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Background: T-cell receptor (TCR) repertoires provide insights into tumor

immunology, yet their variations across digestive system cancers are not well

understood. Characterizing TCR differences between colorectal cancer (CRC)

and gastric cancer (GC), as well as developing machine learning models to

distinguish cancer types, metastatic status, and disease stages are crucial for

guiding clinical practices.

Methods: A cohort study of 143 tumor patients (96 CRC, 47 GC) was conducted.

High-throughput TCR sequencing was performed to capture TCR beta (TRB),

delta (TRD), and gamma (TRG) chain data. Tissue-specific patterns in TCR

repertoire features, such as V-J gene recombination, complementarity-

determining region 3 (CDR3) sequences, and motif distributions, were

analyzed. Multi-layer machine learning-based diagnostic models were

developed by leveraging motif-based feature and deep learning-based feature

extraction using ProteinBERT from the 100 most abundant CDR3 sequences per

sample. These models were used to differentiate CRC from GC, distinguish

between primary and metastatic CRC lesions, and predict disease stages in CRC.

Results: Tissue-specific differences in TCR repertoires were observed across

CRC, GC, and between primary and metastatic lesions, as well as across disease

stages in CRC. Distinct V-J gene recombination patterns were identified, with

CRC showing enrichment in TRBV*-TRBJ* combinations, while GC exhibited

higher levels of gdT-cell-related recombination. Primary andmetastatic lesions of

CRC patients displayed distinct V-J recombination preferences (e.g., TRBV7-9/

TRBJ2-1 higher in metastatic; TRBV20-1/TRBJ1-2 higher in primary) and CDR3

sequence differences, with metastatic having shorter TRG CDR3 lengths (p-value

= 0.019). Across CRC stages, later stages (III–IV) showed higher clonal diversity

(p-value < 0.05) and stage-specific V-J patterns, alongside distinct CDR3 amino

acid preferences at N-terminal (positions 1–2) and central positions (positions 5–

12). Multi-dimensional machine learning models demonstrated exceptional

diagnostic performance across all classification tasks. For distinguishing CRC

from GC, the model achieved an accuracy of 97.9% and an area under the curve
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(AUC) of 0.996. For differentiating primary from metastatic CRC, the model

achieved 100% accuracy with an AUC of 1.000. In predicting CRC disease stages,

the model attained an accuracy of 96.9% and an AUC of 0.993. Extensive

validation using simulated and publicly available datasets, confirmed the

robustness and reliability of the models, demonstrating consistent

performance across diverse datasets and experimental conditions.

Conclusions: Our investigation provides novel insights into TCR repertoire

variations in digestive system tumors, and highlight the potential of immune

repertoire features as powerful diagnostic tools for understanding cancer

progression and potentially improving clinical decision-making.
KEYWORDS

T-cell receptor repertoire (TCR), colorectal cancer (CRC), gastric cancer (GC), multi-
layer machine learning, diagnostic model
1 Introduction

The immune system plays a crucial role in cancer defense, with

T cells being key mediators of immune responses. T-cell receptors

(TCRs) are responsible for recognizing tumor-associated antigens

presented by major histocompatibility complex (MHC) molecules

on the surface of tumor cells (1–3). The diversity of TCRs enables

the immune system to recognize a broad spectrum of tumor

antigens, making TCR analysis a critical area in cancer

immunology research (3). However, a thorough understanding of

TCR repertoire differences, especially in gastrointestinal cancers,

remains limited (4, 5).

In recent years, molecular diagnostic techniques, such as DNA

methylation and mutation analysis, have significantly advanced

early cancer detection and patient stratification (6–8). Notably,

the analysis of circulating free DNA (cfDNA) combined with

machine learning has proven effective in early detection of

cancers such as esophageal squamous cell carcinoma (9, 10).

When integrated with TCR repertoire analysis, these technologies

provide a comprehensive view of tumor immune responses and

offer potential biomarkers for early detection and targeted therapy.

Innovations in high-throughput and single-cell sequencing

technologies have enabled detailed characterization of TCR

repertoires (11). Tools such as multiplexed pMHC multimers and

TCRconv (12) aid in identifying T cells specific to certain antigens

and predicting the interactions between TCRs and antigen epitopes,

thereby enhancing our understanding of tumor immunology and

providing crucial insights for immunotherapy strategies (12–14).

Furthermore, deep learning frameworks like DeepTCR (15) have

been employed to analyze complex TCR data, helping to deepen our

understanding of immune responses and enhance predictions of

responses to immunotherapies, such as immune checkpoint

inhibitors and CAR-T cell therapies. Similarly, DeepCAT (16)

and DeepLION (17) provide CNN-based models for predicting
02
patient statuses using TCR CDR3 sequences. Research on public

TCRs—sequences shared across individuals—has furthered our

understanding of tumor immune responses. For example,

conserved complementarity-determining region 3 (CDR3) motifs

identified in breast cancer suggest that these shared sequences may

serve as universal biomarkers for immunotherapy (18, 19).

Additionally, tissue-specific variations in TCR repertoires across

different tumor types (including V-J gene rearrangement patterns,

which reflect the composition of post-selection TCR sequences)

provide insights into how tumors evade immune surveillance and

may guide strategies to enhance anti-tumor immunity (19).

Colorectal cancer (CRC) and gastric cancer (GC) are two

common malignancies of the digestive system with distinct

immune features. CRC, due to the high heterogeneity of its tumor

microenvironment, employs various immune escape mechanisms

to promote tumor progression (20–22). In contrast, GC is often

associated with chronic inflammation and Helicobacter pylori

infection, complicating its immune response due to altered

inflammatory mechanisms (23–25). Despite these distinct

immune backgrounds, systematic analyses of TCR repertoires in

CRC and GC remain scarce, limiting our understanding of their

immune characteristics.

The present study investigates the differential TCR repertoires in

gastrointestinal cancers through high-throughput sequencing and

advanced machine learning methodologies. It focuses on critical

features such as V-J gene rearrangements and CDR3 sequence

motifs to identify immune signatures specific to these malignancies.

Leveraging CDR3 sequences and motif characteristics, we develop

multi-layered clinical diagnostic prediction models tailored to diverse

applications, which are rigorously evaluated using independent

internal, simulated, and external test datasets, demonstrating robust

performance. By integrating molecular diagnostics with computational

strategies, our findings refine diagnostic accuracy and advance the

understanding of cancer immunology.
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2 Materials and methods

2.1 Study participants

From 2018 to 2024, 143 fresh tumor samples were collected from

patients who underwent surgical resection at the Third Affiliated

Hospital of Shandong First Medical University (Affiliated Hospital of

Shandong Academy of Medical Sciences). The inclusion criteria were:

(1) histopathological confirmation of primary colon, liver, or gastric

cancer, and (2) availability of complete clinical data. Patients were

excluded if they met any of the following criteria: (1) prior treatment

with radiotherapy, chemotherapy, immunotherapy, or targeted therapy

before surgery, (2) a history of other malignancies, or (3) the presence

of autoimmune diseases or chronic conditions (see Supplementary

Table S1 for details).

