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Big data analysis and machine
learning of the role of
cuproptosis-related long non-
coding RNAs (CuLncs) in the
prognosis and immune
landscape of ovarian cancer
Mingqin Kuang1†, Yueyang Liu2†, Hongxi Chen2, Guandi Chen2,
Tian Gao2* and Keli You2*

1Gynecology and Oncology Department of Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China,
2Department of Gynecology, Guangdong Provincial People’s Hospital (Guangdong Academy of
Medical Sciences), Southern Medical University, Guangzhou, China
Background: Ovarian cancer (OC) is a severe malignant tumor with a significant

threat to women’s health, characterized by a high mortality rate and poor

prognosis despite conventional treatments such as cytoreductive surgery and

platinum-based chemotherapy. Cuproptosis, a novel form of cell death triggered

by copper ion accumulation, has shown potential in cancer therapy, particularly

through the involvement of CuLncs. This study aims to identify risk signatures

associated with CuLncs in OC, construct a prognostic model, and explore

potential therapeutic drugs and the impact of CuLncs on OC cell behavior.

Methods:We analyzed ovarian cancer data (TCGA-OV) from the TCGA database,

including transcriptomic and clinical data from 376 patients. Using Pearson

correlation and LASSO regression, we identified 8 prognostic CuLncs to

construct a risk signature model. Patients were categorized into high- and

low-risk groups based on their risk scores. We performed survival analysis,

model validation, drug sensitivity analysis, and in vitro experiments to assess

the model’s performance and the functional impact of key CuLncs on OC cell

proliferation, invasion, and migration.

Results: The prognostic model demonstrated significant predictive power, with

an area under the curve (AUC) of 0.702 for 1-year, 0.640 for 3-year, and 0.618 for

5-year survival, outperforming clinical pathological features such as stage and

grade. High-risk OC patients exhibited higher Tumor Immune Dysfunction and

Exclusion (TIDE) scores, indicating stronger immune evasion ability. Drugs such

as JQ12, PD-0325901, and sorafenib showed reduced IC50 values in the high-

risk group, suggesting potential therapeutic benefits. In vitro experiments

revealed that knockdown of LINC01956, a key CuLnc in the risk signature,

significantly inhibited the proliferation, invasion, and migration of OC

cells (P<0.05).
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Conclusion: Our study identified a prognostic risk model based on CuLncs and

explored their potential as therapeutic targets in OC. The findings highlight the

importance of CuLncs in OC prognosis and immune response, providing new

insights for future research and clinical applications.
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Introduction

Ovarian cancer(OC) is a severe malignant tumor that poses a

significant threat to the life and health of women (1–4). According

to statistical data released by the American Cancer Society, it is

projected that in 2024, the United States will diagnose 2,001,140

new cases of ovarian cancer in women, with an estimated 611,720

mortality cases in the same year, and a five-year survival rate of

approximately 50% (5). The traditional treatment methods for OC

mainly include cytoreductive surgery and chemotherapy regimens

based on platinum drugs, yet the prognosis for patients remains

grim (6–9). This stark clinical reality underscores the urgent need

for preclinical models (10, 11). Models constructed from data

extracted from actual ovarian cancer cases in the TCGA database

can provide scientific tools for the design of new treatment

strategies and the exploration of potential targets.

Cuproptosis is a recently discovered way of cells death (12). It

happens when copper ions pile up inside cells. This leads to a

clumping of certain proteins in the mitochondria—specifically, the

acylated lipoproteins. Additionally, it causes a shaking up of iron-

sulfur cluster proteins. All of this culminates in cell death (13). Since

the concept of cuproptosis was introduced, numerous researchers

and research institutions have been committed to exploring its

application in cancer therapy and have achieved significant

progress, especially in the field of cuproptosis-related long non-

coding RNAs (CuLncs) (14–16). Studies have shown that the

downregulation of lncRNAs such as WARS2-AS1 and MKLN1-

AS can enhance the sensitivity of cells to elesclomol-induced

cuproptosis (17). Additionally, miR-21-5p enhances the

proliferation and invasiveness of tumor cells through the

modulation of FDX1 expression. And FDX1 is a factor linked to

unfavorable outcomes in individuals diagnosed with clear cell renal

cell carcinoma. Subsequent in vitro studies have demonstrated that

the downregulation of miR-21-5p markedly impedes the oncogenic

expansion and metastatic potential of renal carcinoma cell lines

ACHN and OSRC-2 (18). Although there are studies on CuLncs in
ain non coding RNA;
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the field of OC, most research focuses on constructing prognostic

