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Background: High expression levels of programmed death receptor 1 (PD-1) and

its ligand 1 (PD-L1) have been observed in thymic epithelial tumors (TET),

suggesting their potential as prognostic indicators for disease progression and

the effectiveness of immunotherapy in TET. The conventional method obtaining

PD-L1 was challenging due to invasive sampling and tumor heterogeneity

Methods: A total of 124 patients with pathologically confirmed TET (57 PD-L1

positive, 67 PD-L1 negative) were retrospectively enrolled and allocated into

training and validation cohorts in a ratio of 7:3. Radiomics features were extracted

from T1-weighted, T2-weighted fat suppression, and apparent diffusion

coefficient (ADC) map images to establish a radiomics signature in the training

cohort. Multivariate logistic regression analysis was conducted to develop a

combined radiomics nomogram that incorporated clinical, conventional MR

features, or ADC model for evaluation purposes. The performance of each

model was compared using receiver operating characteristics analysis, while

discrimination, calibration, and clinical efficiency of the combined radiomics

nomogram were assessed.

Results: The radiomics signature, consisting of four features, demonstrated a

favorable ability to predict and differentiate between PD-L1 positive and negative

TET patients. The combined radiomics nomogram, which incorporates the peri-

cardial invasion sign, ADC value, WHO classification, and radiomics signature, showed

excellent performance (training cohort: area under the curve [AUC] = 0.903;

validation cohorts: AUC = 0.894). The calibration curve and decision curve analysis

further confirmed the clinical usefulness of this combined model. The decision curve

analysis demonstrated the clinical utility of the integrated radiomics nomogram.
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Conclusions: The radiomics signature serves as a valuable tool for predicting the

PD-L1 status of TET patients. Furthermore, the integration of radiomics

nomogram enhances the personalized prediction capability.
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Background

Thymic epithelial tumors (TET) are the most common anterior

mediastinum neoplasms in adults (1, 2). Recently, programmed

death receptor 1 (PD-1) and its ligand 1 (PD-L1) based immune

checkpoint inhibitors (ICIs) show promising prospects in TET

treatment. Additionally, PD-L1 has been proved as a predictor of

the response to TET immunotherapy (2). TETs express PD-1/PD-

L1 at high levels, which differs between different Masaoka stages and

pathological subtypes (3–5). Furthermore, accumulating evidence

has revealed high PD-1/PD-L1 expression in TET is worse

prognosis (6). Therefore, accurate prediction of PD-L1 expression

for TET patient is crucial. The common method to analysis PD-L1

expression is immunohistochemistry (IHC). However, IHC way is

time consuming and does not provide a real-time detection (7).

Thus, exploring a new approach to predict the expression of PD-L1

level for TETs may be clinical significance.

Radiomics methods have been widely applied with the

extraction of numerous quantitative metrics on the entire tumor

from radiological images including computed tomography (CT)

and magnetic resonance image (MRI) (8, 9). Existing studies

recognize the critical role of radiomics in reflecting tissue

heterogeneity, staging and risk stratification of TET (10–12). Xiao

et al. (10) using a combined radiomics nomogram incorporating

tumor shape, apparent diffusion coefficient (ADC) value and

radiomics signature differentiating different TET histologic

subtypes. Mayoral et al. (11) applied radiomic features,

conventional characteristics and both based on CT to differentiate

thymoma and thymic carcinoma. A study compared 5 different

models based on 13 representative features and a radiomics

nomogram combining the selected clinical variables and

radiomics signature to predict thymoma risk categorization (12).

Besides, radiomics has been successfully employed to predict the

level of PD-L1 in lung and esophageal tumors (13, 14). Zhang et al.

(15) also reported that MRI radiomics could derive promising

biomarker in discriminating PD-1/PD-L1 expression in

intrahepatic cholangiocarcinoma.