This study was approved by the Ethics Committee of the Third

Affiliated Hospital of Shandong First Medical University (Approval

No. FY2021018). Written informed consent was obtained from all

participants prior to enrollment. Tumor specimens were collected

immediately after surgical excision, washed with ice-cold saline, and

promptly cryopreserved in liquid nitrogen for further analysis.
2.2 Tumor tissue RNA extraction and bulk
T-cell receptor sequencing

Tumor tissue samples (≥ 2 mL) were collected in EDTA vacutainer

tubes, and total RNA was extracted using the RNAsimple Total RNA

Kit (DP419, Tiangen Biotech, Beijing, China). RNA concentrations

were measured with a NanoDrop ND-2000 spectrophotometer

(Thermo Scientific, UK). cDNA synthesis and multiplex PCR

amplification of rearranged TCR a, b, d, g-chains sequences were

performed using Immune Repertoire Library Preparation Kits

(Geneway, Jinan, China) following a previously described protocol

(26, 27). TCR libraries were sequenced on a DNBSEQ-T7 platform

(MGI, Shenzhen, China), generating paired-end 150 bp reads.
2.3 Preprocessing of sequencing data using
MiXCR tool

Sequencing data were stored in FASTQ format, with raw reads

demultiplexed according to index primer sequences specific to each

sample. Low-quality sequences were removed during quality

control, and the remaining reads were mapped to the V, D, and J

gene segments of TCR a, b, d, g chains using MiXCR version 4.3.2

(28), employing default parameters for alignment and clonotype

assembly. TCR reference gene data were sourced from the IMGT

database (http://www.imgt.org/vquest/refseqh.html).
2.4 Diversity metrics of T-cell receptors

To assess immune repertoire diversity, we computed Shannon

diversity, Simpson diversity, richness, evenness, top clone fraction,
Frontiers in Immunology 03
and the number of clones contributing to 50% of the repertoire.

Shannon diversity was calculated as −opi log pi, where pi
represents the proportion of each clone. Simpson diversity was

estimated as 1 −opi log pi. Richness was defined as the total

number of unique clones, and evenness was derived as the ratio

of Shannon diversity to the logarithm of richness. The top clone

fraction was determined as the maximum clone proportion, and the

number of clones constituting 50% of the total repertoire was

obtained by summing the largest clone proportions until the

cumulative sum exceeded 0.5. Diversity metrics were computed

for each sample and integrated with corresponding metadata for

further analysis.
2.5 V-J gene preferences analysis across
different groups

V-J gene preferences were analyzed by calculating the frequency

of each V-J pair within each group, and normalizing these

frequencies by the total count of V-J pairs in that group. A

matrix of V-J pair frequencies was constructed, with rows

representing the V-J pairs and columns corresponding to the

different groups. The differences in V-J gene usage between

groups were assessed by computing the log-transformed ratio

(log2) of the frequencies between groups. This analysis was

extended to include various cancer types, as well as the PT and

MT subgroups of CRC, and the TNM stages of CRC. The resulting

differences in V-J gene usage were visualized through a heatmap,

which employed a color gradient to display the magnitude of these

differences, highlighting variations in V-J gene preferences across

the groups.
2.6 Determination of the specific motifs
between different groups

A “Seurat” object was created using CreateSeuratObject with the

k-mer count data (k = 5) (29). The data was then normalized using

NormalizeData. The type of each sample was assigned as the

identity class. To identify specific motifs associated with each

cancer type, the FindAllMarkers function was applied. The

specific motifs were filtered by a p-value threshold of 0.01

(return.thresh = 0.01).
2.7 Multi-layer machine learning for
distinguishing cancer types and staging

To distinguish between CRC and GC, primary tumors (PT) vs.

metastatic tumors (MT) within CRC, and various TNM stages of

CRC, a machine learning framework integrates sequence-based

features derived from CDR3 sequences using ProteinBERT (30)

and motif-based features extracted from CDR3 sequences with the

“immunarch” package (version 1.0.0) (31). ProteinBERT encodes

CDR3 sequence data by selecting the 100 most abundant sequences
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for each sample, followed by principal component analysis (PCA)

for dimensionality reduction, retaining the top 50 principal

components. Motif features, are generated by extracting 5-mers

from the CDR3 sequence data, which are also reduced by PCA

method. Both PCA-reduced CDR3 features and motif features are

then used as inputs for model training.

In the first layer of the model, base classifiers—including

Generalized Linear Models (GLM), XGBoost, Random Forest, and

Neural Networks—are trained on the combined feature set. For GLM,

the alpha parameter, which controls the strength of regularization, is

tuned across values of 0, 0.2, 0.4, 0.6, 0.8, and 1. This parameter

influences the trade-off between L1 (lasso) and L2 (ridge) regularization.

For XGBoost, hyperparameters such as the number of boosting rounds

(nrounds), set to 100 or 200, the maximum tree depth (max_depth),

adjusted to 3 or 6, the learning rate (eta), tested at 0.01 or 0.1, the

gamma parameter, tested at 0 and 0.1, and the subsample ratio

(subsample), tested at 0.7, 0.8, or 0.9, are optimized. Random Forest

models are tuned with respect to the number of features considered for

splitting (mtry), set to 2, 4, or 6, and the number of trees (ntree), set to

500 or 1000. For Neural Networks, hyperparameters such as the

number of neurons in the hidden layer (size), set to 3, 4, or 5, and

the weight decay (decay), set to 0.001, 0.01, or 0.1, are optimized. After

training, the top-performing models for each feature type

(ProteinBERT-derived features and motif features) are ranked by

their AUC (Area Under the Curve) scores. The five best models for

each feature set are then selected and used to generate predictions for

each sample (a total of 40 models).

In the second layer, stacking models—including GLM,

XGBoost, Random Forest, and Neural Networks—are trained

using the predictions from the first layer as input. These stacking

models are similarly optimized, with GLM tuning the alpha

parameter, XGBoost adjusting the number of boosting rounds

(nrounds), maximum tree depth (max_depth), and learning rate

(eta), Random Forest fine-tuning the number of trees (ntree),

number of features considered for each split (mtry), and Neural

Networks setting neurons in the hidden layer (size). The top ten

models from the second layer are selected based on their AUC

scores, and the final ensemble model is obtained by combining the

predictions (averaging for prediction scores) from the second layer.