models based on the expression levels of CuLncs, rather than

validating specific lncRNAs at the cellular level (19–22). In

addition, there is a close relationship between CuLncs and the

cancer immune microenvironment, which is evident in various

types of cancer, especially in triple-negative breast cancer (TNBC).

Studies have shown that in TNBC, CuLncs also demonstrate

significant prognostic value and the ability to regulate the

immune microenvironment. One such study identified 111

lncRNAs associated with cuproptosis through co-expression

analysis and constructed a prognostic model that included

CuLncs such as MELTF-AS1. The results showed that in the

high-risk group, there was an increased infiltration of

immunosuppressive cells in the tumor tissue, while patients in the

low-risk group had significantly prolonged survival times (23). This

indicates that CuLncs can not only predict the prognosis of TNBC

patients but also influence tumor progression by modulating the

immune microenvironment. The potential applications of CuLncs

in immunotherapy have also attracted attention. For example,

certain CuLncs may affect the response to immunotherapy by

regulating the expression of immune checkpoint genes (24).

Therefore, investigating the prognostic and immune landscape

associations between CuLncs and ovarian cancer is of great

significance for improving the prognosis of OC patients.

In this study, we aim to identify risk signatures by analyzing the

expression differences of CuLncs in OC. And constructing and

validating a prognostic model for OC patient survival outcomes by

using machine learning analysis methods. Additionally, this study

explores potential therapeutic drugs for patients in different

prognostic groups and ultimately verifies the impact of key

CuLncs on the proliferation, invasion, and migration capabilities

of OC cells through a series of in vitro cellular experiments.
Materials and methods

Study design

Figure 1 delineates the overall design of this study (Figure 1).

Ovarian cancer data (TCGA-OV) were downloaded from TCGA

(the cancer genome atlas), encompassing transcriptomic and

clinical data from 439 ovarian cancer patients. To enhance the

robustness of the prognostic model, patients lacking survival data
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were excluded (n=63), resulting in the inclusion of data from 376

ovarian cancer patients for analysis. 8 prognostic CuLncs were

identified as risk signatures through Pearson correlation analysis

and LASSO regression. Subsequently, a predictive model was

formulated utilizing this risk signatures, enabling the

categorization of participants into distinct groups characterized

by high and low risk. Survival analysis, model validation, gene set

enrichment analysis, and drug sensitivity analysis were performed

within these risk groups. Furthermore, the impact of key CuLncs on

the proliferative, migratory, and invasive capabilities of OC cells was

further validated in vitro.
Defining CuLncs and building a
prognostic model

The transcriptomic data of the 376 ovarian cancer patients

included in the study were annotated based on GENCODE Release

29 (GRCh38.p12), resulting in 16,876 lncRNAs. Concurrently, 16

copper death-related genes (CRGs) were identified through

literature review, including ATP7A (25), PDHB (26), DLAT (27),

LIPT2 (28), DBT (29), NFE2L2 (30, 31), NLRP3 (32), CDKN2A
Frontiers in Immunology 03
(33), DLST (34), LIAS (35), FDX1 (36, 37), DLD (38), PDHA1 (39),

GCSH (40), SLC31A1 (41), and MTF1 (42). In R Studio, relevant R

packages such as limma, dplyr, ggalluvial, and ggplot2 were loaded.

