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Ferroptosis is an iron-dependent programmed death caused by the imbalance of

lipid peroxides in cells. Unlike apoptosis, autophagy and necrosis, ferroptosis is

mainly induced by the small molecule compound erastin. The main

characteristics of ferroptosis were glutathione (GSH) depletion, inactivation of

glutathione peroxidase 4 (GPX4) and reactive oxygen species (ROS) promoting

lipid peroxidation. Eventually, the imbalance of lipid peroxidation regulation in

cells leads to ferroptosis. The lipid metabolic pathway ultimately contributes to

ferroptosis through the production of lipid peroxides. In addition, other cellular

metabolic pathways can also regulate ferroptosis, such as the antioxidant

metabolic pathway, which inhibits ferroptosis by clearing lipid peroxides and

reducing cell membrane damage. Long non-coding RNAs (lncRNAs) are non-

coding transcripts more than 200 nucleotides in length and are a less classified

group of RNA transcripts that are associated with tumorigenesis and metastasis

and are more tissue or cell type specific than protein-coding genes. Studies on

the molecular profile of lncRNAs in plasma samples from liver cancer patients

show that differentially expressed lncRNAs are mainly concentrated in biological

functions related to tumorigenesis, such as cell metastasis, immune response

and metabolic regulation. With different biological functions in physiological and

pathological environments, the specific expression patterns of lncRNAs

coordinate cell state, development, differentiation, and disease.
KEYWORDS
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1 Introduction

Liver cancer is the sixth most common malignant tumor in the world. For patients with

early liver cancer, radical treatment such as surgical resection, local ablation and liver

transplantation can be performed, and the survival time of patients after surgery is almost

more than 5 years. However, in reality, patients with liver cancer have reached the middle

and late stages when they are first diagnosed and cannot be operated anymore (1). It is
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estimated that the incidence of liver cancer in East and Southeast

Asia is likely to be caused by hepatitis B and C virus infections, and

the incidence of liver cancer may also be related to alcohol abuse,

obesity, diabetes, and aflatoxin intake (2). Despite advances in

diagnosis and treatment techniques, there are currently very

limited methods available clinically to prevent liver cancer

recurrence and metastasis. Therefore, it is very important to study

the pathogenesis of liver cancer and new therapeutic targets. It is

reported that changes in iron metabolism play an important role in

the pathogenesis of liver cancer, an iron-rich diet will increase the

risk of liver cancer, and activating ferroptosis may prevent the

proliferation of liver cancer cells, so it is possible to intervene in

liver-related diseases by regulating the ferroptosis pathway (3). If

iron homeostasis is disrupted, it triggers ferroptosis in the liver,

where iron participates in non-enzymatic lipid peroxidation

through the Fenton reaction, where Fe2+ is oxidized to Fe3+,

which in turn kills cancer cells by inducing ferroptosis (4).
2 Ferroptosis

2.1 Definition and characteristics
of Ferroptosis

Cell death can be performed through different subroutines.

Interest in iron death has increased since it was described in 2012

as an iron-dependent form of non-apoptotic cell death (5).

Ferroptosis is an iron-dependent regulatory cell death mode. The

accumulation of iron ions in cells is a necessary condition for iron

death. The core feature of ferroptosis is the damage of cell

membrane system caused by abnormal accumulation of lipid

peroxides (6, 7). Distinct from other programmed cell death

forms such as apoptosis, necrosis, and autophagy, ferroptosis

exhibits unique characteristics in morphology, biochemistry, and

genetics. Morphologically, it is characterized by reduced

mitochondrial volume, increased membrane density, and the

disappearance of cristae, while nuclear morphology remains

largely unchanged. Biochemically, ferroptosis is distinguished by

its dependence on Fe2+ to catalyze lipid peroxidation via the Fenton

reaction, which is accompanied by decreased GPX4 activity and

imbalances in antioxidant systems, including the glutathione system

(8, 9).
2.2 Inducible factors related to ferroptosis

2.2.1 Ferroptosis induced by activating
transcription factor 3 (ATF3)

The characteristics of ferroptosis are morphologically

manifested as the reduction of mitochondria, the concentration of

mitochondrial membrane, and the reduction or disappearance of

mitochondrial ridge (10). The disorder of ferroptosis is related to

various physiological and pathological processes, such as

neurodegenerative diseases, acute renal failure, liver and heart

injury. Although the molecular mechanism of ferroptosis is still
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largely unknown, some transcription factors such as ATF 3, ATF 4,