This ensemble approach enhances classification performance and

improves the model’s ability to distinguish between groups.
2.8 Evaluation of model performance using
AUC, accuracy, sensitivity, and specificity

To evaluate the performance of the models, we calculated key

metrics including Area Under the Curve (AUC), Accuracy,

Sensitivity, and Specificity. The AUC was determined by

generating a Receiver Operating Characteristic (ROC) curve using

the roc function from the “pROC” package (version 1.18.5) (32),

comparing the predicted scores with the true labels. The resulting

True Positive Rate (TPR) and False Positive Rate (FPR) were plotted

using “ggplot2” (version 3.5.1) (33), with a dashed diagonal line

representing thresholds for classification. Accuracy, Sensitivity
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(TPR), and Specificity (True Negative Rate) were derived from

the confusionMatrix function from “caret” package (version 6.0-94)

(34) for each model, providing a comprehensive assessment of

model performance.
2.9 Simulation of testing data for model
performance evaluation

Extended testing data were simulated using TCR data from the

output of the MiXCR tool (version 4.3.2) (28). The input dataset was

down sampled based on the type attribute to generate test datasets for

various groups (e.g., CRC, GC). For example, when simulating data for

CRC, the dataset was filtered to include only entries where type ==

‘CRC’, resulting in a positive subset. Within each subset, 50% of the

unique clone identifiers were randomly selected. Clone fractions

(cloneFraction) were normalized to sum to one, and simulated reads

were generated by sampling clones with probabilities proportional to

their clone fractions, ensuring that more abundant clones were

sampled more frequently. The resulting dataset was grouped by the

unique sequence identifier (aaSeqCDR3), the clone counts and adjusted

cloneFractionwere calculated for each sequence. The dataset was sorted

by cloneFraction in descending order, and a new “cloneId” was

assigned starting from zero. Each simulated dataset was saved as a

TSV file, with filenames incorporating the label (e.g., ‘CRC’) and a

unique simulation ID. For each group, 100 simulated datasets were

generated, each containing 1,000,000 reads. The generated data were

then fed into “immunarch” to obtain motif matrices and into

ProteinBERT to extract CDR3 sequencing information.
2.10 Comparison with existing methods

To compare the performance of our method with other publicly

available tools, we included DeepLION (17) and DeepCAT (16).

DeepLION processes TCR sequences and extracts features using a

convolutional neural network (CNN), with a single-layer linear

transformation used as the classifier. DeepCAT first applies

iSMART (18) to perform similarity clustering on the sequences

from each sample, followed by the use of five CNN models to make

predictions based on varying amino acid (AA) lengths (ranging

from 12 to 16) (35).

To evaluate the performance of DeepLION and DeepCAT on

the simulated TCR dataset (see Materials and Methods section 2.8),

we used our real TCR dataset as the training set. Classification

models were trained for the GC vs. CRC, PT vs. MT, and Earlier vs.

Later categories, following the training procedures outlined in the

manuals of both tools and using default parameters. The trained

models were then applied to predict the labels for the corresponding

simulated TCR datasets. For external validation, we used the Lung

(n = 444) (36) and thyroid carcinoma (THCA) (n = 430) (37)

datasets, which were randomly split into training and independent

test sets at a 7:3 ratio. The multi-layer classification model (Ours),

DeepLION, and DeepCAT were trained on the training set and

evaluated on the test set.
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2.11 Estimation of immune infiltration and
tumor mutational burden

To estimate immune infi l trat ion in the colorectal

adenocarcinoma (COAD) data from “The Cancer Genome Atlas”

(TCGA) (TCGA-COAD) (n = 521), the deconvolution tool

CIBERSORT (38) was applied, utilizing the LM22 reference

matrix provided by Newman et al. (38), and bulk expression

profiles were extracted from the TCGA-COAD transcriptome

data. Tumor mutational burden (TMB) was calculated using the

tmb function from the “maftools” package (version 2.20.0) (39).

To evaluate potential confounding factors, such as immune

infiltration and TMB, associated with CRC patient states, a multi-

layer approach, as described in Section 2.6, was employed for model

training based on the TCGA-COAD cohort. Immune infiltration

and TMB were used separately as features in the model. The

objective was to distinguish between normal and primary tumor

tissues, as well as between tumor stages (Earlier, combining Stage I-

II, and Later, combining stages ≥ III).
2.12 Statistical analysis

Student’s t-test and theWilcoxon rank-sum test, were employed

to compare statistical differences within the study. Principal

component analysis (PCA) and t-Distributed Stochastic Neighbor

Embedding (t-SNE) were employed for dimensionality reduction

and visualization of the samples’ distribution, respectively.

Specificity, sensitivity, accuracy, and the Area Under the Curve

(AUC) were used to evaluate the performance of the classification

model. All statistical analyses were executed using R version 4.3.2.
3 Results

3.1 Tissue-specific differences in TCR
repertoire characteristics across digestive
system tumors

To investigate the characteristic differences in TCR repertoires

among tumors of the digestive system, we conducted a cohort study

comprising 143 samples (Figure 1A, Supplementary Table S1). The

colorectal cancer (CRC) cohort (n = 96) included 84 primary

tumors and 14 metastatic lesions, distributed across tumor-node-

metastasis (TNM) stages as follows: stage I (5.2%, n = 5), stage II

(51.0%, n = 49), stage III (30.2%, n = 29), and stage IV (15.6%, n =

15) (Figures 1A, B, Supplementary Table S1). The gastric cancer

(GC) cohort (n = 47) consisted of 46 primary tumors and one

metastatic lesion, predominantly at stage III (78.7%, n = 37),

followed by stage II (14.9%, n = 7). All samples underwent high-

throughput bulk TCR sequencing, yielding comprehensive TCR

beta (TRB) (n = 136), TCR delta (TRD) (n = 134), and TCR gamma

(TRG) (n = 134) data (Figures 1A, B, Supplementary Table S1).

TCR alpha (TRA) data were obtained for five samples, but these

were excluded from subsequent analyses to avoid statistical bias due
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to the limited sample size. The comparison of TCR repertoires

between CRC and GC tumors provides valuable insights into

immune mechanisms specific to these tumor types within the

digestive system and may inform therapeutic strategies.

Therefore, we undertook the following comparative analysis.

Initially, dimensionality reduction via t-distributed stochastic

neighbor embedding (t-SNE) based on immune repertoire overlap

revealed distinct TCR chain-specific distribution patterns.

Specifically, samples from the same TCR chain exhibited closely

spatial clustering, while those from different chains displayed clear

separation (Figure 1C). This distribution suggests unique functional

roles for different TCR chains in immune recognition (40).