Employing a threshold of a Pearson correlation coefficient>0.4 and

P-value< 0.001, an analysis was performed to correlate the

aforementioned lncRNAs with CRGs, thereby pinpointing

CuLncs. Subsequently, the identified CuLncs data were subjected

to univariate regression analysis with the survival time data from

TCGA-OV to determine the prognostic CuLncs associated with

ovarian cancer survival time. Finally, a risk signature composed of 8

prognostic CuLncs was selected through LASSO regression analysis

and cross-validation to construct the prognostic model. For each

OC patient, a prognostic score was derived from the expression

levels of the CuLncs within the risk signature, along with their

respective coefficients, according to the subsequent equation:

Risk score ¼on
i coef (i)� ExpðiÞ

Subsequently, individual prognostic risk scores were

determined for each patient employing the designated risk

computation formula, with the median score serving as the

demarcation point to segregate patients into high- and low-risk

prognostic categories.
FIGURE 1

Study flow chart. TCGA-OV, Ovarian cancer data of The Cancer Genome Atlas database. lncRNAs, long noncoding RNAs. CRGs cuproptosis-related
genes. CuLncs, cuproptosis-related lncRNAs.
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Survival analysis

Initially, the clinical data of 376 OC patients were organized,

including their age, International Federation of Gynecology and

Obstetrics (FIGO) stage, and grade. Subsequently, in R Studio, the

caret package was loaded to randomly divide the 376 ovarian cancer

patients into the training set (n=188) and the test set (n=188),

followed by a chi-square test. Then, prognostic risk scoring and

survival analysis were performed for both the training and

validation sets. Utilizing the risk scores obtained from the

signature, patients with OC were categorized into high- and low-

risk groups. Ultimately, the survminer package was deployed to

generate the risk score curves, survival status scatter plots, and

Kaplan-Meier survival curves for both the training and test sets.
Validation of prognostic
model performance

The prognostic risk score’s association and independence were

examined through univariate and multivariate regression analyses.

Subsequently, to validate the prognostic model’s capabilities in this

study, time-dependent ROC curves were employed to assess its

predictive power at 1, 3, and 5 years. Additionally, the

discriminative ability of the prognostic risk score was compared

with stage and grade using ROC curves. Furthermore, a

concordance index test was conducted. A nomogram was

constructed based on the age of OC patients, FIGO stage, grade,

and prognostic risk score, and the calibration of this nomogram was

evaluated using calibration curves.
Drug sensitivity analysis

In R studio, the random seed was set to 12345, and necessary

packages were loaded, including the limma package, ggpubr package,

pRRophetic package, and ggplot2 package. All gene expression data

files for TCGA-OV, as well as the prognostic CuLncs data for the

training and validation sets, were read. Various drug information

from the “pRRophetic” package and risk scores for each sample were

extracted. A loop was conducted to screen the 50% inhibiting

concentration (IC50) for each drug for every sample, using P<0.001

as the filtering criterion for drug sensitivity. The drug sensitivity

results were then merged with the risk score results into a new data

matrix. The ggboxplot function was employed to ascertain the

disparities in drug responsiveness between the high- and low-risk

prognostic groups for each pharmaceutical agent, subsequently

generating the corresponding boxplots.
Prognostic analysis of high and low
expression of CuLncs in the risk signature

The expression levels of CuLncs in the risk signature and the

survival data of OC patients, including survival time and status, were
Frontiers in Immunology 04
extracted from TCGA-OV. Subsequently, patients were categorized

into high and low expression groups based on the median expression

level of CuLncs within the risk signature. Kaplan-Meier survival

curves were plotted using the survminer package.
Cell culture

Human ovarian cancer cell lines A2780 and SKOV3, sourced

from the Chinese Academy of Sciences (Shanghai) Cell Bank, are

propagated in Dulbecco’s Modified Eagle Medium with high

glucose (HyClone), supplemented with 10% fetal bovine serum

(Thermo). These cells are nurtured in a humidified chamber at a

temperature of 37°C and a CO2 concentration of 5%.
Real-time quantitative PCR (RT-qPCR)

Total RNA was extracted from A2780 and SKOV3 cells 48

hours post-siRNA transfection using the RNeasy Mini Kit (Qiagen).