YAP1, and HIF-1a have been found to play an important role in

ferroptosis, and these transcription factors can regulate the

expression of genes associated with ferroptosis through

transcription-dependent or transcription-independent

mechanisms. They may be involved in the regulation of iron ion

metabolism, oxidative stress response and mitochondrial function,

which may affect the ferroptosis process of cells (11). In addition,

ATF 3 can also be used as a transcription factor to coordinate a

variety of signal transduction pathways, such as apoptosis and cell

differentiation, and is also an important link between inflammation,

oxidative stress and immune response, and its expression is up-

regulated under various stress conditions to maintain cell

homeostasis (12). To date, a few genes have been shown to be

direct transcription targets for ATF3, but ATF3 contains domains

that bind to regulatory elements to inhibit or activate transcription

depending on the cellular environment. In addition, ATF3

competes with transcriptional activators for BS-1 or BS-2 binding

sites to inhibit the SLC7A11 promoter, which, since the SLC7A11

promoter is positively correlated with the XC- system, inhibits

system XC-, depletes intracellular GSH, and ultimately promotes

Erastin-induced ferroptosis (13). Sorafenib is a molecular targeted

drug for the treatment of advanced hepatocellular carcinoma and

an effective inducer of ferroptosis, but its clinical application is

limited due to cardiotoxicity. A comparison with GEO database

data showed that the expression of ATF3 was significantly increased

in sorafenib treated human cardiomyocytes, and high expression of

SLC7A11 protected cells from ferroptosis. Knocking down

SLC7A11 sensitised cardiomyocytes to ferroptosis caused by

sorafenib. In conclusion, ATF3 can promote ferroptosis by

inhibiting SLC7A11, and can also affect the efficacy of sorafenib

by regulating the expression of SLC7A11, which has an important

impact on the treatment of tumors (14).

2.2.2 p53-mediated ferroptosis
Known as the “guardian of the genome,” p53 gene mutations

are often observed in human cancers, and p53 can suppress tumors

by inducing aging and programmed cell death. In addition, p53 also

has many other functions, such as promoting DNA repair,

regulating cell metabolism and participating in inflammatory

responses (15). The p53 protein, discovered in 1979 and encoded

by the tumor protein p53 (TP53 or p53) gene, attracted the

attention of the cancer research community and the

pharmaceutical industry, making it the most widely studied gene.

The activation of p53 is not a simple all-or-nothing pattern, but a

dynamic process. Cell heterogeneity, stress characteristics, multiple

regulatory factors and the stability of target genes jointly determine

the dynamic change of p53 activity (16). In addition, p53 protein is

also an important tumor suppressor protein in human cells. In

order to ensure the function of p53 protein in the regulation of cells,

its level and activity are strictly regulated in cells. When p53 protein

is usually maintained at a low level in normal cells, the half-life of

p53 protein will increase significantly. A variety of intracellular and

extracellular stress signals (such as DNA damage, hypoxia, nutrient

depletion, oncogene activation, etc.) accumulate in the cell. Once
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these stress signals are activated, p53 binds to the response elements

in its target genes to regulate their expression in a transcriptional

manner (17). The p53 tumor inhibition pathway is a very key signal

transduction pathway in cell biology, mainly regulating cell cycle,

DNA repair, and gene expression through p53 protein, so as to

effectively prevent the occurrence and development of cancer. A

recent study showed that p53 can inhibit SLC7A11 expression

through transcriptional mechanisms, reduce cystine intake and

induce ferroptosis in cancer cells (18). In addition, p53, as a

regulator of ferroptosis, can also directly regulate the metabolic

diversity of cells by promoting mitochondrial respiration and

induce the production of ROS (19), and excessive production of

ROS will trigger p53-mediated ferroptosis (20) (Figure 1).

