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Introduction: Sepsis, particularly sepsis-induced liver injury (SLI), exhibits acute

onset and high mortality (up to 80%). While murine models are widely used for

mechanistic studies due to limited human sample availability, their accuracy in

replicating human SLI pathophysiology remains debated.

Methods: Human SLI transcriptomes were characterized to identify core genes

and immune signatures using Venn analysis and immune infiltration profiling.

Transcriptomic features of two murine SLI models—cecal ligation and puncture

(CLP) and lipopolysaccharide (LPS) challenge—were benchmarked against

human SLI to evaluate pathophysiological relevance. Both models were then

utilized to validate core gene expression for SLI biomarker identification.

Results: Human SLI transcriptomics revealed significant enrichment in apoptotic

processes, NF-kB regulation, inflammatory responses, protein phosphorylation,

and bacterial response. Key pathways included IL-17 signaling, antigen

processing, estrogen signaling, and atherosclerosis. Immune infiltration

confirmed multifactorial immune cell involvement. Both murine models

recapitulated inflammatory and immune responses, with the LPS model

mimicking human SLI via chemotaxis, phagocytosis, NOD-like receptor

signaling, and leukocyte migration. The CLP model uniquely replicated

neutrophil chemotaxis, apoptosis, ER stress, IL-17, and TNF signaling. SOCS3

was validated as a potential SLI biomarker.

Discussion: Murine models partially replicate human SLI pathology but exhibit

distinct mechanistic emphases. Careful model selection is essential for biomarker

discovery (e.g., SOCS3) and pathogenic mechanism exploration, highlighting

inherent model limitations.
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1 Introduction

Sepsis is a common critical illness occurring in Intensive care

units (ICUs) and is defined as a life-threatening organ dysfunction

syndrome caused by dysregulation of the host response to infection

(1, 2). The liver, a target organ affected by sepsis, is a significant

contributor to patient mortality (3–5). The liver is involved in

various pathophysiological processes during sepsis, including

inflammatory and immune responses, oxidative phosphorylation,

and cell death (6–8); Due to the scarcity of human samples,

numerous studies have used the CLP and LPS models to

investigate the mechanisms. The pathogenic mechanism of these

disease models’ applicability to human disease treatment requires

further clarification. Moreover, because of the acute onset and

severe symptoms of sepsis, many studies have focused on

identifying diagnostic markers for early diagnosis and prognosis.

However, the underlying mechanisms of these markers have been

identified in only a few studies, indicating a need for

further research.

Microarray technology and bioinformatics analyses play

important roles in identifying disease characteristics and

biomarkers. By analyzing microarray data from disease models,

we used bioinformatics methods to identify key molecular targets

and signaling pathways, thereby providing new insights into the

pathogenesis, diagnosis, and treatment of the disease (9, 10). In this

study, we analyzed the GSE63311 and GSE137340 datasets obtained

from the Gene Expression Omnibus (GEO) database and identified

77 DEGs. We explored the potential pathogenesis of SLI through

Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment. Eleven core

genes were identified through protein–protein interaction (PPI)

network analysis and Cytoscape. To validate the disease model’s

consistency both in vivo and in vitro, we further elucidated the

molecular mechanisms and pathways associated with DEGs in SLI.

We conducted GO functional analysis and KEGG pathway

enrichment analysis using the GSE184167 and GSE166488 mouse

SLI datasets. In addition, we performed an immune infiltration

correlation analysis on GSE137340, which revealed a significant

association between sepsis and the immune response. Finally, we

established SLI models using the CLP method and intraperitoneal
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injection of LPS. qRT–PCR validation indicated that SOCS3 may

serve as a potential biomarker for liver injury in sepsis.
2 Methods

2.1 Microarray data

GEO (https://www.ncbi.nlm.nih.gov/geo/) is an international

public data repository (11). We downloaded four gene expression

datasets from the GEO database for this study: GSE63311 (12),

GSE137340, GSE184167 (13), GSE166488 (14), and GSE131411

(15) (The details of the datasets are shown in Table 1).

To ensure consistency, two datasets, GSE137340 and

GSE63311, were selected. The GSE137340 dataset included 22

cases collected 24 hours after sepsis diagnosis and 12 whole blood

samples from healthy controls. The GSE63311 dataset included

samples from four patients with SLI and nine healthy controls.
2.2 Identification of differentially expressed
genes

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r) is an

interactive online tool for screening DEGs between the treatment

and control groups. All DEGs screened had a p–value of <0.05 and

an absolute log2 fold-change (log2FC) > 1. Volcano plots were

generated using GraphPad to visualize the DEGs identified in all

four datasets. Venn diagrams were plotted using the online tool

bioinformatics (bioinformatics.com.cn) (16).
2.3 DEGs function and pathway
enrichment analysis

The DAVID database (https://www.david.ncifcrf.gov) contains

biological data and analysis tools (17). In this study, we utilized the

DAVID online bioinformatics database for GO functional analysis

and KEGG analysis to identify the functions of DEGs. A p–value of

<0.05 was designated as the threshold for significant enrichment.
TABLE 1 Datasets and sample information.