RNA quantity and purity were assessed using a NanoDrop 2000

spectrophotometer (Thermo Fisher Scientific), ensuring an A260/

A280 ratio of 1.8–2.0. First-strand cDNA was synthesized from 1 mg
of RNA using the High-Capacity cDNA Reverse Transcription Kit

(Applied Biosystems) with the following conditions: 25°C for 10

min, 37°C for 120 min, and 85°C for 5 min. Primers for LINC01956

and GAPDH were designed using Primer3 or Primer-BLAST, and

RT-qPCR was performed using PowerUp SYBR Green Master Mix

(Thermo Fisher Scientific) on a StepOnePlus Real-Time PCR

System (Applied Biosystems). Each 20 ml reaction contained 10 ml
of master mix, 1 ml of each primer (10 mM), and 2 ml of cDNA
template. Cycling conditions were 95°C for 10 min, followed by 40

cycles of 95°C for 15 s and 60°C for 1 min. Relative expression levels

of LINC01956 were calculated using the 2^-DDCt method,

normalized to GAPDH.
Screening siRNA

Initially, A2780 and SKOV3 cells were cultured to reach 70-80%

confluence. Subsequently, 3 siRNAs (siRNA-1, siRNA-2, siRNA-3)

were transfected into the cells using a transfection reagent, with

triplicates for each siRNA. A control group consisting of cells

without siRNA transfection was also included. After a 48-hour

post-transfection period, the cells were collected for real-time

quantitative PCR (qPCR) to assess the levels of LINC01956.
Cell Counting Kit-8 Assay

Using M5 HiPer Cell Counting Kit (CCK) (MF128-02,

polymery) Bio-Tek Enzyme-Linked Immunosorbent Assay

(ELISA) Reader ELX800. After trypsinization and counting, cells

were adjusted to a concentration of approximately 30,000 cells/ml.

A2780 and SKOV3 cells were seeded into a 96-well plate at 100 ml of
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cell suspension per well, containing about 3,000 cells per well, with

triplicates for each sample. The CCK-8 assay reagent was

introduced into each well for a 4-hour incubation period. Optical

density at 450 nm was quantified utilizing a microplate

spectrophotometer at time points of 0, 24, 72, and 96 hours

post-seeding.
Transwell assay for cell invasion

The SKOV3-NC group, SKOV3 treated group, A2780-NC

group, and A2780 treated group were subjected to the Transwell

assay to evaluate their invasive capabilities. A total of 3,000 cells per

cohort were inoculated into the apical chamber of the Transwell

inserts, while the basal chamber was filled with RPMI-1640 medium

enriched with FBS. After a 48-hour cultivation period, cells

adhering to the upper side of the membrane were carefully

eradicated with a cotton swab, followed by the fixation and

staining of the cells that had traversed to the lower membrane

surface using crystal violet. Once dried, the stained cells were

examined under a light microscope. Using Mingmei Microscopic

Digital Imaging System (Mingmei) and 6-well Plate (Corning).
Scratch test for assessing cell migration

Cells from each experimental group, during their logarithmic

growth phase, were resuspended in DMEM medium supplemented

with 10% FBS and seeded into a 6-well plate. Upon achieving

approximately 80% confluence, a linear incision was created at the

well’s base using the tip of a 20 mL sterile pipette. Subsequently, the wells
were thoroughly rinsed twice with PBS to remove debris, and then

treated with mitomycin C (20 mg/mL) in FBS-free medium to inhibit

cell proliferation and its influence on the experimental results. Images

documenting the wound closure were captured at 0 and 24 hours post-

injury. The area of the scratch was quantified using an inverted

microscope, with S0 denoting the initial incision and S1 indicating

the area 24 hours post-wounding. The cell migration ability was

calculated using the formula: Migration rate = ((S1 - S0)/S0) × 100%.

