

systemic inflammation caused by gut microbiota dysbiosis, yet the

underlying mechanisms and causal link are to be elucidated.

We investigated further if the microbial dysbiosis index was

correlated with soluble levels of IL-1b and IL-10, which in our

previous work were associated with rapid lung function decline in

the total COCOMO cohort (8). However, the association between

the microbial dysbiosis index and lung function decline was not

altered when adjusting for these markers. This may indicate that

pulmonary pathological effect may be more driven by other

mechanisms linked with gut microbial dysbiosis than systemic

inflammation. For instance, gut microbiome may serve as a

reservoir for the airway microbiome, the dysbiosis in the gut

could lead to airway microbiome dysbiosis, which directly

contribute to the pulmonary pathology. Further studies on airway

microbiome in correlation to pulmonary health are required.

We observed no significant difference in the gut microbiome

diversity between PWH with and without airflow limitation.

Nevertheless, increased relative abundance of several species were

found in PWH with airflow limitation. Of a potential interest,

Bacteroides sp CAG 661 was also associated with rapid lung

function decliner, suggesting its pathogenic potential to the lung.

It should be acknowledged that our sample size regarding airflow

limitation at baseline is a major limitation, the observed correlations

are to be further validated in future studies.

Our findings are in line with two previous studies of cohorts

including PWH and HIV-uninfected controls (32, 33). Both studies,

using 16S rRNA gene sequencing, reported no associations between

gut microbiota diversity and HIV status or lung function, while one

study (32) showed that alterations in the oral microbiome were

associated with impaired pulmonary function and systemic

inflammation in PWH, but not among HIV-uninfected

individuals. Of note, our study provides novel data on the

potential role of several bacterial species in the rapid lung

function among PWH, which has not been observed in the two

earlier studies. This may be due to the variations in the study

populations and different microbiome profiling methods. As it is

known that 16S rRNA gene-based microbiome profiling detects

only part of the microbiome community revealed by shotgun

metagenome sequencing, and the less abundant taxa, particularly

specific species detected only by shotgun sequencing can be

biologically meaningful (34). In the general population,

associations between gut microbiome and lung function decline

have been reported, particularly in humans with COPD (35). For
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example, Bowerman et al. found that Bifidobacteriaceae,

Eubacteriaceae, Lactobacillaceae, Micrococcaceae, Streptococcaceae,

and Veillonellaceae were associated with COPD; while

Desulfovibrionaceae, Bacteroidaceae, Gastranaerophilaceae, and

Selenomonadaceae were negatively associated with COPD (36).

We did not find overlap of bacteria associated with lung function

decline in PWH identified in this study, and those commonly

reported in the general population. Again, comparisons between

different studies should be cautious and consider the variations in

populations and microbiome approaches.

We acknowledge limitations and strengths of the study. First,

we did not include HIV-negative controls due to lack of HIV-

negative individuals in the COCOMO controls with matched

microbiome samples and lung function data, further studies using

shotgun metagenome sequencing and including both PWH and

HIV-negative controls are thus warranted to validate our findings

and to assess whether such findings are specific to PWH or not.

Second, the sample size of PWH with airflow limitation at baseline

was small; thus, the study was underpowered to draw robust

conclusions regarding associations between gut microbiome and

airflow limitation, larger validation cohorts are needed in future

studies. Related to this limitation, our spirometry measures were

pre-bronchodilator only, and therefore, we cannot determine how

many of participants may have normalized lung function after

bronchodilation (suggestive of asthma) versus had persistent

airflow limitation (suggestive of COPD). We hence used the term

‘airflow limitation’ rather than COPD. Third, our results do not

allow for determination of causal directionality. Furthermore, we

acknowledge the lack of virome and resistome analysis from

metagenome data, which is however not the focus of this study.

The strengths of this study include the large sample size of PWH

who had lung function measurements with longitudinal follow-up,

and adjustments for a number of known confounders.
5 Conclusions

We report no significant changes in the overall gut microbiome

composition and functional potential related to pulmonary

comorbidity in PWH. However, changes in the relative

abundances of several bacterial species were associated with rapid

lung function decline, and the microbial dysbiosis index was

independently associated with rapid lung function decline and

airflow limitation. Future studies are warranted to validate our

findings. In addition, there is a need of studies focusing on the

airway microbiome, which may play a more important and more

direct role in pulmonary comorbidities in PWH.
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