GEO
number

Species Sample information Microarray sequencing
platform

Publication
date (year)

Data source

GSE63311 Homo
sapiens

Whole blood; sepsis (74)
/Control (9)

Illumina Genome Analyzer IIx
(Homo sapiens)

2014 Centenary Institute, Camperdown, Australia

GSE137340 Homo
sapiens

Whole blood; sepsis (45)
/Control (12)

Illumina HumanHT-12 V4.0
expression beadchip

2022 NATIONAL INSTITUTE OF
BIOMEDICAL GENOMICS, Kalyani, India

GSE166488 Mus
musculus

Liver; LPS (5)/Sham (3) [Mouse430_2] Affymetrix Mouse
Genome 430 2.0 Array

2021 Heidelberg University, Heidelberg, Germany

GSE184167 Mus
musculus

Liver; CLP (3)/Sham (3) Illumina NovaSeq 6000
(Mus musculus)

2021 Columbia University, New York, USA

GSE131411 Homo
sapiens

Whole blood; septic shock (21)/
cardiogenic shock (11)

Illumina Genome Analyzer IIx
(Homo sapiens)

2020 SR-TIGET, Milano, Italy
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2.4 Construction and analysis of PPI
networks

The online database search tool STRING (https://www.string-

db.org) enables access to protein structure and protein–protein

association information in the genome (version 12.0) (18). We used

STRING to construct a PPI network for the DEGs by designating a

composite score greater than 0.4 as statistically significant.

Cytoscape is a bioinformatics software package used used for

biological network visualization and data integration (19). We

imported the PPI data into Cytoscape (version v3.10.0) to map

the PPI network and used the CytoHubba plugin (version 0.1)

within the software to filter out the 11 core genes using Degree >= 6

as the criterion.
2.5 Correlation analysis of core DEGs with
liver disease, infection, and immunity

The Comparative Toxicogenomics Database (CTD; https://

www.ctdbase.org/) is a publicly available digital ecosystem that

facilitates linkage between various chemicals, genes, diseases, and

phenotypes (20). We used the CTD database to analyze the

associations between the top 11 core DEGs identified and liver

diseases, infections, and immune responses.
2.6 Immune infiltration analysis

We utilized R programming language and the CIBERSORT

deconvolution algorithm to screen reliable samples with a p–value <

0.05 and assess the infiltration of 22 immune cell subsets in the

serum of sepsis patients from the GSE137340 dataset. The “ggplot2”

and “corrplot” packages in R were employed to visualize the

infi ltration levels of each immune cell subpopulation.

Additionally, the “vioplot” package was used to generate violin

plots illustrating changes in the infiltration of 22 immune cell types

between sepsis patients and healthy controls.

Finally, Spearman correlation analysis was performed to

calculate the relationships between potential biomarkers and

immune cells. The visualization of these results was carried out

using the “ggplot2” and “ggpubr” packages.
2.7 Construction of the murine sepsis
model

The SLI model was established by CLP combined with

intraperitoneal LPS injection. Male C57BL/6J mice (6-8 weeks

old, 20-25 g) were housed in specific pathogen-free (SPF) facilities

under a 12-hour light/dark cycle, with controlled temperature (25 ±

1°C), humidity (50 ± 5%), and ad libitum access to food and water.

After a 7-day acclimatization period, the mice were randomly

assigned to two groups.
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2.7.1 CLP treatment group
In the model group (n=8), mice were anesthetized by

intraperitoneal injection of sodium pentobarbital (50 mg/kg). A

1.0-cm longitudinal incision was made along the midline of the

lower abdomen. The cecum was gently exteriorized using blunt

forceps, ligated along the midpoint of cecum with 4-0 silk thread,

and punctured twice with a 21-gauge needle. Fecal contents were

gently extruded through the puncture sites to ensure patency. The

cecum was repositioned into the abdominal cavity, and the incision

was sutured in layers. Sham-operated mice (n=8) underwent

identical procedures except for cecal ligation and puncture.

Postoperatively, 1 mL of sterile saline was administered

subcutaneously in the neck region for fluid resuscitation (21).

2.7.2 LPS treatment group
Mice in the model group (n=8) received an intraperitoneal

injection of lipopolysaccharide (LPS; L2880, Sigma-Aldrich, St.

Louis, MO, USA; 20 mg/kg), while mice in the control group

(n=8) were administered an equivalent volume of phosphate-

buffered saline (PBS) (22).