Using 8.0 m m Transwell chamber (Corning), 24 well plate

(Corning), cotton swab, fully cultured, serum-free medium (Gibco),

trypsin (Gibco), PBS (Gibco), Matrigel (Corning), 4%

paraformaldehyde (Zhongshan Jinqiao), crystal violet staining

solution (Jinclone).
Statistical analysis

The experimental data are depicted as the mean ± standard

deviation and were subjected to analysis using SPSS 21.0 software.

For assessing differences in quantitative data between two groups, a

two-sample t-test was applied; whereas for evaluating quantitative
Frontiers in Immunology 05
data across three or more groups, a one-way ANOVA was

employed. Graphical representations and charts were crafted

using GraphPad Prism (version 9.5) and the R programming

language (version 4.1.3). Throughout this study, each experiment

was performed with a minimum of three biological replicates, and

statistical significance was determined at a P-value threshold of less

than 0.05.
Results

Identification of prognostic CuLncs in
ovarian cancer

We randomly divided 376 OC patients from TCGA-OV into

training and test sets, as shown in Supplementary Table 1, with no

clinical characteristics differences between the two datasets,

indicating that the study was conducted with random and

rational grouping (Supplementary Table 1). As depicted in

Figure 1, we obtained 16,876 lncRNAs from TCGA-OV and

identified 248 CuLncs through Pearson correlation analysis with

16 CRGs. This study utilized a Sankey diagram to illustrate the

relationship between the 248 CuLncs and 16 CRGs (Supplementary

Figure 1A). Subsequently, a COX correlation analysis was

conducted between the 248 CuLncs and the survival time of OC

patients, identifying 16 prognostic-related CuLncs with a p-value

cutoff of less than 0.05, and their hazard ratios (HRs) and values

were displayed using a forest plot (Supplementary Figure 1B).

Notably, LINC01956 had an HR and 95% CI of 3.028 (1.098-

8.352), suggesting that LINC01956 could be a contributory factor

linked to unfavorable outcomes in OC patients.
Constructing and validating the prognostic
risk model

Utilizing the 16 CuLncs associated with prognosis, we

subsequently implemented Lasso Cox regression analysis coupled

with 10-fold cross-validation within the training set to ascertain risk

scores for the development of the prognostic model (Supplementary

Figures 1C, D). The prognostic risk score for each participant was

derived from the coefficient values associated with the risk signatures

outlined in the supplementary material (Supplementary Table 2),

with stratification into high- and low-risk groups predicated on the

median risk score. Survival analysis in the training set indicated that

as the risk score increased, the survival time of OC patients decreased,

with the high-risk group having a significantly shorter survival time

(Figures 2A, C, E P<0.001). Similarly, a similar conclusion was

reached in the test set (Figures 2B, D, F P=0.008). This suggests

that the risk score can not only act as a predictive marker for the

survival duration of OC patients but also help identify patient groups

with different survival probabilities.
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Testing the prognostic
model’s performance

The ROC curve and concordance index analysis were utilized to

assess the discriminative power of the prognostic model, revealing

the area under the curve (AUC) to be 0.702 for 1-year, 0.640 for 3-

year, and 0.618 for 5-year survival (Figure 3A). Further analysis

indicated that compared to clinical pathological features such as

stage and grade, the risk score model demonstrated stronger

predictive power (AUC=0.702, Figure 3B). Similar conclusions

were drawn from the concordance curves (Figure 3C).