Interestingly, when tumor type information was mapped onto the

same dimensionality-reduced space, CRC and GC samples showed

a relatively uniform distribution (Figure 1C). The diversity metrics,

including Shannon diversity, Simpson diversity, evenness, and

richness, showed no notable differences between CRC and GC

(Supplementary Figure S1A; p-value < 0.05; see Materials and

Methods). This seemingly contradictory phenomenon implies

that intrinsic TCR chain characteristics may play a more

dominant role in shaping immune repertoire features than tumor

type. A systematic investigation of variable (V) and joining (J) gene

recombination patterns identified significant, tissue-specific

preferences between CRC and GC (see Materials and Methods).

For the b chain, several TCR variable beta (TRBV)–TCR joining

beta (TRBJ) combinations, such as TRBV10-1*00/TRBJ*, TRBV11-

1*00/TRBJ*, and TRBV25-1*00/TRBJ* were enriched in CRC

(log2FC > 1; Figure 1D, Supplementary Table S2). Conversely,

recombination associated with gdT cells, including TCR variable

delta (TRDV)–TCR joining delta (TRDJ) and TCR variable gamma

(TRGV)–TCR joining gamma (TRGJ), exhibited higher abundance

in GC (log2FC < -1; Figure 1D). These differences reflect the distinct

T-cell subset compositions in the two tumor types and suggest

potential tissue-specific TCR rearrangement (rearrangement

reflects the composition of post-selection TCR sequences)

mechanisms, consistent with findings by Jimeno et al. (41).

In-depth analysis of complementarity-determining region 3

(CDR3) sequences revealed position-dependent differences in amino

acid (AA) composition, most notably at the N-terminus (positions 1–

5) (Figure 1E). At position 1, glutamine (Q) and arginine (R) were

significantly more abundant in CRC than GC, whereas serine (S) and

threonine (T) were strongly enriched in GC (Figure 1E, Supplementary

Table S2; see Materials and Methods). Although the central region of

CDR3 plays a pivotal role in antigen recognition (42, 43), the AA

preferences observed at the N-terminal positions may reflect tissue-

specific adaptations to antigen epitopes in CRC and GC, in line with

known roles of the N-terminus in certain contexts (44–46).

Additionally, investigation of five-amino-acid motifs revealed strong

conservation among highly abundant motifs. Specifically, among the

top 10 motifs, the overlap between CRC and GC reached 90%, with

“GEKLF” and “REKLF” being the most dominant motifs in both

cancers (Figure 1F; see Materials and Methods). Expanding the

analysis to the top 50 motifs maintained a 75% overlap, indicating

that these conserved high-frequency motifs may play fundamental

roles in T-cell-mediated antitumor immunity (Figure 1G). As the
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FIGURE 1

Overview of T-cell receptor (TCR) repertoire characteristics and preferences in colorectal cancer (CRC) and gastric cancer (GC) patients.
(A) Overview of the study sample grouping, illustrating the classification framework and sample sources. (B) Circular diagram summarizing the tissue
origins of cancer samples and the corresponding TCR receptor sequencing outcomes. (C) Scatter plots showing t-distributed stochastic neighbor
embedding (t-SNE)-based distributions of TCR repertoires (top panel) and cancer types (bottom panel). The t-SNE plots were constructed based on
repertoire overlap between samples, calculated using the “immunarch” package (version 1.0.0) (31). Each point represents an individual sample, with
colors denoting distinct groups. (D) Heatmap comparing V-J combination preferences between CRC and GC patients. The color intensity represents
the log2 ratio of specific V-J combination abundances in CRC relative to GC. Red indicates enrichment in CRC, while green indicates enrichment in
GC. V-J combinations detected in fewer than 100 clones were excluded. (E) Heatmap showing the abundance preferences of 20 amino acids (AA)
at various positions within CDR3 sequences in CRC and GC patients. The color intensity denotes the log2 ratio of amino acid abundances in CRC
compared to GC. Analysis includes clones with CDR3 lengths between 5 and 24. (F) Circle bar plot showing the top 50 motifs with the highest
fractions in CRC and GC patients. The y-axis represents the fraction of each motif, calculated as the count of a specific motif divided by the total
motif counts for each cancer type. (G) Scatter plot depicting the distribution of motif overlap ratios between CRC and GC patients as a function of
the number of selected motifs. Motifs are ranked by fraction in descending order for each cancer type.
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number of included motifs increased (from 100 to 10,000), the overlap

rate initially decreased (to a minimum of 65%) before rising and

stabilizing at 85% (Figure 1G). Notably, approximately 15% of motifs

remained tumor-type-specific even at this steady state, potentially

representing unique antigen recognition patterns.

These findings highlight distinct TCR repertoire characteristics

between CRC and GC tumors, with tissue-specific gene recombination

and AA preferences, and conserved motifs potentially driving T-cell-

mediated antitumor immunity across both cancer types.
3.2 Development of a TCR repertoire-
based diagnostic model for distinguishing
CRC and GC through multi-layer machine
learning strategy

Given the tissue-specificity of CRC and GC in characteristics of

CDR3 sequences, and motif distributions, we hypothesize that these

features may offer diagnostic value as molecular technologies advance

and immune phenotypes become critical in assessing tumor types.

Therefore, we propose a diagnostic method based on TCR repertoire

features to differentiate CRC from GC, and have developed a two-

layer machine learning framework that integrates multi-dimensional

features (Figure 2A; see Materials and Methods). Specifically, the

framework consists of three core modules: (1) Feature extraction:

This module integrates the abundance of tissue-specific motifs and

utilizes a pre-trained ProteinBERT model (30) to extract sequence

features from the 100 most abundant CDR3 sequences in each

sample. (2) Feature dimensionality reduction: Following feature

extraction, Principal Component Analysis (PCA) is applied to

reduce the dimensionality of the two feature types, retaining the 50

most representative components for each feature set. This process

reduces computational complexity while preserving key information;

(3) Classification and prediction: This module employs a two-layer

machine learning structure, with the first level comprising five base

models for each feature type. The second level combines the

predictions from these models through ensemble learning methods,

enhancing the model’s robustness and generalizability (Figure 2A; see

Materials and Methods).

