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The role of tumor-associated
macrophages in lung cancer
Ronghao Zhu, Jing Huang and Fenhong Qian*

Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University,
Zhenjiang, China
Lung cancer remains a leading cause of cancer-related deaths worldwide,

necessitating innovative treatments. Tumor-associated macrophages (TAMs)

are primary immunosuppressive effectors that foster tumor proliferation,

angiogenesis, metastasis, and resistance to therapy. They are broadly

categorized into proinflammatory M1 and tumor-promoting M2 phenotypes,

with elevated M2 infiltration correlating with poor prognosis. Strategies aimed at

inhibiting TAM recruitment, depleting TAMs, or reprogramming M2 to M1 are

therefore highly promising. Key signaling pathways, such as CSF-1/CSF-1R, IL-4/

IL-13–STAT6, TLRs, and CD47-SIRPa, regulate TAM polarization. Additionally,

macrophage-based drug delivery systems permit targeted agent transport to

hypoxic regions, enhancing therapy. Preclinical studies combining TAM-targeted

therapies with chemotherapy or immune checkpoint inhibitors have yielded

improved responses and prolonged survival. Several clinical trials have also

reported benefits in previously unresponsive patients. Future work should

clarify the roles of macrophage-derived exosomes, cytokines, and additional

mediators in shaping the immunosuppressive tumor microenvironment. These

insights will inform the design of next-generation drug carriers and optimize

combination immunotherapies within precision medicine frameworks.

Elucidating TAM phenotypes and their regulatory molecules remains central to

developing novel strategies that curb tumor progression and ultimately improve

outcomes in lung cancer. Importantly, macrophage-based immunomodulation

may offer expanded treatment avenues.
KEYWORDS

tumor -as soc i a t ed mac rophages , l ung cance r , immunomodu l a t i on ,
immunotherapy, TAMs
1 Introduction

Lung cancer remains the foremost cause of cancer-related mortality globally,

responsible for 20.4% of such deaths in the U.S. in 2024, with daily fatalities nearly

double those from colorectal cancer, and surpassing combined deaths from breast, prostate,

and pancreatic cancers (1–3). The mortality from lung cancer is expected to greatly exceed

that of gastric and breast cancers in the coming decades (4, 5). The tumor immune

microenvironment, particularly macrophages differentiated into TAMs, critically

influences lung cancer progression by enhancing angiogenesis and metastasis (6–11).
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TAMs correlate strongly with tumor size, differentiation, invasion

depth, lymph node metastasis, and TNM stage in lung cancer (12),

highlighting their central role in disease dynamics. Besides, in the

tumor microenvironment (TME) of cancer, TAMs express

characteristic surface markers such as CD68/CD163/CD204/

CD206 (13), and their polarization significantly influences tumor

progression and therapeutic resistance (14–18). M2-like TAMs, in

particular, are associated with a pro-tumoral environment, marked

by the secretion of immunosuppressive cytokines like IL-10 and

TGF-b, which not only enhance tumor growth but also hinder the

immune response (19–21). These macrophages also facilitate PD-L1

expression, diminishing the effect iveness of exist ing

immunotherapies. Strategies targeting TAMs, alongside

chemotherapy and PD-1/PD-L1 inhibitors, show promising

therapeutic potential in preclinical models (22–24). This review

discusses TAM classification, their influence on lung cancer

progression, and their therapeutic implications.
2 Classification of TAMs

TAMs exhibit significant plasticity, adapting to various TME

conditions and polarizing into two major phenotypes: the

proinflammatory M1 and the tumor-promoting M2 macrophages

(25–27). M1 macrophages are typically activated by inflammatory

cytokines (e.g., GM-CSF, TNF-a, IFN-g, LPS) and are characterized
by their secretion of proinflammatory cytokines (e.g., IL-1a/b, IL-6,
IL-12, IL-23), which enhance cytotoxic immune responses and anti-

tumor immunity (28). In contrast, M2 macrophages, which

predominantly promote tumor progression, are divided into

subtypes based on their cytokine responses and functional roles.