Furthermore, both univariate and multivariate regression analyses

were applied to this prognostic model, establishing the risk score as

an independent predictor of OC patient outcomes. (Supplementary

Figures 2A, B). This study also constructed a nomogram based on

the age, stage, grade, and risk score of OC patients (Supplementary

Figure 2C). Calibration curves indicated that the nomogram was

fairly accurate in predicting the 1-year, 3-year, and 5-year survival

times of OC patients (Figure 3D).
Frontiers in Immunology 06
JQ12, PD-0325901, and sorafenib may be
potential therapeutic agents for high-risk
OC patients

Figure 4 illustrated the IC50 values of different drugs for both

high and low-risk groups. Notably, the drugs JQ12 (Figure 4A,

P=0.000019), PD-0325901 (Figure 4B, P=0.00022), and sorafenib

(Figure 4C, P=0.0000051) demonstrated reduced IC50 values

within the high-risk cohort, implying that patients in this group,

who have a pessimistic prognosis, might derive therapeutic

advantages from such pharmaceuticals. However, further relevant

trials are needed to validate these findings.
Immune landscape of OC patients in high
and low risk groups

This study evaluated the differences in Tumor Immune

Dysfunction and Exclusion (TIDE) scores between high-risk and
FIGURE 2

Development of the CuLncs prognostic signature for OC. The risk score of prognostic signature (A, B) and survival status (C, D) in the training set and
test set. Kaplan−Meier survival curves of OS [(E) P<0.001, (F) P=0.008] in the high- and low-risk groups of OC patients in the training set and test set.
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low-risk groups of OC patients. As shown in the figure, the high-risk

OC group exhibited higher TIDE scores, indicating a stronger ability to

evade the immune system. This suggests that they may be less

responsive to immunosuppressive drug treatments (Supplementary

Figure 3A, p<0.05). Additionally, this study investigated the

differences in immune activity between the high-risk and low-risk

populations. The results revealed significant differences in immune

activity among these groups (Supplementary Figure 3B). Specifically,

the high-risk group showed higher levels of gene sets associated with

MHC I expression (P<0.001), Type I interferon (INF) response, pro-

inflammatory activity, and cytolytic activity (P<0.01) compared to

Type II INF response, T cell co-inhibition, and APC co-inhibition

(P<0.05). Notably, the expression of Type I interferon was significantly

lower in the high-risk group compared to the low-risk group.
Elevated LINC01956 expression correlates
with adverse outcomes in individuals
with OC

To further determine which CuLncs in the risk signature play a

key role in leading to poor prognosis in OC patients, we conducted
Frontiers in Immunology 07
survival analyses for each of the 8 CuLncs in the risk signature

(Figure 5). The results showed that OC patients with high

expression of LINC01956 had a worse prognosis (Figure 5A,

P=0.013), which corroborates the strong risk factor for OC

prognosis mentioned earlier in Supplementary Figure 1B. In

contrast, high expression of AC025287.2 and SUCLG2-AS1 were

protective factors for OC prognosis (Figure 5B, P=0.003, Figure 5H,

P=0.041). Therefore, LINC01956 was selected as the subject for

subsequent experimental research.
Knockdown of LINC01956 inhibits the
proliferation of A2780 and SKOV3 cells

Firstly, we selected three siRNAs to treat human OC cells A2780

and SKOV3, and found that siRNA1 and siRNA2 were more effective

than siRNA3, hence siRNA1 and siRNA2 were used for subsequent

experimental studies (Figures 6A, B P<0.05). The primer sequences of

this study were detailed in Supplementary Table 3. In human OC cells

A2780 and SKOV3, we observed a significant reduction in the

proliferative capacity of both cell lines when LINC01956 was

knocked down (Figures 6C, D P<0.01).
FIGURE 3

Evaluation of the accuracy of the CuLncs prognostic signature in OC. ROC curve of the model for predicting 1-year, 3 year, and 5-year OS (A). ROC curve of
the model considering the risk score and clinical characteristics (B). C-index curve of the prognostic signature (C). Calibration curves for nomogram (D).
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Impact of LINC01956 knockdown on cell
invasion and migration