In this study, we aimed to investigate the potential of

multiparametric-MRI based radiomics model in evaluating the

expression of PD-1/PD-L1 for TET patients.
02
Methods

Research design and patients involved

The ethical approval for this retrospective study was obtained

from the Ethics Committee of our institute, and the requirement for

written informed consent was waived. All radiological data and

relevant clinical information were reviewed between February 2019

and March 2023. Patients included in this study met the following

criteria: 1) confirmed pathological diagnosis of TET through CT-

guided fine needle biopsy or surgery; 2) underwent mediastinum

MRI with PD-L1 expression level determined by IHC test within

one week interval. Patients with the following characteristics were

excluded: 1) patients with a history of previous treatment for TET;

2) poor MRI image quality for further analysis. In total, a cohort of

124 TET patients with available PD-L1 results were enrolled in this

study. The flowchart illustrating patient enrollment and analysis

scheme is presented in Figure 1.
PD-L1 expression status

PD-L1 expression levels were detected using the IHCmethod in this

study. PD-L1 expression in tumors was determined by the PD-L1 22C3

pharmDx antibody and characterized by the Combined Positive Score

(CPS), which is defined as the sum of PD-L1-positive cells (tumor cells

and tumor-associated immune cells) per 100 tumor cells. The CPS cut-

off values varied for different cancers, with a CPS of ≥1 defining positivity

and a CPS of <1 defining negativity for PD-L1 expression (16). Two

pathologists independently evaluated the PD-L1 expression status, with

any inconsistent results being further analyzed by a senior pathologist.
MRI data acquisition

All the MRI scans were performed using a 3.0 T MR scanner

(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany)

with a 16-channel torso coil. The following sequences were used: 1)

axial T1-weighted imaging with time of repetition [TR]/time of

echo [TE], 140/2.5 ms; 2) axial T2-weighted imaging with fat
frontiersin.org
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suppression (TR/TE, 1200/93 ms). 3) axial diffusion weighted

imaging (DWI) using an echo planar imaging (TR/TE, 4500/63

ms; b value, 0 and 1000 s/mm2), and corresponding ADC maps; 4)

Axial dynamic contrast enhanced MR imaging was performed using

a T1-weighed volumetric interpolated breath-hold examination

with radial acquisition trajectory. Gadolinium-diethylene triamine

pentacetic acid (Magnevist; Bayer Schering Pharma AG, Berlin,

Germany) was intravenously bolus injected via a power injector at

the rate of 4.0 mL/s at the dose of 0.1 mmol/kg, followed by a 20-mL

bolus of saline administered at the same injection rate.
Evaluation of conventional MRI features
and ADC measurement

The conventional image features and ADC measurement were

independently evaluated by two radiologists with 7 and 12 years of

experience in chest radiology, respectively. In case of disagreements, a

third senior chest radiologist with 30 years of experience was consulted

to make the final decision. The evaluation of conventional features

included: 1) presence or absence of cystic component; 2) presence or

absence of internal septal; 3) presence or absence of pleural invasion; 4)

presence or absence of pericardial invasion; and 5) measurement of

ADC values. The evaluation of conventional MRI features and ADC

measurements are shown in SupplementaryMethod S1 and S2. All MR

images were analyzed using a picture archiving and communication

system (Vue PACS, version 12.1.5, CarestreamHealth, Rochester, NY).
Segmentation, feature extraction, and
selection

The radiomics signature workflow is presented in Figure 2. The

volume of interest (VOI) encompassing the tumor was manually
Frontiers in Immunology 03
delineated along the tumor contour on axial T2WI fat-suppression,

axial T1WI without contrast enhanced, and ADC map images using

ITK-SNAP software (version 4.0.0; University of Pennsylvania,

Philadelphia, USA, http://www.itksnap.org/). This segmentation

process included the cystic component of the tumor as well. Two

experienced chest radiologists (with 7 and 11 years of experience

respectively) completed the segmentation process. In case of any

disagreement in determining the tumor mask, a final discussion was

conducted to reach a consensus. Radiomics features were extracted

from these ROIs using an in-house Python software (Pyradiomics

version 2.12; http://pyradiomics.readthedocs.io/en/2.1.2/). A total

of 788 features were extracted from T2WI fat-suppression, T1WI,

and ADC map images individually. These radiomics features

comprised four groups: Shape (n=14), first-order statistics (n=18),

textural features (n=68), and wavelet features (n=688). The textural

features consisted of Gray Level Run Length Matrix (GLRLM), Gray

Level Size Zone Matrix (GLSZM), Gray Level Co-occurrence Matrix

(GLCM), and Gray Level Dependence Matrix(GLDM) features. The

detailed information regarding feature extraction is provided in

Supplementary Table S1.

To ensure the stability of radiomics features extraction, a cohort

of 20 TETs was randomly selected for a repeat segmentation. The

first reader repeated the tumor segmentation after a week, while the

second reader independently performed the segmentation to assess

intra- and inter-class consistency.