2.2.3 Autophagy and ferroptosis
Cell death was divided into apoptosis, necrosis, and autophagy

based on morphological criteria (21). Autophagy is a natural,

regulated and destructive biological process, which has the

function of decomposing unnecessary or dysfunctional

components in cells. Autophagy pathway is an important

degradation and recycling system in cells, which plays an

important role in maintaining intracellular stability and

regulating cell growth (22). Impaired autophagosome maturation

has been implicated in the pathogenesis of various human diseases,

such as metabolic diseases, cancer and myopathy (23). Both

genomic and epigenetic factors can regulate autophagy in liver

cancer, and autophagy is also evident in its ability to promote

ferroptosis in liver cancer cells (24). The successive stages of

autophagy include inducing the formation and eventual

degradation of cells, phagocytes, autophagosomes and

autolysosomes. In addition, autophagy can also inhibit or

promote cell death, thereby regulating the fate of liver cancer cells

(24). To investigate whether Erastin-induced lipid peroxidation is
Frontiers in Immunology 03
dependent on the autophagy pathway, wild-type fibroblasts were

treated with autophagy inhibitors in the absence or presence of

erastin. The results showed that autophagy can actively regulate

Erastin-triggered cell ferroptosis and increase lipid peroxidation.

Depletion of autophagy attenuated lipid peroxidation in erastin

induced ferroptosis and decreased cell sensitivity to ferroptosis (25).

Some studies have also shown that in liver cancer cell lines, the

RNA-binding protein chaperone of NOB 1 (PNO 1) plays an

important role in the reprogramming of GSH metabolism by

promoting autophagy, and inhibition of PNO 1 can inhibit the

transcription of SLC7A11 through p53, thereby increasing the

sensitivity of tumor cells to ferroptosis. Promotes ferroptosis in

tumor cells (26).
2.3 Role of ferroptosis in tumor

Ferroptosis has emerged as a promising approach for anti-

tumor therapy, and targeting ferroptosis to kill tumors is seen as a

potentially effective strategy, such as Lipocalin-2 (LCN2), a protein

found in the human body that plays a role in multiple biological

processes, including inflammation, immune response, and lipid

transport. Anti-lcn2 therapy is a treatment that targets the LCN2

protein and improves liver cancer treatment by targeting ferroptosis

(27). Inducing ferroptosis could also synergistically enhance the

effects of immunotherapy, paving the way for future combination

treatment approaches (28). As a congenital tumor suppressive

mechanism, ferroptosis is involved in the biological process of

tumors, mainly existing in the small mitochondria (29). For

example, GPX4 enters the mitochondria via the mitochondrial

protein input system, the outer membrane translocase/inner

membrane translocase (TOM/TIM) complex, and then degrades

GPX4 mainly through mitochondrial autophagy and ROS induced
FIGURE 1

Ferroptosis mechanism. Activating transcription factor 3 (ATF3) competes with transcription activator BS-1 or BS-2 binding sites to inhibit SLC7A11
promoter. Since SLC7A11 promoter is positively correlated with XC- system, inhibits system XC-, consumes intracellular GSH, and ultimately leads to
ferroptosis. ATF3 promotes iron-free cell death by inhibiting the expression of SLC7A11. Known as the “guardian of the genome,” p53 can suppress
tumors by inducing aging and programmed cell death. p53 activation is not a simple all or nothing pattern, but a dynamic process. p53 can inhibit
the expression of SLC7A11 through transcriptional mechanism, reduce cystine intake, and induce ferroptosis. In addition, p53, as a regulator of
ferroptosis, can also directly regulate the metabolic diversity of cells by promoting mitochondrial respiration and induce the production of ROS. Fe2+

can induce Fenton Reaction and induce the production of ROS, thus promoting ferroptosis.
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damaged mitochondria, leading to ferroptosis in hepatocytes (30).