The Transwell assay revealed that the invasive capabilities of the

A2780 group (Figures 7A, B) and the values observed in the SKOV3

group (Figures 7C, D) were markedly reduced compared to the blank

control group, with statistical significance (P<0.05). The scratch test

demonstrated that, 24 hours post-scratch, the migration ability, cell

count, and confluence of the A2780 group (Figures 7E, F) and SKOV3

group (Figures 7G, H) with knockdown of LINC01956 were

significantly reduced compared to the blank control group (P<0.05).
Discussion

In this study, we delved into the role of CuLncs in OC, with the

aim of identifying potential prognostic biomarkers and therapeutic
Frontiers in Immunology 08
targets. Through comprehensive analysis of the transcriptome data

from 376 OC patients, we identified a set of 8 CuLncs that served as

risk signatures. Our findings revealed that the high-risk group, as

defined by these CuLncs, exhibited significantly poorer survival

rates compared to the low-risk group. Notably, we discovered that

drugs such as JQ12, PD-0325901, and sorafenib showed promising

sensitivity in the high-risk group, suggesting they may serve as

effective treatment options for patients with poor prognoses. In

addition to these clinical insights, we conducted in vitro

experiments to investigate the functional role of LINC01956, one

of the key CuLncs identified in our risk signature. We found that the

knockdown of LINC01956 significantly inhibited the proliferation,

invasion, and migration of OC cells, providing a cellular basis for its

role in the progression of OC.

Cuproptosis, as a novel cellular death mechanism, has become a

hot topic of research in recent years (43–46). Numerous studies

have indicated that genes associated with cuproptosis play a
FIGURE 4

Drug sensitivity analysis. OC patients with a high risk score had a higher IC50 value for many therapeutic drugs than patients with a low risk score (A–I).
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significant role in the onset and progression of cancer (47–50). For

instance, Sun and colleagues utilized the TCGA-OV dataset as a

training group to construct a prognostic classification system based

on CRGs for predicting the prognosis of OC patients. This model

was validated on the GSE26193 dataset, confirming a significant

negative correlation between high-risk scores and patients’ overall

survival (OS) (P<0.0001) (51). Additionally, research has found that

risk scores constructed based on cuproptosis-related genes correlate
Frontiers in Immunology 09
with immune checkpoint molecules, such as PD-L1, CTLA4,

targeted therapy-related genes, cancer stem cell characteristics,

and sensitivity to chemotherapy and targeted drugs (52). In the

field of lncRNA, CuLncs are also increasingly becoming the focus of

research (19, 53). Guo and colleagues built a model to predict the

survival time of OC patients based on CuLncs, but have not yet

experimentally verified the associated lncRNAs in vitro (54). Wang

and colleagues established a prognostic model for OC using 6
FIGURE 5

Survival analysis. The Kaplan-Meier survival curves for each CuLnc in the risk signature (A-H).
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CuLncs and validated the expression differences of the key lncRNA

CTC.246B18.8 in OC cell lines and normal ovarian epithelial cells

(55). Li and colleagues, based on the prognostic model, knocked

down key lncRNAs and used the CCK8 method to assess their

impact on the proliferative capacity of OC cells (56). Sorafenib is a

well-recognized multikinase inhibitor that works by targeting

multiple kinases involved in tumor growth and angiogenesis,

thereby reducing the tumor burden. It has demonstrated efficacy

in various types of cancers (57, 58). PD-0325901 is a MEK inhibitor,

and its mechanism involves inhibiting the MEK pathway, which is

often dysregulated in cancer cells, leading to reduced cell

proliferation and survival (59). There are currently no relevant

studies on JQ12 in the context of OC (ovarian cancer). Although the

specific applications of these drugs in OC are still under

investigation, their roles in other cancers suggest that they may be

effective in treating OC, particularly when used in combination with

other therapies. Building upon the work of predecessors, this study

has not only constructed a prognostic model with high predictive

accuracy and explored potential therapeutic drugs, but more

importantly, through CCK8 assays, Transwell assays, and scratch

assays, our study has validated that the suppression of LINC01956

markedly impedes the proliferative, invasive, and migratory

capacities of OC cells. This discovery introduces a novel potential
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therapeutic target for the diagnosis and management of OC,

highlighting the substantial promise of CuLncs in OC research.