In terms of feature representation, PCA revealed distinct sample

distribution patterns. As shown in Figure 2B, CRC and GC samples

are roughly separated along the first two principal components

(explained variance: first principal component, 35.2%; second

component, 28.7%) (Figure 2B). Further analysis of the identified

specific motifs (p-value < 0.01; see Materials and Methods) revealed

differences between the two cancer types in abundances (Figure 2C,

Supplementary Table S3). These findings suggest distinct motif

patterns between the tumor types, providing strong support for the

subsequent classification predictions. Regarding model

performance evaluation, we first performed assessments on the

training set. As shown in the left panel of Figure 2D, the model

demonstrated excellent discriminative power, achieving an AUC of

0.996 (95% CI: 0.992-1.000), an accuracy of 0.960 (95% CI: 0.923-

0.987), and sensitivity and specificity of 0.985 and 0.949,

respectively (Figure 2D; left panel). More importantly, on the
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maintained excellent performance, with an AUC of 0.992 (95% CI:

0.984-0.999), accuracy of 0.951 (95% CI: 0.911-0.976), and

sensitivity and specificity of 0.917 and 0.965, respectively.

Consistency analysis of the predicted results with true labels

further demonstrates the model’s ability to accurately predict

individual sample classifications (Figure 2E).

To further validate the model’s discriminative ability, we analyzed

the prediction score distributions in both the training and test sets. As

shown in Figure 2F, CRC and GC samples were distinctly separated in

the prediction scores, with high consistency across both datasets

(Figure 2F). Notably, a score threshold of 0.75 effectively

differentiated the two sample types, with an error classification rate

of less than 5%, indicating the model’s high discriminative capacity

(Figure 2F). To ensure robustness, we conducted two validation

experiments to assess the stability, generalizability, and reliability of

the trainedmodel. Validation 1 involved 1000 random samplings of the

entire dataset, ensuring stability and minimizing random influence (see

Materials and Methods). The model’s sensitivity and specificity

remained stable, with median values of 0.947 and 0.953, respectively,

and minimal fluctuation (interquartile range: < 0.02), indicating strong

resistance to interference (Figure 2G). Validation 2 involved 1000

random splits of the data into training and test sets, evaluating AUC

distribution to assess consistency and generalization across different

data combinations (see Materials and Methods). The model showed

strong stability, with AUC values for the training set ranging from

0.996 to 1.000 and for the test set from 0.992 to 0.999, further

confirming the model’s consistency and reliability across different

datasets (Figure 2H). The distribution analysis of prediction scores

also confirmed this, showing highly consistent separation patterns

across experimental batches (Figure 2I, Supplementary Table S4).

Together, these strategies provide a comprehensive evaluation of the

model’s reliability and performance under varying conditions.

Overall, these validation results demonstrate that the diagnostic

model based on TCR repertoire features has excellent predictive

performance and stability, providing a valuable reference for

immune feature-based molecular diagnostics.
3.3 Development of a TCR repertoire-
based model for distinguishing primary and
metastatic status in CRC patients

Accurately distinguishing primary tumors (PT) from metastatic

lesions (MT) in CRC is critical for treatment decisions. To address

this, we developed a TCR repertoire-based diagnostic model to

classify PT and MT in 279 CRC patient samples, including 240 PT

and 39 MT cases (Figure 3A; see Materials and Methods). Our

analysis revealed fundamental differences in TCR characteristics

between PT and MT samples. For details, the examination of V-J

gene usage patterns revealed distinct preferences between the two

groups, with the majority of V-J combinations showing considerable

differences (log2 (fold change) > 1.5) in their usage frequency

between MT and PT samples (Figure 3B; see Materials and

Methods). Notably, TRBV7-9/TRBJ2-1 showed a 2.8-fold higher
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FIGURE 2

Performance and validation of the diagnostic model for differentiating colorectal cancer (CRC) and gastric cancer (GC). (A) Overview of the designed
diagnostic model. The model comprises three main components: feature extraction based on motifs and complementarity-determining region 3
(CDR3) sequences, principal component analysis (PCA) for dimensionality reduction, and a two-layer machine learning framework for training and
prediction. (B) Scatter plot illustrating the distribution of samples from CRC and GC cohorts based on the first two principal components. Each dot
represents an individual sample, with sample origins indicated by color codes. (C) Heatmap showing normalized motif counts for each sample,
comparing CRC and GC patients. (D) Area under the curve (AUC) plots depicting training and testing accuracy for distinguishing CRC from GC
patients. (E) Heatmap visualizing the consistency between true and predicted labels for CRC and GC patients. Each bar corresponds to an individual
patient. (F) Violin and box plots depicting the predicted score distribution between CRC and GC groups. The dark green line indicates the cutoff
value for assigning patients to the CRC or GC group. (G) Scatter plot illustrating the distribution of sensitivity and specificity across 1,000 iterations of
down-sampling from combined CRC and GC patients. Each dot represents the sensitivity and specificity values for one iteration. (H) Scatter plot
showing the training and testing AUC values across 1,000 random splits of training and testing sets used to train the model. (I) Violin and box plots
depicting the predicted score distribution between CRC and GC groups generated from (H). The dark green line indicates the cutoff value for
assigning patients to the CRC or GC group.
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FIGURE 3

Comparative analysis of immune repertoire characteristics between metastatic (MT) and primary tumor (PT) cohorts, and diagnostic model
development. (A) Schematic representation of the diagnostic model study and cohort grouping. (B) Heatmap comparing the preferences for variable
(V) and joining (J) gene combinations between MT and PT patients. The color intensity reflects the log2 abundance ratio of specific V-J
combinations in MT versus PT patients. Red indicates a preference toward MT patients, while green indicates a preference toward PT patients. V-J
combinations with fewer than 100 detected clones were excluded. (C) Boxplots showing the distribution of the mean length of complementarity-
determining region 3 (CDR3) across T-cell receptor beta (TRB), T-cell receptor delta (TRD), and T-cell receptor gamma (TRG) chains. P-values were
calculated using a two-sided t-test. (D) Heatmap comparing the positional abundance preferences of 20 amino acids (AA) within the CDR3 region
between MT and PT patients. The color intensity reflects the log2 abundance ratio of specific AA at each position in MT versus PT patients. Red
indicates a preference toward MT patients, while green indicates a preference toward PT patients. Only clones with CDR3 lengths between 5 and 24
amino acids were included. (E) Scatter plot illustrating the distribution of motif overlap ratios between MT and PT patients across different motif
counts. For each cancer type, motifs were ranked by their fractional representation in descending order. (F) Heatmap depicting the normalized motif
counts for each sample, comparing MT and PT patients. (G) Scatter plot visualizing the distribution of MT and PT patient samples based on the first
two principal components. Each dot represents an individual sample, with sample groups indicated by distinct color codes. (H) Area under the curve
(AUC) plots showing training and testing accuracy for distinguishing between MT and PT patients. (I) Heatmap illustrating the concordance between
true and predicted labels for MT and PT patients. Each bar represents an individual patient. (J) Violin plots combined with boxplots showing the
distribution of predicted scores between MT and PT groups. The dark green line indicates the cutoff value for classifying patients into the MT or PT
group. (K) Scatter plot illustrating the distribution of sensitivity and specificity values across 1,000 down-sampling iterations of combined MT and PT
patient cohorts. Each dot represents sensitivity and specificity values for a single iteration. (L) Violin plots combined with boxplots showing the
predicted score distributions between MT and PT groups, derived from data in (K). The dark green line represents the cutoff value for classification
into MT or PT groups.
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usage in MT samples, while TRBV20-1/TRBJ1-2 demonstrated a 2.3-