These subtypes include M2a, M2b, M2c, and M2d, each associated

with different aspects of tumor support. M2a macrophages, driven

by IL-4 and IL-13, are primarily involved in tissue repair, promoting

fibrosis and immune regulation through the secretion of TGF-b and
insulin-like growth factors (29). M2b macrophages, activated by

immune complexes and LPS, are characterized by their anti-

inflammatory profile, releasing IL-10 and IL-6, which dampen

anti-tumor immunity (30). M2c macrophages, induced by IL-10,

TGF-b, and glucocorticoids, play a key role in immunosuppression

and extracellular matrix remodeling, contributing to the tumor’s

immune escape mechanisms (31). M2d macrophages, activated by

adenosine and TLRs, secrete IL-10, TGF-b, and VEGF, promoting

angiogenesis and immunosuppression, which enhances tumor

progression and metastasis (32, 33). The M2a/M2c macrophages

facilitate the invasion of lung cancer cells and contribute to tumor

progression (34). In A549 cells, the presence of M2c macrophages

induced epithelial-mesenchymal transition (EMT), which was

characterized by increased expression of vimentin, fibronectin, E-

cadherin, NF-kB, and CCL-17 (35). Targeting TAM polarization

toward the M1 phenotype, while eliminating the M2a and

particularly M2c subtypes, represents a promising approach for

effective anti-cancer strategies (36).
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3 The mechanisms of TAMs in the
progression of lung cancer

3.1 Inhibition of tumor immunity by TAMs

The organism utilizes innate and adaptive immune mechanisms

to counteract tumor initiation and progression; however, tumor cells

can evade these defenses through multiple strategies (37–39). In the

TME, TAMs transition from an antitumor to a pro-tumor role,

chiefly impeding other immune cells’ immunomodulatory functions.

This inhibition occurs via several pathways: (I) M2-type TAMs,

influenced by Th2 cells within the pulmonary TME, produce

immunosuppressive factors like IL-10 and TGF-b. IL-10

particularly enhances PD-L1 expression in macrophages,

diminishing cytotoxic T cell activity and fostering immune

tolerance (40); (II) TAMs secrete C-C motif ligand 22 (CCL-22),

attracting regulatory T cells (Tregs) to the TME and dampening

effector T cell function, thereby cultivating an immunosuppressive

environment (41); (III) Hypoxia in the TME upregulates the

expression of HIF-1a in macrophages, resulting in decreased CD8+

T-cell activation mediated by macrophages and promoting immune

evasion (42–44). While under hypoxic conditions, TAMs produce

increased levels of arginase I, which depletes L-arginine in the

microenvironment, thereby inhibiting T cells by arresting them in

the G0/G1 phase of the cell cycle and preventing their proliferation

(45); (IV) CD206 mannose receptors on the surface of TAMs

suppress CD45 phosphatase activity, leading to upregulated

expression of cytotoxic T-lymphocyte–associated protein 4 (CTLA-

4) and ultimately inducing T-cell tolerance (46); (V) IL-4 stimulation

activates the PI3Kg–mTor–S6Ka–C/EBPb pathway in macrophages

and inhibits nuclear factor kappa-B (NF-kB), thereby suppressing

immunity and promoting tumor growth (47). In addition, TAMs

interact with various immune cells, including T lymphocytes, NK

cells, dendritic cells, neutrophils, and MDSCs. Moreover, TAMs

suppress the cytotoxic activity of T cells, natural killer T (NKT)

cells, and NK cells by expressing ligands for immune checkpoint

receptors such as PD-1 and CTLA-4 (48–51).
3.2 TAMs promote angiogenesis in
lung cancer

TAMs secrete proangiogenic factors (e.g., VEGF, CXCL8) into

avascular regions, promoting tumor angiogenesis. VEGF strongly

stimulates endothelial cell proliferation, neovascularization, and

vascular permeability, facilitating tumor cell extravasation (52).

TAM-derived IL-8, VEGF, and urokinase-type plasminogen

activator (uPA) further contribute to neovascularization (53).

Hypoxia in the TME induces HIF-1/2, which upregulate VEGF,

platelet-derived growth factor (PDGF), and EGF (54, 55). VEGF

also attracts more TAMs, generating a positive feedback loop (56).

Additionally, TAMs secrete TGF-b, TNF-a, MMPs, and TIE2, all of

which promote intratumoral vascular formation (57–60).
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3.3 TAMs involved in lung cancer cell
proliferation, invasion, and metastasis

In lung cancer, TAMs foster tumor proliferation, invasion, and

metastasis via chemokines and cytokines—TGF-b, IL-10, IL-6, matrix

metalloproteinases (MMPs), and VEGF—and may activate cancer

stem cells (CSCs) through IL-10 (61). Hypoxia from rapid tumor

growth increases M2 macrophages, elevating IL-10, VEGF, and HIF-

1a, promoting metastasis and further macrophage infiltration (62).