All enrolled patients were randomly divided into a training

cohort and a validation cohort at a ratio of 7:3. To address the

variations in index dimensions of the data, the radiomics features

extracted were normalized to standard normal distribution using z-

scores. Consequently, a three-stage methodology was devised to

reduce dimensionality and ascertain resilient attributes. The

features selected for further analysis were those exhibiting high

stability, as indicated by intra- and inter-class correlation coefficient
FIGURE 1

Flowchart depicting the process of patient enrollment and selection for analysis.
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values exceeding 0.80 (17). Furthermore, Pearson’s correction

analysis was utilized to identify redundant and collinear features.

Features exhibiting mutual correlation coefficients greater than 0.9

were subsequently excluded (18). In the third step of the analysis,

we used the least absolute shrinkage and selection operator

(LASSO) regression method to determine which features were the

most closely associated with positive for PD-L1 expression. To

ensure optimal performance, we employed 10-fold cross-validation

for penalty parameter tuning. Thus, the resulting radiomics

signature was created by combining these selected features in a

linear fashion and weighting them according to their respective

coefficients. This allowed us to calculate the corresponding Rad-

score for each patient (18).
Intra- and inter- observer concordance

To assess the stability of radiomics feature extraction, a cohort of 20

PD-L1 positive patients were randomly selected for repeat

segmentation. Reader 1 performed tumor segmentation twice within

one week, while Reader 2 independently conducted the segmentation

to calculate intra- and inter-correlation coefficients (ICC).
Selection of clinical features

We employed statistical tests (chi-squared for categorial variables

and Wilcoxon for continuous variables) with a significant level of p <

0.05 to identify significant clinical features in the training group, as

highlighted in Table 1. Subsequently, we performed univariate logistic
Frontiers in Immunology 04
regression analysis to assess the discriminatory ability of these

features between two groups at a significance level of p < 0.05.

Finally, employing backward stepwise multivariate logistic regression

analysis, we identified independent predictive risk factors and

constructed a predictive nomogram that incorporated both

discriminative clinical features and Rad-score. Additionally,

collinearity analysis using variance inflation factor (VIF) was

conducted, leading to the removal of factors with VIF >10.
Model construction

The accuracy of the radiomics signature was initially evaluated

in the training cohort using the area under the curve (AUC) of the

receiver operating characteristic curve (ROC), and subsequently

validated in an independent validation cohort. To enhance the

clinical applicability of our model, we incorporated patients’ clinical

characteristics and constructed a nomogram-based risk scoring

system. Details regarding the calibration curve and decision curve

analysis (DCA) of the combined radiomics nomogram are shown in

Supplementary Method S3.
Statistical analysis

The chi-square test or Fisher exact test was employed to

compare categorical variables, as appropriate. For the analysis of

continuous variables, either the student’s t-test or Mann-Whitney U

test was utilized. Statistical analyses were performed using SPSS

(version 22.0; IBM) and R software (Version 3.5.1; http://
FIGURE 2

Workflow for the development of radiomics signatures.
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www.Rproject.org). All tests were two-tailed, and a significance level

of p<0.05 was considered statistically significant. Univariable and

multivariable logistic regression analyses were employed to identify

significant risk factors. Following the multivariable analysis, the

remaining variables were considered as potential risk factors and

included in the clinical modeling of the training cohort. The DCA

were employed to assess the clinical impact of the radiomics model,

clinical model, and radiomics-clinical model in the training cohort

using the “dca.R” package. The Delong non-parametric test was

conducted to assess the statistical significance of the differences in

AUC values among different models.
Results

Patient characteristics

The comparation for the differentiation of baseline characteristics

of both the training and validation cohorts are presented in Table 1.

The study population comprised 67 males and 57 females with a mean

age of 53.1 ± 13.1 years (range, 26-80 years). Among these patients, 67

were negative and 57 were positive in PD-L1 expression. The detailed

characteristics are shown in Table 2. The patients were randomly

assigned to the training cohort and the validation cohort using

computer-generated randomization.
Clinical, conventional MRI, and ADC
features

Significant differences were observed in the prediction of PD-L1

expression in TET based on pericardial invasion sign, ADC value,
Frontiers in Immunology 05
and world health organization (WHO) pathological classification.

The relationship between all these conventional features and PD-L1

expression was presented in Table 2 for both the training and

validation cohorts.
Radiomics model performance

Among the 2364 extracted radiomics features, a total of 2086

highly stable features (with inter- and intra-observer ICC values

were 0.872 and 0.834, respectively) were selected for further

analysis. After conducting pearson correlation analysis, an

independent set of 4 features were identified. Subsequently,

utilizing LASSO regression on the training cohort (Figure 3), four

optimal features were chosen to construct the radiomics signature.