The co-regulation of iron accumulation, lipid peroxidation and

antioxidant mechanism enables tumor cells to avoid ferroptosis,

thus exhibiting infinite proliferation of tumor cells. Increased

expression or activity of GPX4 and SLC7A11 in the ferroptosis

pathway can promote tumor proliferation by down-regulating

ferroptosis (29). There are also a variety of tumors associated

with ferroptosis, such as renal cell carcinoma, cervical cancer and

other prone to ferroptosis, the anti-tumor effect of ferroptosis has

been widely studied in variant cancers, and is regarded as the

Achilles heel of almost untreatable tumors (31). Renal clear cell

carcinoma is a common renal malignant tumor with a poor

prognosis. It induces iron accumulation and lipid peroxidation by

knocking down siRNA or inhibiting the heterogeneous inhibitory

factor 3e9 homolog 1 (SUVs 39 H1), leading to ferroptosis and

disrupting the growth of renal clear cell cancer cells (32). Cervical

cancer is one of the most common malignant tumors in women,

and chemotherapy is the main treatment for cervical cancer, which

plays an important role in improving patient survival by inducing

cancer cell death (33). Although ferroptosis effectively enhances

cancer immunotherapy, inducing ferroptosis may impair T cell

survival, research has found that there is a new cancer therapy called

FAST, Combining iron oxide nanoparticles with cancer-selective

knockout of seven key iron-death resistance genes (FPN, LCN2,

FTH1, FSP1, GPX4, SLC7A11, and NRF2), FAST was found to have

significant anti-tumor activity in a variety of cancer cells, with little

effect on normal cells. Succeeded in turning a common iron

nanomaterial into an unprecedented cancer killer (34) (Figure 2).

Overall, ferroptosis makes us fully expect it to provide a new anti-

tumor treatment. Recent studies have shown that cancer cells with a

high mesenchymal state have become an important mechanism for

the acquisition of targeted therapies and new drug resistance. This

drug-resistant mesenchymal cancer cell produces a state of non-

oncogene addition in GPX4, and this inhibition intuitively leads to

ferroptosis. Consistently, persistent cancer cells nominated to

escape from conventional cytotoxic therapy via dormant tumors
Frontiers in Immunology 04
showed the same selective dependence on the GPX4 pathway.

Therefore, ferroptosis may be considered a viable treatment

strategy for reversing cancer treatment resistance strategies (35).
2.4 Ferroptosis and liver cancer

The liver is located at the junction of the portal vein and

systemic blood flow, and is an organ with high iron content in

the human body (36), which is crucial for maintaining systemic iron

homeostasis, which can cause pathological changes in the liver, such

as liver fibrosis, if destroyed. In the pathogenesis of liver fibrosis,

transforming growth factor b1 (TGF-b1) is highly expressed (37),

and truncated transforming growth factor b-receptor II (TbRII) can
inhibit the highly expressed TGF-b1, thus blocking the activity of

TGF-b1 in liver fibrosis, which is a drug for the treatment of liver

fibrosis (38). The main regulatory mechanism of ferroptosis in

hepatocytes is to trigger cellular oxidative stress and lipid

peroxidation, the regulatory mechanism of ferroptosis in

hepatocytes, a cellular process that triggers oxidative stress and

lipid peroxidation, DNA damage, and cell death, specifically

induces CXCL 10-b-dependent activation of the recruitment of

CD8 + T cells, and finally re-enhances the anti-tumor capacity of

the adaptive immune response (39). Donafinil is a multi-receptor

tyrosine kinase inhibitor used in the treatment of liver cancer

patients (40). The ATF4 is a family member of ATF, and ATF4

can also slow down the occurrence of liver cancer (41). The mRNA

expression levels of five genes in the ferroptosis pathway (GPX4,

SLC7A11, AIFM2, ACSL4, Nrf2) in liver cancer tissues were higher

than those in normal tissues, especially the high expression of GPX4

was closely related to liver cancer patients, and the high expression

of GPX4 increased the progression-free survival of liver cancer. It

plays a negative regulatory role in the occurrence and development

of liver cancer and promotes the development of cancer (42). In

addition, ferroptosis is strictly regulated by two types of genes with

opposite functions, namely HIC1 and HNF4A transcription factors,
FIGURE 2

Ferroptosis and tumor. Ferroptosis has emerged as a promising anti-tumor treatment, and targeting ferroptosis to kill tumors is seen as a potentially
effective strategy. Erastion can induce ferroptosis and inhibit the lipid synthesis, thereby inhibiting cholesterol. Low cholesterol level promotes the
increase of Fe3+ content, which leads to the development of lipid peroxidation, thereby leading to ferroptosis. However, increased expression or
activity of GPX4 and SLC7A11 in the ferroptosis pathway can also inhibit ferroptosis. There are also multiple tumors associated with ferroptosis that
induce iron accumulation and lipid peroxidation by knocking down siRNA or SUV39H1 leading to ferroptosis.
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which are negatively correlated with the tumor stage of liver cancer.