TAMs also facilitate EMT, critical for metastasis (63) by upregulating

CRYAB (64) and Ezrin phosphorylation–mediated FUT4/LeY

fucosylation (65). TAM-derived IL-6, IL-10, and TGF-b regulate

EMT (66) with IL-6 and IL-10 inducing M2 polarization through

JAK/STAT3 (67), and TGF-b promoting SOX9 expression via c-jun/

SMAD3, enhancing proliferation and invasiveness (68, 69).

Furthermore, TAMs secrete MMPs, mainly MMP-9 and MMP-2, to

degrade the extracellular matrix and facilitate invasion and metastasis

(70). MMP-9 expression is also associated with lymph node metastasis

and prognosis (71). Chemokines like CCL18 from TAMs fuel tumor

progression (72). In addition, TAMs promote collagen fiber formation,

guiding lung cancer cells toward blood vessels and into circulation (73).

CSCs promote lung cancer progression as well (61). TAMs interact

with CSCs, including TAM recruitment through vascularization, the

release of chemokines by TAMs to maintain CSC dormancy, and

antigen modification of CSCs to evade immune recognition, which

plays a crucial role in tumor progression and metastasis. Besides, CSCs

promote TAM polarization from M1 to M2, induce angiogenesis via

VEGF, and create supportive niches through tissue repair pathways

(74). A potential therapeutic strategy targeting the interactions between

TAMs and CSCs could provide an effective approach for lung cancer

(75, 76). Exosomes also participate in tumorigenesis and metastasis by

mediating material exchange among tumor cells and macrophages

(77–79). For instance, exosomes derived from tumors release miR-19b-

3p, which promotes the polarization of M2 macrophages, and also

secrete LINC00273, facilitating the metastasis of lung adenocarcinoma

through the Hippo signaling pathway (80). MiR-501-3p expression was

elevated, while WDR82 levels were reduced in lung cancer tissues and

cell lines. Additionally, M2-derived exosomes contributed to the

further increase in miR-501-3p levels. These exosomes, along with

their cargo of miR-501-3p, played a significant role in promoting lung

cancer cell proliferation. Exosomal miR-501-3p has been shown to

inhibit apoptotic processes, thus further enhancing lung cancer

proliferation, invasion, and metastasis (81). Besides, exosomes

secreted by M2 TAMs contribute to osimertinib resistance in non-

small cell lung cancer by modulating the MSTRG.292666.16-miR-

6836-5p-MAPK8IP3 signaling pathway (82).
3.4 TAMs promote drug resistance in lung
cancer cells

TAMs facilitate tumor growth, progression, and chemoresistance

by supplying cytokines and upregulating anti-apoptotic genes.

Treatment of murine models with CTX, PTX, or DOX increases

CD206+ TAMs, triggering revascularization and recurrence (83).

Chemotherapy-induced IL-34 augments TAM-mediated drug
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resistance (19). Furthermore, TAM-derived extracellular matrix

remodels tumor–macrophage interact ions , enhancing

chemoradiotherapy resistance (84, 85). M2-polarized TAMs secrete

growth factors and suppress cell death signaling, conferring

chemoresistance and radioprotection, ultimately leading to poor

prognosis (86). Cisplatin-resistant lung cancer cells exhibit enhanced

self-renewal and metastatic capacity by secreting macrophage

inhibitory factor (MIF), which promotes the M2 polarization of

TAMs (87). Near-infrared fluorescence (NIRF) imaging and single-

photon emission computed tomography (SPECT) imaging reveal M2

TAM infiltration in recurrent tumors and lymph node metastases,

underscoring their role in tumor recurrence and pulmonary spread

post-chemotherapy (88). P2X7 activation of STAT6/IRF4 drives M2

polarization, fueling tumor proliferation, angiogenesis, and T-cell

suppression. Inhibiting or deleting P2X7 weakens M2 TAMs,

restricting lung tumor growth while overcoming immunotherapy

and chemotherapy resistance (89). Besides, TAMs activated CSC-

related pathways might enhance drug resistance (90).
4 Major molecules regulating TAM
function in lung cancer