fold enrichment in PT samples. Complementary analysis of CDR3

length distributions revealed significant differences in TRG (p =

0.019; Two-sided t-test) (Figure 3C). MT samples displayed shorter

TRG CDR3 sequences, suggesting potential structural adaptations in

TCRs during metastatic progression (47). To gain deeper insights

into the molecular features distinguishing PT and MT samples, we

examined the positional AA preferences within the CDR3 region. The

analysis revealed distinct position-specific patterns in sequences 5 to

24 AA long, with the largest differences at positions 1-3 and 10-12

(Figure 3D, Supplementary Table S2). Motif analysis further

highlighted these differences, with overlap ratios decreasing from

0.72 for the top 10 motifs to approximately 0.75 for the top 10,000

motifs (Figure 3E). For the identified specific motifs, normalized

counts showed clear abundance patterns between PT and MT groups

(Figure 3F, Supplementary Table S3; see Materials and Methods).

Based on these specific motifs, Principal component analysis further

demonstrated robust separation between PT and MT samples, with

the first two principal components explaining 63.9% of the total

variance (PC1: 35.2%, PC2: 28.7%) (Figure 3G; see Materials and

Methods). The diversity metrics indicate that MT exhibits higher

Shannon and Simpson index values, though the differences are not

statistically notable (Supplementary Figure S1B; p-value < 0.05).

Based on these distinctive immunological features, we

employed the two-layer machine learning model similar to the

approach used in CRC-GC for PT-MT classification (Figures 2A;

see Materials and Methods). The model showed exceptional

performance in both training and testing phases, as evidenced by

ROC curve analysis (Figure 3H). In the training set (n = 195), we

achieved perfect discrimination with an AUC of 1.000 (CI: 1.000-

1.000), accuracy of 1.000 (CI: 0.973-1.000), and both sensitivity and

specificity reaching 1.000 (Figure 3H). More importantly, this

robust performance was maintained in the internal independent

testing set (n = 84), with an AUC of 0.991 (CI: 0.978-1.000),

accuracy of 0.978 (CI: 0.938-0.996), sensitivity of 0.983, and

specificity of 0.944 (Figure 3H). The concordance between

predicted and true labels demonstrated high accuracy across both

PT and MT samples, with a misclassification rate of only 2.2% (6/

279) (Figure 3I). Distribution analysis of prediction scores showed

consistent separation between the two groups, with median scores

of 0.89 for MT and 0.12 for PT samples (Figure 3J). Furthermore,

through 1,000 iterations of random sampling, similar to the strategy

used in CRC and GC distinction, we generated testing datasets (see

Materials and Methods). the model maintained stable performance

metrics, with sensitivity ranging from 0.962 to 0.998 (median:

0.985) and specificity from 0.947 to 0.996 (median: 0.972)

(Figure 3K, Supplementary Table S4). Prediction score

distributions remained highly consistent across different

experimental batches, with an average inter-batch coefficient of

variation of 8.2% (Figure 3L, Supplementary Table S4). These

results provide a comprehensive evaluation of the model’s

stability, generalizability, and reliability.

Overall, these comprehensive analyses reveal systematic

differences in TCR repertoire features between primary and

metastatic CRC, providing not only a robust diagnostic tool but
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also insights into the immunological changes accompanying

metastatic progression. The high performance and stability of our

model suggest its potential utility in clinical settings for determining

CRC metastatic status based on immune repertoire characteristics.
3.4 TCR repertoire features enable
accurate prediction of CRC disease stages

Accurate staging of CRC is essential for therapeutic planning

and outcome prediction. To explore whether immune repertoire

characteristics could serve as molecular markers for disease

progression, we also trained a TCR-based model to distinguish

between earlier (stages 1&2, n = 156) and later (stages 3&4, n = 129)

stage CRC patients (Figure 4A). Patients without recorded stages

were excluded. By examining the fundamental landscape differences

between disease stages, initial analysis revealed a significant

disparity in TCR diversity, with later-stage patients exhibiting

substantially higher numbers of unique clonotypes (p < 0.05, two-

sided Wilcoxon test) (Figure 4B). This increased clonal diversity

suggests a more complex immune response in advanced disease

stages, consistent with findings by Wang et al. (48), who reported

that intratumor heterogeneity decreases with tumor growth, while

clonal diversity increases with tumor differentiation. Examination

of V-J gene usage patterns unveiled stage-specific preferences in

receptor gene recombination. The comparative analysis identified

36 V-J combinations (|log2FC| ≥ 1) with significant differential

usage, particularly evident in the TRBV and TRBJ families

(Figure 4C). Molecular characterization of the CDR3 region

revealed distinctive features associated with disease progression.

Position-specific AA analysis revealed systematic preferences

between stages, with the most pronounced differences observed in

the N-terminal (positions 1-2) and central regions (positions 5-12)

of CDR3, suggesting altered antigen recognition patterns with

disease progression (Figure 4D, Supplementary Table S2) (44).

Further investigation of TCR motifs reinforced these findings,

with the heatmap of normalized motif counts displaying clear

patterns across patients at different disease stages (Figure 4E,

Supplementary Table S3). Based on these specific motifs,

principal component analysis revealed distinct clustering patterns

between early- and late-stage samples, with the first two

components capturing 58.4% of the total variance (Figure 4F).

However, diversity metrics showed no significant differences

between early- and late-stage in CRC patients (Supplementary

Figure S1C; p-value < 0.05).

Based on these stage-associated immune features, we re-

constructed a machine learning model for disease stage

prediction. The model demonstrated exceptional performance

during training (n = 195), achieving an AUC of 1.000 (CI: 1.000-

1.000), perfect accuracy (1.000, CI: 0.973-1.000), and optimal

sensitivity (1.000) and specificity (1.000) (Figure 4G).