At approximately 8 hours post-modeling, mice in both groups

exhibited characteristic sepsis symptoms, including fever, chills,

piloerection, lethargy, and reduced locomotor activity. Twenty-four

hours after modeling, all mice were anesthetized with sodium

pentobarbital (50 mg/kg), and retro-orbital venous plexus blood

sampling was performed. Subsequently, euthanasia was conducted

via cervical dislocation, followed by liver tissue collection. A subset

of liver samples was fixed in 4% paraformaldehyde, processed for

hematoxylin and eosin (H&E) staining, and sectioned for

histopathological evaluation. The remaining tissues were snap-

frozen in liquid nitrogen and stored at −80°C for subsequent

molecular analyses.

Serum samples were analyzed using a Hitachi automatic

biochemical analyzer (Model 3100), with reagents provided by

Mike Biotechnology Co., Ltd. The following parameters were

measured: (1) Alanine aminotransferase (ALT): Determined using

the alanine substrate method (CH0101201, Shandong, China). (2)

Aspartate aminotransferase (AST): Determined using the aspartate

substrate method (CH0101202, Shandong, China).
2.8 Quantitative real-time PCR validation
of gene expression

Total RNA was extracted from liver tissue using TRIzol

reagent (TIANGEN BIOTECH, Beijing, China), and reverse

transcription was carried out using a reverse transcription kit

from the same manufacturer. SYBR Green Mix (TIANGEN

BIOTECH, Beijing, China) was utilized for real-time polymerase

chain reaction. qRT–PCR was performed using a qTower3G real-

time fluorescent quantitative PCR detection system (Analytik Jena

AG, Germany). b-Actin expression was used as an internal

control. Fold-change in relative expression levels was

determined using the 2−DDCT method. All experiments were
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performed independently and repeated three times. The sequences

of the primers are listed in Supplementary Table S1.

2.9 Statistical analysis

GraphPad Prism software (version 9.5.1; GraphPad Software,

La Jolla, CA, USA) was utilized for the statistical analysis. All data

are presented as the means ± standard deviations (SD). A Student’s

t-test was used. All animal experiments were conducted with at least

three replicates. A p–value of less than 0.05 was considered to

indicate statistical significance.

3 Results

3.1 Identification and enrichment analysis
of DEGs in patients with SLI

The microarray results were visualized using volcano plots after

normalization with GEO2R (Figures 1A, B). Statistical analyses
Frontiers in Immunology 04
were conducted with a p–value threshold of <0.05 and an absolute

log2FC > 1. In the GSE63311 dataset, there were 93 upregulated and

92 downregulated genes, whereas the GSE137340 dataset had

10,291 upregulated and 143 downregulated genes. Venn analysis

of the two datasets identified 77 intersecting DEGs, consisting of 73

upregulated and 4 downregulated genes (Figure 1C). GO

enrichment analysis revealed that these 77 DEGs were primarily

associated with functions such as the apoptotic process and its

negative regulation, positive regulation of NF-kB transcription

factor activity, positive regulation of inflammatory response and

positive regulation of protein phosphorylation, response to bacteria

(Supplementary Figure S1A). KEGG pathway enrichment analysis

indicated that these DEGs were primarily involved in pathways

such as IL-17 signaling, antigen processing and presentation,

estrogen signaling, lipid and atherosclerosis, and hematological

disorders (Supplementary Figure S1B). Cellular components (CC)

and molecular function (MF) are shown in the supplementary

diagrams (Supplementary Figures S1C, D). A PPI network was

constructed using String and Cytoscape to visualize the
FIGURE 1

Visualization of human sepsis-associated liver injury datasets and screening of core differential genes. (A, B) The GSE63311 and GSE137340 were
visualized using volcano plots. Upregulated genes are marked in red, downregulated genes are marked in blue, and gray indicates no change in gene
expression levels. The top 10 upregulated and downregulated genes are labeled with gene symbols. (C) Venn analysis was used to compare the
GSE63311 and GSE137340 datasets. (D) A PPI network was constructed using Cytoscape to visualize the intersection of the DEGs. Individual nodes in
the PPI network were sorted based on their degree centrality, with darker colors and larger areas indicating higher centrality and greater importance.
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relationships among these 77 DEGs. Based on a degree >= 6

criterion, 11 core genes were identified (ITGAM, HSP90AA1,

CD44, MMP9, CD74, MAPK14, BCL6, FCER1G, NLRC4, S100A12

and SOCS3. Figure 1D). The correlation of these 11 DEGs with liver

disease, infection, sepsis, and immunity was assessed using the CTD

database, showing significant correlations between liver disease and

sepsis, as well as these core genes and the immune response

(Supplementary Table S2).
3.2 Immune cell infiltration analysis

Data from the GSE137340 dataset were analyzed using the

CIBERSORT Transposed Convolution method with a p–value

cutoff of < 0.05, yielding the relative proportions of 22 immune

cell infiltrations in the serum samples of 34 patients from both the

sepsis and control groups (Figure 2A). The results of the Wilcoxon

test indicated that, compared to the control group, the infiltration

rates of gd T cells, monocytes, and activated dendritic cells were

significantly increased in patients with sepsis, while the infiltration

rates of CD8 T cells, naïve CD4 T cells, regulatory T cells (Tregs),

and resting NK cells were significantly decreased (Figure 2B).