In liver cancer, the phosphorylation level of HIC1 will increase, thus

promoting the development of tumor, and disrupting the balance

between HIC1 and HNF4A is conducive to the treatment of liver

cancer (43).
3 Cellular mechanisms related to
liver cancer

3.1 Cell proliferation

In multicellular organisms, cell proliferation is realized through

the regulation of cell cycle, which is a complex process involving

multiple steps such as DNA replication, chromosome allocation

and cell division. The imbalance of hepatocyte proliferation

mechanism is one of the important factors in the occurrence of

liver cancer. The overexpression of HULC RNA in liver cancer

tissues promotes the proliferation, migration and invasion of liver

cancer cells in vitro, and promotes the growth of xenograft tumors

in vivo. miR-2052 is a microRNA. Compared with non-cancer

tissues, the level of miR-2052 in liver cancer tissues is reduced,

which inhibits the proliferation of liver cancer cells. HULC can also

act as a sponge of miR-2052 in liver cancer cells. The epithelial

transformation factor MET is the direct target of miR-2052 and is

positively correlated with HULC expression, while the expression of

miR-2052 is negatively correlated with HULC expression.

Mechanistically, high levels of HULC promote MET expression

via sponge miR-2052, which in turn promotes liver cancer growth

via the miR-2052/MET axis (44). In addition, whole genome

sequencing (WGS) showed that circ-ZEB 1 and PIK 3CA were

also highly expressed in HCC tissues, which was associated with

poor prognosis of HCC. Down-regulated CIRC-ZEB1 expression

inhibited the proliferation of HCC cells and promoted apoptosis.

The low expression of MIR-199a-3p in liver cancer tissues can block

the effect of CIRC-ZEB1 on liver cancer cells, that is, CIRC-ZEB1

promotes the expression of PIK3CA by silencing miR-199a-3p, thus

affecting the progression of hepatocellular carcinoma, and can be

used as a biomarker for hepatocellular carcinoma (45).
3.2 Apoptosis

Apoptosis is a process of programmed cell death determined by

genes, which is a key mechanism for the normal development of an

organism and the stability of its internal environment. The main

functions of apoptosis include the removal of redundant or

damaged cells, the maintenance of tissue structure and function,

the prevention and treatment of cancer and the regulation of the

immune system. In liver cancer tissues, levels of lncRNA PLAC2 are

lower than in non-cancer tissues, and low levels of PLAC2 are

strongly associated with poor survival. p53 protein is an important

factor in the inhibition of cancer, and its signal transduction can be

realized through the interaction with lncRNAs, which is down-

regulated in liver cancer and positively correlated with PLAC2. In
Frontiers in Immunology 05
addition, PLAC2 is also the upstream activator of p53, which has an

inhibitory effect on tumors, and its expression in liver cancer tissues

is not affected by hepatitis B and C virus infection. If PLAC2 is

overexpressed, the expression of p53 will be up-regulated, thus

increasing the apoptosis rate of cancer cells, while the

overexpression of p53 cannot affect PLAC2. In conclusion,

PLAC2 can mediate apoptosis of cancer cells through up-

regulation of p53, and predict the expression of PLAC2 before

treatment is conducive to the prognosis of liver cancer (46).
3.3 Autophagy

There is already growing evidence that anticancer drugs inhibit

tumor progression by stimulating autophagy (47). During

autophagy, cells wrap damaged or degraded cells in bilayer

membrane structure autophagy vacuoles, which are then

transported to lysosomes for degradation, releasing amino acids

and metabolites that can be reused. LncRNA DCST1-AS1 was

found to be an abnormally expressed gene in liver cancer tissue

through gene chip screening, and the higher its expression, the

worse the prognosis of patients. LncRNA DCST1-AS1, as a

carcinogen of liver cancer, plays a crucial role in the regulation of

liver cancer metastasis. Autophagy of hepatocellular carcinoma cells

is promoted through AKT/mTOR signaling pathway, and the

progression of hepatocellular carcinoma is inhibited through

autophagy process. In addition, the deletion of lncRNA DCST1-

AS1 in hepatocellular carcinoma cell line (HepG2) showed anti-

tumor properties, accelerating apoptosis, inhibiting cell migration

and stimulating autophagy in hepatocellular carcinoma cells.