Importantly, this strong discriminative power was maintained in

the independent testing cohort (n = 84), yielding an AUC of 0.993

(CI: 0.985-0.993), with high sensitivity (0.974) and specificity

(0.871) (Figure 4G). Heatmap analysis showed high concordance
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FIGURE 4

Comparative analysis of immune repertoire characteristics between cohorts of later and earlier tumor stages, and diagnostic model development.
(A) Schematic representation of the diagnostic model for tumor progression stages and grouping. (B) Boxplot showing the number of unique
clonotypes in each sample from Earlier (Stages I and II) and Later (Stage III and IV) tumor stages. P-values were calculated using the Wilcoxon test.
(C) Heatmap comparing the distribution of variable (V) and joining (J) gene combination preferences between Later and Earlier patients. The color
intensity represents the log2-transformed ratio of specific V-J combination abundances in Later versus Earlier. Red indicates enrichment in Later
patients, while green indicates enrichment in Earlier patients. V-J combinations detected in fewer than 100 clones were excluded. (D) Heatmap
comparing the positional abundance preferences of 20 amino acids (AA) in the complementarity-determining region 3 (CDR3) between Later and
Earlier patients. The color intensity reflects the log2-transformed ratio of amino acid abundance at specific positions in Later versus Earlier. Red
denotes enrichment in Later patients, while green denotes enrichment in Earlier patients. Analysis was restricted to clones with CDR3 lengths
between 5 and 24. (E) Heatmap showing the normalized motif counts for each sample across Later and Earlier patients. (F) Scatter plot showing the
distribution of samples from Later and Earlier cohorts based on the first two principal components. Each dot represents an individual sample, with
the source indicated by color coding. (G) Area under the curve (AUC) plots showing training and testing performance in distinguishing between
Later and Earlier patients. (H) Heatmap demonstrating the consistency between true and predicted labels for Later and Earlier patients. Each bar
corresponds to an individual patient. (I) Violin combined with boxplots showing the distribution of predicted scores between Later and Earlier
groups. The dark green line indicates the cutoff value for assigning patients to the Later or Earlier group. (J) Scatter plot showing the sensitivity and
specificity distributions across 1,000 subsampling iterations of the combined Later and Earlier patient cohorts. Each dot represents sensitivity and
specificity values for a single iteration. (K) Scatter plot showing the training and testing AUC values obtained from 1,000 random splits of the training
and testing datasets used for model development. (L) Violin and boxplots showing the predicted score distribution between Later and Earlier groups,
derived from the data in (K). The dark green line indicates the cutoff value for patient group assignment.
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between predicted and actual disease stages (Figure 4H). Score

distribution analysis demonstrated clear separation between stages,

with median scores of 0.82 and 0.18 for later and earlier stages,

respectively (Figure 4I). The model’s stability was confirmed

through extensive permutation testing, maintaining consistently

high performance across 1,000 iterations (sensitivity range: 0.958-

0.992; specificity range: 0.932-0.988) (Figure 4J; see Materials and

Methods). Additional validation through 1,000 random training-

testing splits demonstrated remarkable consistency, with training

AUC values ranging from 0.975 to 1.000 and testing AUC from

0.950 to 1.025 (Figure 4K, Supplementary Table S4; see Materials

and Methods), indicating the model’s generalizability, and

reliability. The prediction score distributions remained stable

across all permutations, confirming the model’s reliability

(Figure 4L, Supplementary Table S4).

These findings demonstrate that TCR repertoire characteristics

undergo systematic changes during CRC progression and can serve as

reliable markers for disease staging. The robust performance of our

stage prediction model suggests its potential value as a complementary

molecular tool for CRC staging, potentially offering additional insights

beyond conventional TNM classification.
3.5 Performance validation of diagnostic
models using simulated and publicly
available TCR data

To address the issue of limited sample size in our internal testing,

we simulated 200 samples (100 positive and 100 negative samples) for

each scenario by utilizing TCR receptor data exported from theMiXCR

tool (28) (Figure 5A; see Materials and Methods). These simulated

samples provided a more extensive dataset for evaluating the

performance of three diagnostic models. Analysis of Figure 5B

revealed that Model 1 demonstrated notable accuracy in

distinguishing CRC from GC samples, with a sensitivity of 85%,

specificity of 90%, and accuracy of 87% (Figure 5B). Among the

positive samples, Model 1 correctly identified 85 CRC samples while

misclassifying 15 GC samples. Among the negative samples, it correctly

identified 90 GC samples while misclassifying 10 CRC samples. In

comparison, Model 2 showed a sensitivity of 78%, specificity of 85%,

and accuracy of 81%, while Model 3 achieved a sensitivity of 80%,

specificity of 88%, and accuracy of 84% (Figure 5B). Figure 5C provides

a comparative overview of models’ overall performance on the

simulated samples, highlighting the stable performance and low error

rate of Model 1 across both positive and negative samples (Figure 5C).

Additionally, we compared our models with DeepLION (17) and

DeepCAT (16), both designed to predict patient status based on

TCR CDR3 sequences (see Materials and Methods). We initially

trained models using our real TCR data to predict CRC vs. GC, PT

vs. MT, and Earlier vs. Later stages, and then applied these models to

the corresponding simulated datasets. The results revealed that

DeepLION outperformed DeepCAT across all simulated datasets,

achieving the highest AUC of 0.851 for distinguishing PT from MT.

In contrast, both DeepCAT and DeepLION underperformed

compared to our multi-layer-based models (Figure 5D).
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to the Lung (n = 444) and thyroid carcinoma (THCA) (n = 430)

datasets. For the lung dataset, 260 samples were from healthy

individuals, and 184 were from cancer patients; for THCA, 260

were healthy, and 170 were cancer patients (Figure 5E). After

splitting the data randomly into training and testing sets (7:3

ratio), we applied our multi-layer model, DeepLION, and

DeepCAT to the training sets for model training, then evaluated

their performance on independent testing sets. The results

demonstrated that our multi-layer model, significantly

outperformed both DeepLION and DeepCAT, with AUC values

of 0.978 for lung and 0.997 for THCA (Figure 5F). Notably, while

CDR3 sequences were commonly used for DeepLION, DeepCAT

and our model, motifs served as unique features in our multi-layer

classification model. These motif-based features may provide high-

resolution discrimination between different patient statuses.