4.1 CSF-1/CSF-1R axis

GM-CSF governs hematopoietic cell generation and

differentiation, as well as angiogenesis. CSF-1 binds CSF-1R,

triggering the PI3K signaling cascade and further activating protein

kinase B (AKT) and mammalian target of rapamycin complex 2

(mTORC2), thereby regulating the M1/M2 polarization axis of

macrophages (91). PI3K and AKT overexpression suppresses M1

activation partly by negatively regulating the NF-kB signaling

pathway, which otherwise promotes M1 phenotypes (92). CSF-1R

also binds IL-34; elevated IL-34 and CSF-1R levels correlate with

tumor progression and poorer survival (93). Moreover, CSF-1 can

recruit and reprogram TAMs to secrete factors that facilitate tumor

growth and metastasis (94).
4.2 IL-4/IL-13 and JAK-STAT6
signaling pathway

Inflammatory factors are pivotal in inflammatory diseases

progression and significantly influence the efficacy of therapies

(95–98). IL-4 and IL-13 participate in Th2-type immune

responses (99) and drive TAMs toward an M2 phenotype that

promotes aberrant angiogenesis and tumor progression. Both

cytokines bind type I or II IL-4 receptors, activating JAKs and

subsequently phosphorylating STAT6, which forms dimers,

translocates to the nucleus, and upregulates M2-associated genes

such as Arg-1, mannose receptor c-type 1 (Mrc-1), Chil3/Ym1, and

resistin-like molecule alpha (RELM-a or Fizz-1) (100, 101). STAT6

function is also regulated by additional factors: one study found that

TRAF3 enhances STAT6 ubiquitination (K450), thereby boosting

transcriptional activity and M2 marker expression (102). In a B16

melanoma model, TRAF3 deficiency in bone marrow suppressed
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tumor growth and metastasis, underscoring STAT6’s importance in

macrophage-mediated immunosuppression.
4.3 Toll-like receptors

TLR are crucial in recognizing pathogen-associated molecular

patterns (PAMPs) and damage-associated molecular patterns

(DAMPs), playing a significant role in activating the immune

response (103). In the context of cancer, TLR signaling can

influence TAM polarization, promoting tumor progression (104).

TLRs, particularly TLR2, TLR4, and TLR7, have been shown to

modulate the immune microenvironment by skewing macrophages

toward a pro-tumoral M2 phenotype, thus enhancing immune

evasion, angiogenesis, and metastasis (105, 106). Another study

showed that combining low-toxicity IFN (IFN-g, IFN-b) with TLR

agonists increased M1 induction by up to 100-fold, suggesting novel

TLR-targeted strategies for tumor immunotherapy (107). For

instance, clinical trials indicated that the intravenous administration

of TLR agonists poly(I:C) + R848 reduced the growth of orthotopic

lung tumors through demonstrated reprogramming of interstitial

macrophages increasing the M1/M2 ratio (104).
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4.4 CD47-SIRPa

CD47 (integrin-associated protein) is a thrombospondin-family

receptor that modulates platelet activation, migration, adhesion, and

phagocytosis. Overexpressed on tumor cells, CD47 binds SIRPa on

macrophages, leading to phosphorylation of immunoreceptor

tyrosine-based inhibitory motifs (ITIMs) and inhibiting phagocytosis

(108, 109). High CD47 expression is associated with worse prognoses

in various solid tumors. In non-small cell lung cancer (NSCLC),

approximately two-thirds of tumor samples exhibit CD47

overexpression, correlating with increased SIRPa on TAMs (110).

Although CD68+ TAMs typically suggest better outcomes, high SIRPa
levels on TAMs reduce FOXP3+ TIL proportions and TIL scores,

leading to poor prognosis. In 191 resected NSCLC specimens, CD47

was more frequently overexpressed in females, never-smokers, and

lung adenocarcinoma patients, significantly correlating with EGFR

mutations but inversely with PD-L1 levels and tumor mutation

burden (111). Gefitinib-resistant lung cancer cells upregulate CD47,

impairing macrophage phagocytosis. Inhibition of CD47-SIRPa
signaling via STAT3 inhibitors enhances TAM phagocytic activity

andmitigates EGFR-TKI resistance, offering a novel treatment strategy

for patients with acquired EGFR-TKI resistance (112) (Figure 1).
FIGURE 1

The mechanisms and regulating molecules of TAMs in the progression of lung cancer.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1556209
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2025.1556209
5 TAMs as therapeutic targets in
lung cancer