Therefore, lncRNA DCST1-AS1 is a potentially effective drug

target for the treatment of patients with clinical liver cancer (48).
4 Occurrence and development of
liver cancer, LncRNA and liver cancer

4.1 Progress of exosomes in liver cancer

Exosomes are small (~100 nm) membrane-bound extracellular

vesicles released into biological fluids by various types of cells (49).

Their main functions include intercellular communication,

substance transport, immune regulation, tissue repair and

regeneration, and for the diagnosis and treatment of diseases (50).

They can be secreted by a variety of cells such as macrophages. It

then migrates from macrophages to tumor cells to promote tumor

progression (51), invasion, and metastasis. Tissue fibrosis and

extracellular matrix (ECM) hardening can also stimulate the

release of exosomes by cancer cells, ultimately promoting tumor

growth. As a drug carrier, exosomes are a newly discovered cell

communication tool. Almost all human cells can secrete exosomes,

and tumor cells release more exosomes than normal cells. Exosomes

have been used in the treatment of many diseases, such as

Alzheimer’s disease, depression, Parkinson’s disease, diabetes,

infectious diseases, etc. (52), and can also be used as a marker for
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TABLE 2 The regulatory role of lncRNAs in modulation of ferroptosis in liver cancer.

LncRNAs Function Targets Effects on tumor References

SLC7A11-AS1 Oncogene SLC7A11
SLC7A11-AS1 enhances HCC cells proliferation and confers resistance to erastin-induced ferroptosis
by stabilizing SLC7A11 mRNA.

(75)

CASC11 Oncogene SLC7A11 CASC11 mitigates sorafenib-induced ferroptosis by stabilizing SLC7A11. (76)

DUXAP8 Oncogene SLC7A11
Knocking down DUXAP8 enhances sorafenib-induced ferroptosis by promoting the de-palmitoylation
of SLC7A11.

(77)

HEPFAL
Tumor

suppressor
SLC7A11

HEPFAL accelerates ferroptosis by promoting the ubiquitination and degradation of SLC7A11 protein.
(78)

PVT1 Oncogene GPX4 Overexpression of lncPVT1 and GPX4 impeded ketamine-induced ferroptosis. (79)

HCG18 Oncogene GPX4
Silencing HCG18 inhibits sorafenib resistance through promoting ferroptosis via inhibiting GPX4 by
binding to miR-450b-5p.

(80)

URB1-AS1 Oncogene Ferritin
HIF-1a-mediated increased URB1-AS1 attenuates sorafenib-triggered ferroptosis by inducing ferritin
phase separation and decreasing the cellular free iron content.

(81)
F
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TABLE 1 Some dysregulated LncRNAs and their roles in the progression of liver cancer.

LncRNAs Expression Role Functional role References

LncRNA DCST1-AS1 Upregulated
Promotion of
liver cancer

LncRNA DCST1-AS1 mediates the occurrence and development of liver cancer
through the AKT/mTOR signal transduction pathway.

(48)

LncRNA HULC Upregulated
Promotion of
liver cancer

LncRNA HULC promotes the phosphorylation of YB-1 by modulating the kinase
pathway, and subsequently regulates the interaction between YB-1 and certain
oncogenic mRNAs.

(67)

LncRP11-295G20.2 Upregulated
Promotion of
liver cancer

LncRP11-295G20.2 binds to the N terminus of PTEN and facilitates the interaction of
p62 with PTEN.

(68)

LncSNHG1 Upregulated
Promotion of
liver cancer

LncSNHG1 promotes the development of liver cancer by inhibiting the expression of
p53 through binding with DNMT1.

(69)

LncRNA TLNC1 Upregulated
Promotion of
liver cancer

LncRNA TLNC1 interacts with TPR and induces p53 mediated by TPR, thereby
inhibiting the transcription of p53 target genes and promoting the progression of
liver cancer.