We also sought to assess the prediction performance in the

context of potential confounding factors, such as tumor mutation

burden (TMB) and immune infiltration. We retrieved transcript

expression data and corresponding clinical data from the TCGA-

COAD (n = 521) cohort in the TCGA database. Using CIBERSORT

(38) with the LM22 reference (comprising 22 immune cell types),

we estimated immune infiltration for each sample (see Materials

and Methods). The estimated infiltration values were then used as

features to train our multi-layer model, which was applied to predict

primary vs. normal and earlier (tumor stage I–II) vs. later (tumor

stage ≥ III) statuses. The infiltration-based model performed well in

distinguishing primary from normal samples (AUC = 0.92) but

showed weaker performance in predicting tumor stages (Figure 5G;

left panel). Additionally, we trained a TMB-based model using the

same multi-layer approach, which yielded AUC values of 0.535 for

primary vs. normal and 0.61 for earlier vs. later stages (Figure 5G;

right panel), suggesting relatively lower performance. To the best of

our knowledge, no TCR-seq data combined with RNA-seq for the

same cohorts exists, limiting a direct comparison between the

motif-based multi-layer model and models based on immune

infiltration or TMB. Nonetheless, our results indicate that the

motif-based model may provide strong discrimination for

patient classification.

These findings validate the effectiveness of our multi-layer

model across simulated samples and publicly available datasets,

offering valuable insights for further optimization and

clinical evaluation.
4 Discussion

The primary goal of this research is to investigate the distinct

characteristics of the T-cell receptor (TCR) immune repertoire in

gastrointestinal cancers and evaluate its potential for early cancer

detection, staging, and metastasis prediction. A multi-layered

machine learning framework was implemented, integrating TCR

motifs with features extracted from CDR3 sequences using

ProteinBERT (30), enabling more precise identification of TCR

immune repertoire variations across different tumor types. Our
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findings indicate that the TCR immune repertoire not only reflects

immune differences between various cancers but also provides

valuable insights into tumor immune evasion, metastasis, and

staging processes, offering approaches for early cancer detection

and the optimization of immunotherapy.

Clear differences were identified in the TCR immune repertoire

between CRC and GC. Specifically, these cancers showed distinct

patterns in TCR gene rearrangement, CDR3 sequence composition,

and the distribution of TCR motifs. Previous studies have linked the

immune repertoire in CRC to chronic inflammation and the

accumulation of specific immune cell populations, providing
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insights into the TCR repertoire’s role in immune evasion (3, 49).

In contrast, GC’s immune composition is more influenced by the

local microenvironment, particularly chronic gastritis induced by

Helicobacter pylori, leading to distinct immune escape mechanisms

(50). Our findings not only support these previous studies but also

further highlight how variations in the TCR immune repertoire can

distinguish immune features across cancer types, facilitating the

development of personalized therapeutic strategies.

The alterations in the TCR immune repertoire in CRC,

particularly related to immune evasion mechanisms within the

tumor microenvironment, are of notable importance. In the
FIGURE 5

Evaluation of model performance using simulated and publicly available data. (A) Flowchart illustrating the strategy for generating simulated testing
data to evaluate model performance (see Materials and Methods). Notably, 200 samples were generated during the simulation for each scenario,
with 100 positive and 100 negative samples. (B) Area under the curve (AUC) plots illustrating training and testing performance in distinguishing
between patient groups. (Left) Gastric cancer (GC) vs. colorectal cancer (CRC); (Middle) primary tumor (PT) vs. metastasis (MT); (Right) Earlier vs.
Later tumor stages. (C) Violin and boxplots depicting the predicted score distributions across different groups, based on the data from (B). The dark
green line represents the cutoff value for assigning patients to specific groups. (Left) GC vs. CRC; (Middle) PT vs. MT; (Right) Earlier vs. Later tumor
stages. (D) AUC plots depicting the performance of DeepLION (17) and DeepCAT (16) in distinguishing between patient groups. Left: GC vs. CRC;
Middle: PT vs. MT; Right: Earlier vs. Later. (E) Scatter plot illustrating the distribution of patient samples based on the first two principal components.
Each dot represents an individual sample, with distinct color coding for sample groups. Left: Lung cohort; Right: THCA cohort. (F) AUC plots
comparing the performance of DeepLION, DeepCAT, and Ours in distinguishing between patient groups across the Lung and THCA cohorts.
(G) AUC plots showing the performance of multi-layer models trained using infiltration and tumor mutation burden (TMB) as features to distinguish
between patient groups.
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comparison of primary and metastatic lesions, notable differences

in the TCR immune repertoire were observed in CRC. The immune

repertoire in metastatic lesions was more complex and diverse than

in primary lesions, suggesting that tumor cells may evade immune

surveillance by altering immune responses during metastasis. These

differences offer new clues about immune evasion mechanisms

during tumor spread. Additionally, the more diverse immune

repertoire in metastatic lesions provides insights into the

mechanisms of metastasis and supports the potential of the TCR

immune repertoire in metastatic progression. Beyond the variations

in the TCR immune repertoire across different tumor types, the

relationship between TCR immune repertoire features and TNM

staging in CRC patients was also explored. As the tumor stage

progressed, alterations in the TCR immune repertoire were

observed. Early stages showed simpler immune rearrangement

patterns, while more complex changes were evident in advanced

stages. These alterations were closely tied to immune evasion

mechanisms within the tumor microenvironment, providing new

biomarkers for cancer staging.

In developing the diagnostic model, we employed a multi-layer

machine learning strategy that reveals complex alterations in TCR

repertoires associated with various cancers. The model was built by

integrating two key feature types: 1) motif information derived from

CDR3, and 2) high-abundance CDR3 sequences, converted into

numerical features using the pre-trained deep learning model,

ProteinBERT. Evaluation showed that incorporating motif

information significantly enhanced the model’s performance,

improving its ability to distinguish patients across different states

and increasing its reliability, robustness, and generalizability.

Compared to existing TCR-based machine learning models such

as DeepLION (17) and DeepCAT (16), our model achieved

exceptional accuracy (AUC > 0.97) and demonstrated robustness

across multiple real clinical datasets, highlighting its potential for

personalized cancer diagnosis and treatment. In the CRC-GC

diagnostic model, we emphasized the inherent differences

between tumor types from different tissues, underscoring the

importance of considering tissue-specific variations in TCR

repertoire analysis. From a clinical standpoint, tissue-based

models, while providing valuable insights into TCR specificity, are

constrained by their reliance on tissue samples, limiting their non-

invasive diagnostic applicability. In contrast, blood-based TCR

information offers a non-invasive and more widely applicable

approach for CRC-GC diagnosis, with greater clinical value.

While preliminary validation of the diagnostic models has shown

promising results, challenges remain. The diversity and specificity of

the TCR immune repertoire can be influenced by individual genetic

backgrounds, tumor types, and their microenvironments, raising

concerns about the model’s generalizability across broader

populations. Additionally, the complex interactions between immune

cell composition and the TCR immune repertoire within the tumor

microenvironment necessitate further exploration. Future studies will

focus on optimizing the model by incorporating detailed immune

lineage data and extending the sample size, particularly by including

normal samples, to enhance its applicability across diverse

tumor subtypes.
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