TAMs play a critical role in the formation of the TME, tumor

immunity, and responses to immunotherapy, making them important

and promising therapeutic targets in lung cancer. Notably, combining

therapies targeting TAMs with other immunotherapeutic approaches

can yield superior efficacy (113, 114). Below, we introduce four

strategies for targeting TAMs.
5.1 Inhibiting TAMs recruitment

Limiting TAM infiltration requires restricting the recruitment of

circulating monocytes via factors like chemokines (e.g., CCL2),

cytokines (e.g., CSF-1), and complement mediators. In particular,

the CCL2–CCR2 and CSF-1/CSF-1R axes have garnered significant

attention. CCL2–CCR2 signaling recruits TAMs, promoting tumor

angiogenesis and growth (115). In a Lewis lung cancer model, CCR2

knockout or the CCR2 inhibitor RS504393 reduced TAM

recruitment, shifted TAMs to an M1 phenotype, and suppressed

angiogenesis and tumor progression (22). Another approach to

prevent TAM infiltration into the tumor microenvironment

involves inhibiting the CSF-1–CSF-1R axis, which is vital for TAM

differentiation, survival, and recruitment (6). CSF-1R blockade can

reduce the infiltration of TAMs mediated by immunosuppressive T

cells (116). In animal models, it has been demonstrated that small-
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molecule CSF-1R inhibitors in combination with immune checkpoint

inhibitors are currently in Phase I/II clinical trials for the treatment of

advanced breast cancer and other solid tumors (117). This finding

provides a novel perspective for targeting and inhibiting TAM

recruitment in lung cancer.
5.2 Depleting TAMs

High TAM infiltration in lung cancer correlates with poor

prognosis, though single-agent depletion strategies have shown

limited efficacy (118–120). Specifically targeting M2-like TAMs is

preferable, as broad macrophage eradication is suboptimal. For

instance, selectively depleting M2 TAMs improved survival in

tumor-bearing mice (121). The CSF-1/CSF-1R axis remains the most

explored depletion method. Blocking CSF-1R depletes macrophages in

both normal and tumor tissues, as seen with BLZ945 and PLX3397

(122). Moreover, combining CSF-1R inhibition with other treatments

yields better outcomes, enhancing CD8+ T-cell infiltration and slowing

tumor progression, especially when coupled with anti-PD-1 therapy

(114, 123). Targeting surface molecules like CD52, scavenger receptor

A, folate receptor b, and CD206 can also deplete TAMs (124, 125).
5.3 Reprogramming TAMs in lung cancer

ElevatedM2 TAM density correlates with poorer survival, whereas

higher M1 density predicts better outcomes (126, 127).
TABLE 1 Therapeutic strategies targeting TAMs in lung cancer.

Strategy Methods Examples Effects References

Inhibiting TAMs Recruitment

- Targeting chemokines and their
receptors (e.g., CCL2–CCR2 axis)
- Inhibiting cytokines (e.g., CSF-
1/CSF-1R axis)
- Blocking complement mediators

- CCR2 inhibitor RS504393
- CSF-1R inhibitors

- Reduced TAM recruitment
- Shifted TAMs to M1 phenotype
- Suppressed angiogenesis and
tumor progression

(10, 77–79)

Depleting TAMs

- Inhibiting CSF-1/CSF-1R
signaling
- Targeting surface molecules
(e.g., CD52, scavenger receptor A,
folate receptor b, CD206)

- CSF-1R inhibitors BLZ945 and
PLX3397
- Anti-CD52 antibodies

- Depletion of TAMs in tumor
and normal tissues
- Enhanced CD8+ T-cell
infiltration
- Slowed tumor progression
- Synergistic effects with anti-PD-
1 therapy

(4, 75–85)

Reprogramming TAMs

- Repolarizing M2 to M1
phenotype using agonists (e.g.,
TLR7/8 agonist R848)
- inhibitors (e.g., CSF-1/CSF-1R
inhibitors)
- Modulating TAM receptors
(Tyro3, Axl, MERTK)
- Blocking M2-
activating cytokines

- R848-loaded b-cyclodextrin
nanoparticles
- Ginsenoside Rh2
- MERTK inhibitor UNC2025
- Imatinib
- STAT6 inhibitors

- Shift from M2 to M1 phenotype
- Reduced tumor progression and
metastasis
- Enhanced therapeutic efficacy
- Inhibited M2-related
signaling pathways