(70)

LncHand2 Downregulated
Inhibition of
liver cancer

LncHand2 promotes liver repopulation via initiating Nkx1-2-induced c-Met signaling. (71)

LncRNA GAS5 Downregulated
Inhibition of
liver cancer

LncRNA GAS5 functioned as a tumor suppressor role in HCC through regulation of
miR-21-PTEN singling pathways

(72)

LncRNA TUG1
Downregulated

Inhibition of
liver cancer

LncRNA TUG1 promoted migration, invasion, and glycolysis in HCC cells via the
miR-524-5p/SIX1 axis.

(73)
FIGURE 3

LncRNAs associated with liver cancer.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1555518
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ding et al. 10.3389/fimmu.2025.1555518
early liver cancer screening. It has the characteristics of stable

circulation, good biocompatibility, low immunogenicity and high

transport efficiency, and is closely related to the occurrence,

development and metastasis of tumors (53). By comparing the

level of exosomal tsRNA between liver cancer patients and healthy

people, it was found that the tsRNA in plasma exosomes of liver

cancer patients increased significantly (54), among which miR-122

was the most reported, which can regulate the occurrence and

development of liver cancer by affecting the tumor cell cycle, and

block it with miR-221 as the therapeutic target (55), which can

block the G1 phase of liver cancer cells. Thus, the proliferation of

liver cancer cells is weakened, and the metastasis of liver cancer cells

is eventually controlled (56).
4.2 The role of liver cancer stem cells in
liver cancer

Cancer stem cells (CSC) are pluripotent subsets of cells in tumor

tissues with the potential to spread, initiate and maintain tumor

growth. They are also the initiation cells of cancer and play an

important role in tumor growth, metastasis and treatment (57).

Targeting CSC is considered an effective way to eradicate primary

tumors and prevent distant metastasis of HCC (58). The CSC model

states that tumor growth is driven by a subset of tumor stem cells in

cancer, such as circRNA, which is a key subset with dry characteristics

that promotes the development of HCC (59). The model explains

several clinical observations in liver cancer as well as other cancers,

including the almost inevitable recurrence of tumors after initial

successful chemotherapy or radiotherapy. And the phenomenon

of tumor dormancy and treatment resistance (60). Through

transcriptome microarray analysis, a highly expressed long-chain

non-coding RNA in liver CSC was identified as lncTCF7, which can

induce liver CSC self-renewal and tumor proliferation by mediating

Wnt signaling (61). Stem cell markers are specific molecules that can

recognize and isolate cancer stem cells, and can be used alone or in

combination. One of the most common markers in liver cancer stem

cells is CD133, and CD133+HCC cells isolated from the liver cancer

cell line Huh 7 show higher proliferation and tumorigenic potential. In

addition, CD44 is also an important marker (62), and it has been

reported that CD44 can more accurately define the surface phenotype

of liver stem cells, and CD133 andCD44 double positive cells aremore

resistant to chemotherapy drugs. CD44 blocking prevents CD90+ cells

from forming local and metastatic tumor nodules (63).
4.3 Breakthrough of immunotherapy in
liver cancer

With the rapid development of systematic therapy for liver

cancer, immunotherapy has been widely used in the treatment of

liver cancer, obtaining the first FDA approval in the form of

recombinant cytokines, namely interleukin-2 (IL-2) and

interferon (IFN-a), and researchers found that bioengineered

immune cells are prone to fatigue after attacking cancer cells.
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Some treatments involving immune checkpoint inhibitors (ICI),

such as anti-PD-1/L1 and anti-CTLA4 antibodies (64), can prolong

the survival of patients with various cancers and greatly improve the

prognosis of patients with advanced liver cancer. There are two

different ICI protocols, atezolizumab + beizumab and

tremelimumab + durvalumab, which are approved standard first-

line therapies. Their mechanism of action is to block the signal

transmission pathway between cancer cells and immune cells,

thereby activating the immune system. Allowing it to effectively

recognize and attack cancer cells. At the same time, cancer time

therapy also plays an important role in the carcinogenic process,

and some factors such as administration frequency and dose,

individual differences, treatment goals, etc. will affect the survival

rate of advanced cancer, which should be adjusted according to the

specific situation of patients (65). In short, the breakthrough of

immunotherapy in liver cancer is mainly reflected in the selection of

individualized treatment plan, the combination of treatment

technology, the research of drug resistance mechanism, the

discovery of new targets, and the improvement of immune cell

function. These advances have led to more effective treatment

options and a better quality of life for liver cancer patients.
4.4 LncRNAs and liver cancer