The corresponding Rad-score for each patient was then calculated

using the following formula:

Rad� score = 0:2166 − 0:00793 ∗

ADC_wavelet:HHL_gIszm_LargeAreaHighGrayLevelEmphasis+

0:0034 ∗T1WI_log:sigma:2:0:mm:3D_firstorder_Minimum+

0:8575 ∗T1WI_wavelet:LLH_firstorder_Minimum−

0:1540 ∗T1WI_wavelet:HLL_firstorder_RootMeanSquared
Radiomics-clinical combined models

The multivariate logistic regression analysis revealed that the

ADC value, pericardial effusion, and radiomics signature emerged

as independent predictors of PD-L1 expression in the training

cohort (Table 3). The combined model containing three

indicators was shown in the nomogram (Figure 4). The

discriminating efficiency of combined radiomics nomogram was

confirmed in the ROC analysis with an AUC of 0.903 and 0.894 for

the training and validation cohort, respectively (Table 4, Figure 5).

The results of the DCAs for conventional MR imaging, ADC

model, radiomics signature model, and combined radiomics

nomogram in both the combined and validation cohorts can be

observed in Figure 6. The DCA curves demonstrate that the

combined radiomics nomogram exhibits significant clinical

usefulness when considering threshold probabilities exceeding 5%.

This suggests that the combined radiomics nomogram serves as a

dependable clinical tool for predicting PD-L1 status among

TET patients.
Discussion

Regarding immune checkpoints in TETs, considerable attention

has been directed towards PD-1 and its ligand 1, eliciting escalating

interest (2, 19). Previous studies have demonstrated a significant

correlation between high PD-L1 IHC expression and enhanced

response to pembrolizumab in patients with TET (20). A non-

invasive, real-time monitoring approach for PD-L1 expression of
TABLE 1 Baseline characteristics between training and validation group
of TET patients.

Training
Cohort (n=87)

Validation
Cohort (n=37)

P
value

Age (years) 0.322

Mean ± SD 54.84 ± 12.18 51.72 ± 13.87

Gender 0.236

Male/Female 44/43 23/14

Myasthenia Gravis 0.980

Present 12 6

WHO classification 0.871

Low-grade 48 21

High-grade and C 39 16

PD-L1 level 0.997

High (CPS ≥ 1) 40 17

Low (CPS <1) 47 20
TET, thymic epithelial tumor; SD, standard deviation; C, carcinoma; PD-L1, programmed
death receptor-ligand 1; CPS, Combined Positive Score.
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TET capable of capturing spatio-temporal heterogeneity is

imperative. In our study, the radiomics signature model based on

multi-sequence MRI exhibited promising predictive performance in

determining PD-L1 expression in TET. Furthermore, by integrating

additional factors such as peri-cardial invasion sign, ADC value,

and radiomics signature into a comprehensive nomogram, we

observed further enhancement in the efficacy of the combined

model. Consequently, we propose that utilizing a combined

nomogram with radiomics could serve as an effective approach

for predicting PD-L1 expression in TET.

In recent years, relevant studies on radiomics for immune

therapy of tumor have been increasingly reported (7, 21, 22).

Several studies have utilized radiomics methods to investigate the

potential of predicting immune status in thoracic tumors (21, 23).

Tian et al. (21) employed a CT based radiomics signature and

predicted high PD-L1 expression of non-small cell lung cancer and

to deduce clinical outcomes in response to immunotherapy. Zheng

et al. (7) developed and validated a radiomic model based on

contrast-enhanced computed tomography to predict the

expression of PD-L1 in head and neck squamous cell carcinoma.

Additionally, previous studies have demonstrated the robust

performance of MRI-based radiomics biomarkers in predicting

PD-L1 expression levels across various tumor type including

hepatocellular carcinoma, cholangiocarcinoma and breast cancer
Frontiers in Immunology 06
(15, 23, 24). Specifically, our study was the first to employ a multi-

sequence MRI radiomics integrated model for predicting the PD-L1

level in TETs. The observed variations in cut-off values could

potentially be attributed to the diverse spectrum of cancer types

and different imaging methods. In our study, we employed a CPS

threshold of ≥ 1 as the cut-off value for determining PD-L1 positive

expression in patients with TETs, aligning with treatment strategies

established by previous studies (2, 25).