(53, 86–99)

Macrophages as a Drug
Delivery System

- Direct loading of drugs onto
macrophages
- Indirect loading via
biocompatible nanomaterials
- Attaching microparticles to
macrophage surfaces
- Utilizing photothermal therapy
with nanomaterials

- Doxorubicin-loaded M1
macrophages
- Nanoparticle-conjugated TLR7/
8 agonists
- Doxorubicin-loaded graphene
oxide on macrophages

- Targeted drug delivery to
hypoxic tumor regions
- Prolonged macrophage viability
and function
- Enhanced tumor suppression
- Improved biocompatibility and
immune evasion

(100–108)
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Reprogramming M2 TAMs to M1 slows tumor progression (128).

TLR7/8 agonist R848, delivered via b-cyclodextrin nanoparticles, can

repolarize M2 TAMs, while combining R848 with anti-PD-1 further

enhances therapeutic efficacy (129). Besides depleting macrophages,

CSF-1/CSF-1R inhibitors can modulate TAM phenotypes (130, 131).

Ginsenoside Rh2 also shifts M2 to M1 macrophages, reducing NSCLC

metastasis by downregulating VEGF, MMP2, and MMP9 (132).

Nanoformulations that load macrophage-targeted agents (e.g., TLR7/

8 agonists) can overcome delivery challenges in inaccessible tumors

(133, 134). Inhibiting TAM receptors, namely Tyro3, Axl, and

MERTK, further counters M2-like polarization (135). Axl and

MERTK are overexpressed in lung cancer (136, 137), and MERTK

inhibitors (e.g., UNC2025) reduce distant metastases in NSCLC

models (138). Additionally, imatinib suppresses M2 polarization by

inhibiting STAT6 phosphorylation, preventing metastasis (139, 140).

Blocking M2-activating cytokines (IL-13, IL-4, IL-10) also enhances

efficacy, including immune checkpoint inhibitors (84), as high IL-10 in

TAMs is linked to NSCLC staging (141). Cancer cells release succinate

into the extracellular space, promoting macrophage migration and

influencing TAM polarization. This suggests that succinate functions

as an oncometabolite, potentially serving as a critical target for cancer

chemoprevention and therapeutic strategies (142).
5.4 Macrophages as a drug delivery system

Although biocompatible nanomaterials have improved

drug delivery, their limited circulation half-life remains a

hurdle. Macrophages, with longer half-lives, immune functions, and

intrinsic tumor-homing capabilities, offer a promising alternative

(143–145). In animal models, doxorubicin-loaded M1 macrophages

prolonged survival and inhibited tumor invasion (146). However,

directly loading macrophages with anti-cancer drugs may impair their

function. To circumvent this, “indirect” loading onto biocompatible

nanomaterials allows higher drug capacity while preserving

macrophage viability (147, 148). Attaching microparticles to

macrophage surfaces, rather than internalization, can further

maintain targeting efficiency (149). Photothermal therapy, which

uses light to generate cytotoxic heat, is another emerging strategy.

Nanomaterials with high photothermal conversion efficiency can be

immobilized onmacrophage membranes to enhance biocompatibility,

immune evasion, and tumor-homing (150). For instance,

doxorubicin-loaded graphene oxide on mouse macrophages

markedly suppresses tumor growth (151) (Table 1).
6 Conclusion

Lung cancer remains a leading global malignancy, with

persistently low five-year survival despite immunotherapy

advances. Increasing evidence identifies TAMs as key

immunosuppressive TME mediators driving tumor cell

proliferation, angiogenesis, metastasis, immune evasion, and drug

resistance. Their polarization state and infiltration levels strongly

correlate with prognosis; hence, inhibiting TAM aggregation,

depleting TAMs, or reprogramming M2 to M1 is critical for
Frontiers in Immunology 06
improving outcomes. Clinical trials show that combining TAM-

targeting agents with existing therapies enhances efficacy, benefiting

previously unresponsive patients. Further research is needed to

elucidate macrophage-derived cytokines, exosomes, and other

factors within the TME, potentially expanding therapeutic targets

and advancing macrophage-based drug delivery. Clarifying TAM

phenotypes and their molecular pathways is essential for

understanding lung cancer progression, informing novel

immunotherapeutic strategies, and providing key theoretical

underpinnings for developing next-generation antitumor drugs.
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