The liver is a highly regenerative and complex organ that

receives all outflow circulation from the small and most of the

large intestine as well as the spleen and pancreas through the portal

vein. If there is temporary hepatocyte injury, the liver can

regenerate rapidly within a few days to a few weeks. At the end of

regeneration, the size of the hepatic lobules is significantly increased

and the thickness of the hepatic cell plate is twice that of the end of

regeneration (66). Various liver cancer-related lncRNAs have also

been shown to have abnormal expression and can participate in

cancer phenotypes by binding with DNA, RNA or proteins

(Table 1). To date, emerging evidence points to the potential of

lncRNAs to regulate ferroptosis in cancer biology. In liver cancer

cells, high levels of lncRNA GABPB1 antisense RNA-1 enhance

Erastin-induced ferroptosis by blocking GA-binding protein

subunit beta-1 (GABPB1) translat ion and inhibit ing

peroxidoreducin-5 peroxidase. This results in the inhibition of

cell antioxidant capacity and cell viability (74). For example,

LncHand2 is a different RNA that is highly expressed in liver

regeneration after partial hepatectomy, mainly located in the liver

nucleus adjacent to the central vein of the hepatic lobule. Promotes

liver regeneration by initiating transcription factor (Nkx1-2)

-induced epithelial transformation factor (c-Met) signaling (71).

In addition, the most studied lncRNA associated with liver cancer is

HULC, which is overexpressed in liver cancer and can specifically

bind YB-1 protein and accelerate its phosphorylation through

extracellular signal-regulated kinase (ERK) (67), thus leading to

YB-1 release from YB-1-mRNA complex and promoting the

translation of silenced mRNA. It plays a carcinogenic role by

regulating the phosphorylation state of its interacting proteins.

Some lncRNAs, such as LncRP11-295G20.2 and LncSNHG1, are
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1555518
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ding et al. 10.3389/fimmu.2025.1555518
highly expressed in liver cancer cells. LncRP11-295G20.2 promotes

the growth of liver cancer cells in vitro and in vivo (68), and

LncSNHG1 is mainly distributed in the nucleus of SMMC7721 cells.

Usually involved in RNA processing and modification, DNMT1 is

the most important methyltransferase in human body, maintaining

the methyl group of newly synthesized DNA. SNHG1 promotes the

development of liver cancer by inhibiting the expression of p53

through binding with DNMT1 (69) (Figure 3). However, some

lncRNAs with dysregulated expression play a regulatory role in

ferroptosis of liver cancer, and they regulate the occurrence and

development of liver cancer by targeting related genes (Table 2).
5 Summary and prospect

In China, the incidence and mortality of liver cancer account for

nearly 70% in Asia, and it has become a country with a high incidence

of liver cancer in the world. With the progress of diagnostic technology

and treatment methods, the prognosis of patients with liver cancer has

been improved, but the metastasis and recurrence rates of liver cancer

and the 5-year and 10-year survival rates of patients are still

unsatisfactory. At present, the main treatment methods for liver

cancer are traditional surgery, radiotherapy and chemotherapy, and

there is still a lack of specific therapeutic means in clinical practice.

However, the traditional treatment methods have limitations, and the

side effects will lead to the decline of patients’ quality of life and the

survival rate. Research related to early liver cancer has focused on

protein-coding genes because they play a central role in the regulation

of biological processes. More and more studies have shown that non-

coding RNAs, especially lncRNAs, is associated with immune cell

infiltration of liver cancer, and some lncRNAs signals can be integrated

into the comprehensive biomarker system for immunotherapy, which

has considerable potential value in improving the diagnosis and

treatment level of liver cancer. LncRNAs profiles are also emerging

as key regulators of genomic networks for predicting the prognosis of

liver cancer. This paper mainly describes the relationship between

ferroptosis, liver cancer and lncRNAs. Ferroptosis can participate in

liver injury and inflammation, and lncRNAs regulates immune

response, liver regeneration and REDOX signals, playing a key role

in the regulation of liver microenvironment and chronic liver disease.

Therefore, the mechanism of lncRNAs regulating liver cancer through

ferroptosis is worth further exploration.
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