Radiomics has emerged as a burgeoning field that transforms

medical images into an extensive array of high-dimensional

imaging descriptors for oncological tissue (26). In our study, the

radiological signature was constructed using a feature set consisting

of four radiomics features, resulting in an AUC of 0.903 and 0.894 in

the training and validation cohorts, respectively. Our model selected

three distinct wavelet features and one traditional feature extracted

from T1WI images and ADC maps. The wavelet features were

extracted from the decomposed images, which undergo

decomposition through the application of a wavelet transform

filter. GLSZM (zone entropy and gray-level nonuniformity

normalized) mainly describe patterns or the spatial distribution of

voxel intensities. The first-order statistics features provide

information related to the gray-level distribution of the image (7,

27). These features can comprehensively capture the essence of the

original image and effectively extract intratumor heterogeneity
TABLE 2 Comparison of conventional MRI features and radiomics score for TET patients of different PD-L1 expression levels.

Training Cohort (n=87) Validation Cohort(n=37)

PD-L1 (+)
CPS ≥ 1, n=40

PD-L1 (-)
CPS<1, n=47

P value PD-L1 (+)
CPS ≥ 1, n=17

PD-L1 (-)
CPS<1, n=20

P value

Maximum diameter 0.203 0.117

Mean ± SD (cm) 4.87 ± 1.35 3.12 ± 1.89 4.52 ± 1.44 3.37 ± 1,25

Cystic 0.226 0.138

Present 28 27 14 12

Absent 12 20 3 8

Internal septal 0.119 0.286

Present 18 29 9 14

Absent 22 18 8 6

Pleural effusion 0.256 0.478

Present 26 25 10 14

Absent 14 22 7 6

Pericardial effusion 0.001* 0.004*

Present 28 15 14 7

Absent 12 32 3 13

ADC value
(×10-3 mm2/s) 0.890 ± 0.342 1.191 ± 0.357 0.001* 0.923 ± 0.285 1.276 ± 0.442 0.001*

Rad-score 0.73 ± 0.09 -0.40 ± 0.13 <0.001* 0.61 ± 0.04 -0.26 ± 0.15 0.019*
TET, thymic epithelial tumor; PD-L1, programmed death receptor-ligand 1; CPS, Combined Positive Score; SD, standard deviation; C, carcinoma; ADC, apparent diffusion coefficient,
*P value < 0.05.
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TABLE 3 Results of univariate and multivariate logistic regression for predicting PD-L1 expression in TET.

Variables
Univariate regression Multivariate regression

OR (95% CI) P value OR (95% CI) P value

Age 0.977 0.949-1.006 0.125 NA NA NA

Gender 1.408 0.594-3.337 0.437 NA NA NA

Myasthenia Gravis 1.761 0.599-5.178 0.304 NA NA NA

Maximum diameter 0.815 0.654-1.017 0.070 NA NA NA

Cystic component 1.995 0.748-5.318 0.167 NA NA NA

Internal septa 1.786 0.689-4.631 0.233 NA NA NA

(Continued)
F
rontiers in Immunology
 07
A

B

FIGURE 3

The least absolute shrinkage and selection operator (LASSO) regression is employed for the selection of radiomics features and construction of a
signature. (A) In the LASSO model, the penalization parameter l selection used 10-fold cross-validation as the minimum criteria. The log (l) (x-axis)
was plotted against the partial likelihood deviance (y-axis). Dotted vertical lines were drawn at the minimum criteria and the 1-SE criteria. l value of
0.098, with log (l), −2.317 was chosen (1-SE criteria). (B) LASSO coefficient profiles of the radiomics features. Ten-fold cross-validation in the log (l)
sequence was used to draw the vertical line at the value selected; also indicated are 4 features with nonzero coefficients.
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TABLE 3 Continued

Variables
Univariate regression Multivariate regression

OR (95% CI) P value OR (95% CI) P value

Pleural effusion 2.941 1.061-8.143 0.226 NA NA NA

Pericardial effusion 6.103 2.407-11.474 <0.001* 9.706 1.210-17.863 0.032*

ADC value 0.704 0.592-0.837 <0.001* 0.769 0.613-0.965 0.023*

WHO classification 9.755 3.644-16.113 <0.001* 4.305 0.904-10.503 0.067

Rad-score 1.319 1.182-1.472 <0.001* 1.406 1.160-1.703 <0.001*
F
rontiers in Immunology
 08
TET, thymic epithelial tumor; PD-L1, programmed death receptor-ligand 1; OR, odds ratio; CI, confidence interval; ADC, apparent diffusion coefficient, *P value < 0.05.
FIGURE 4

Nomogram of radiomics-clinical combined model for predicting PD_L1 expression level in TET.
TABLE 4 The performance of radio_clinical combined model, radiomics model, ADC model and conventional MRI sign for the differentiating PD_L1
expression level in TET.