It must be acknowledged that this study does have certain

limitations. First, the study is confined to 376 OC patients, which is

a relatively small sample size. The data are entirely derived from the

TCGA-OV database, which may introduce selection bias. Second,

although the study has identified several CuLncs associated with OC

prognosis and validated their effects on cell proliferation, invasion,

and migration in vitro, the in vivo relevance of these findings remains

to be explored. Animal models or clinical trials are necessary to assess

the therapeutic potential of targeting these CuLncs in a more

physiologically relevant context. Third, this study focuses on the

correlation between CuLncs and OC prognosis but does not delve

deeply into the underlying molecular mechanisms. Future research

should aim to elucidate the specific pathways through which these

CuLncs influence cancer progression, including their interactions

with other cellular components and their role in modulating the

tumor microenvironment. Lastly, the drug sensitivity analysis

identifies potential therapeutic agents for high-risk OC patients, but

these findings are based on computational predictions. Further

experimental validation, including in vitro and in vivo studies, is

required to confirm the efficacy and safety of these drugs in

treating OC.
FIGURE 6

siRNA Screening and CCK8 Assay. siRNA-1, siRNA-2, and siRNA-3 were all effective in knocking down LINC01956 in A2780 [(A), P< 0.05] and SKOV3
[(B), P< 0.05] cells. A2780 [(C), P< 0.01] and SKOV3 [(D), P< 0.01] cells, with knocked-down expression of LINC01956, exhibited suppressed cell
proliferation capabilities. *Indicates a p-value of 0.05, **indicates a p-value of 0.01.
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Future research should build on the findings of this study and

focus on several key areas. First, conducting validation studies in

independent cohorts will help confirm the prognostic value of the

identified CuLncs. Second, exploring the molecular mechanisms

underlying the role of CuLncs in OC progression is crucial.

Additionally, investigating the role of CuLncs in the tumor

microenvironment, particularly their impact on immune cell
Frontiers in Immunology 11
infiltration and function, could reveal new therapeutic targets for

immunotherapy. Third, further in vivo studies using animal models

are needed to validate the therapeutic potential of targeting CuLncs.

In summary, while this study provides a promising foundation for

understanding the role of CuLncs in OC, further research is needed

to fully realize their potential in improving the prognosis and

treatment of this devastating disease.
FIGURE 7

Invasion and migration assays of A2780 and SKOV3 cells. A2780 and SKOV3 cells with knocked-down expression of LINC01956 showed inhibited
abilities in cell invasion [(A–D), P< 0.05] and migration [(E–H), P< 0.05]. * means P<0.05.
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Conclusion

To summarize, our study successfully identified a prognostic

risk model based on CuLncs in ovarian cancer, demonstrating

significant predictive power and potential therapeutic

applications, while highlighting the role of CuLncs in immune

response and tumor progression.
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SUPPLEMENTARY FIGURE 1

Defining the CuLncs with prognostic significance in OC. A total of 248
CuLncs were identified in OC (A). The forest plot revealed CuLncs with

significant prognostic value (B). The 10-fold cross-validation of variable
selection in the least absolute shrinkage and selection operator (LASSO)

algorithm (C). Correlation of lncRNAs with CRGs in the prognostic
signature (D).

SUPPLEMENTARY FIGURE 2

Testing the Prognostic Model’s Performance The results of both univariate

and multivariate analysis of independent prognostic factors were analyzed to
determine the risk scores for OS (A, B). A nomogram considering

clinicopathological variables and risk scores predicts OS in OC (C).

SUPPLEMENTARY FIGURE 3

Immune Landscape of OC Patients in High and Low Risk Groups The Tumor
Immune Dysfunction and Exclusion (TIDE) scores revealed that the high-risk

OC group exhibited significantly higher TIDE scores (A). The heatmap of
immune activity indicated that the high-risk OC group had higher expression

levels of gene sets associated with MHC I expression (p< 0.001), Type I
interferon (INF) response, pro-inflammatory activity, and cytolytic activity (p<

0.01) compared to other immune-related pathways (p< 0.05) (B).
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