AUC (95% CI) Sensitivity (%) Specificity (%)

Training Cohort (n = 87)

Radio_Clinical Model 0.903 (0.821-0.956) 77.50 90.36

Radiomics model 0.889 (0.803-0.946) 89.60 78.72

ADC model 0.844 (0.751-0.913) 85.00 74.41

Pericardial effusion sign 0.712 (0.605-0.804) 70.00 72.34

Testing Cohort (n = 37)

Radio_Clinical Model 0.894 (0.716-0.956) 82.35 85.00

Radiomics model 0.865 (0.712-0.955) 93.21 80.00

ADC model 0.816 (0.727-0.913) 89.71 70.30

Pericardial effusion sign 0.787 (0.593-0.886) 82.35 70.00
ADC, apparent diffusion coefficient; PD-L1, programmed death receptor-ligand 1; TET, thymic epithelial tumor; CI, confidence interval.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1555530
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2025.1555530
information (28). Zhou et al. (18) have reported a radiomics

signature based on MRI imaging incorporating 7 wavelet features

in intrahepatic cholangiocarcinoma stratification, suggesting that

wavelet transformation serves as a multiscale approach enabling

comprehensive investigation of tumor biological characteristics and

spatial heterogeneity.

According to the literature (29), a substantial proportion of

tumors derived from patients with thymoma and thymic carcinoma

exhibit expression of both PD-L1 and PD-1. Additionally, the PD-
Frontiers in Immunology 09
L1 positive group exhibited a higher proportion of high-grade TET

patients compared to the negative group in our observation. In the

previous study, Padda et al. (30) evaluated PD-L1 expression and

also observed a positive correlation between higher PD-L1

expression levels and advanced WHO histologic grades (B2, B3,

C), as well as an association with worse overall survival. Katsuya

et al. (31) reported a significantly higher expression of PD-L1 in

thymic carcinoma compared to thymoma. Finally, we developed a

radiomics nomogram by integrating the radiomics signature, ADC
FIGURE 6

Decision curve analysis for conventional MRI, apparent diffusion coefficient, radiomics signature model, and combined radiomics nomogram for the
combined training and validation cohort.
FIGURE 5

ROC curve of combined model, radiomics model, ADC and pericardial effusion sign for discriminating different PD_L1 expression (a training cohort,
b validation cohort).
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value, and peri-cardial invasion sign, which exhibited improved

calibration and discriminating efficiency in both training and

validation cohorts. Several studies have demonstrated a positive

correlation between higher PD-L1 expression and increased tumor

aggressiveness in TET (25–32). Furthermore, a meta-analysis

revealed significantly elevated levels of PD-L1 positivity in

thymoma type B2/B3 or thymic carcinoma compared to

thymoma types A/AB/B1 (5). This may elucidate the decreased

ADC value and presence of pericardial invasion sign observed in

conventional MRI of the PD-L1 positive group in TET.

Our study had some limitations and prospects. Firstly, our

radiomics analysis was conducted on a single machine at a single

institution. To provide high-level evidence for clinical practice, external

validation in a larger sample from multiple institutions is necessary.

Secondly, the cohort size, particularly the limited number of PD-L1

positive cases, was relatively small in this study. Thirdly, we only

included a broad group of TET patients; however, future studies

focusing on specific pathological subgroups of TET may yield more

significant findings. Fourthly, this study focuses on the validation of PD-

L1 prediction methodology. It mainly explores the feasibility of using

MRI to predict PD-L1 expression and provides a non-invasive and rapid

PD-L1 status evaluation tool for clinical practice to aid decision-making

in precision diagnosis and treatment. In the subsequent prospective

studies, we will include patients with high homogeneity and perform

prognostic correlation analysis on the model.
Conclusions

In our study, we have developed a radiomics signature based on

multi-parametric MRI as a non-invasive and reliable method for

predicting the expression level of PD-L1 in TET patients.

Additionally, we have established a nomogram model that

integrates the radiomics signature with clinical data, ADC values,

and conventional MRI factors to enable personalized evaluation of

PD-L1 expression levels in TET patients.
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