Subsequently, we analyzed the correlation between 11 core genes

and immune cells. The results revealed that, with the exception of

SOCS3, all other genes were significantly correlated with immune

cells. Specifically, ITGAM, S100A12, MAPK14, BCL6, FCER1G, and

NLRC4 showed significant positive correlations with monocytes.

Additionally, ITGAM, S100A12 and BCL6 were positively correlated

with M0 macrophages and activated dendritic cells. Conversely,

ITGAM, MMP9, S100A12, MAPK14, BCL6, FCER1G and NLRC4

demonstrated significant negative correlations with CD8 T cells.

Both ITGAM and S100A12 were significantly negatively correlated

with naïve CD4 T cells. Furthermore, ITGAM, S100A12, MAPK14

and BCL6 exhibited significant negative correlations with resting

NK cells (Figure 2C). The correlations between core genes and

immune cell infiltration reveal a complex immune landscape in

sepsis-related liver injury. Positive correlations with monocytes and

activated dendritic cells (e.g., ITGAM, S100A12, MAPK14) suggest

roles in innate immunity modulation, while negative correlations

with CD8 T cells, naïve CD4 T cells, and resting NK cells indicate

immune dysregulation and suppression of adaptive immunity.

These core genes may be key modulators in the immune

response, influencing both inflammation and immune regulation

in liver injury during sepsis.
3.3 Identification and enrichment of DEGs
in mice with SLI

3.3.1 Identification and functional enrichment of
DEGs in the CLP model

Limited availability of human tissue samples and ethical

considerations necessitate the widespread use of mouse models

for studying human disease pathogenesis. To elucidate the

mechanisms underlying SLI, we employed the CLP-induced SLI
Frontiers in Immunology 05
model, widely regarded as the “gold standard” for sepsis research

(23), to assess its accuracy in replicating human pathophysiological

changes. The GSE184167 dataset was retrieved from the GEO

database and filtered using thresholds of |log2FC| > 1 and p <

0.05, identifying 2737 upregulated and 2722 downregulated genes

(Figure 3A). Integrated GO and KEGG enrichment analyses

consistently revealed that upregulated DEGs were significantly

enriched in inflammatory responses, apoptotic processes, immune

activation pathways (e.g., IL-17 and TNF signaling), and

endoplasmic reticulum stress pathways (Figure 3C), while

downregulated DEGs predominantly clustered within critical

hepatic metabolic functions including lipid/fatty acid/steroid

metabolism and bile secretion (Figure 3D); CC and MF analyses

for this dataset are provided in Supplementary Figures S2A and

S2B. Functional assessment demonstrated that the marked

upregulation of inflammation-, apoptosis-, and immunity-

associated genes (including key mediators of IL-17/TNF

pathways) in CLP-modeled mice closely aligns with core

pathological features of human SLI—exaggerated inflammatory

responses and tissue damage (24, 25) . Concurrently,

downregulation of genes governing essential metabolic pathways

(e.g., lipid metabolism, bile secretion) precisely mirrors the

characteristic hepatocyte functional suppression observed in

human sepsis (26). Collectively, these molecular-level findings

indicate that the CLP model faithfully recapitulates key

pathophysiological mechanisms of human SLI, particularly the

core features of inflammation/immune activation coupled with

metabolic dysfunction, thereby validating its utility as an effective

tool for investigating human SLI pathogenesis.
3.3.2 Identification and functional enrichment of
DEGs using the LPS intraperitoneal injection
model

While the CLP model construction method closely resembles the

pathophysiological process of human sepsis, achieving

standardization can be challenging, and the success of the surgery

is highly dependent on the user’s technical ability (27). In contrast,

the intraperitoneal injection of LPS is widely used to generate sepsis

models. This method is more stable and triggers a more significant

inflammatory response (28). Therefore, we downloaded the

GSE166488 dataset from the GEO database and filtered the data

using an absolute log2FC > 1 and a p–value of <0.05. Upregulated and

downregulated genes numbered 1,831 and 1,979, respectively

(Figure 3B). GO enrichment analysis revealed that the upregulated

genes were primarily associated with the immune response, defense

response to viruses, acute response, inflammatory response, and the

positive regulation of it, cellular response to interferon, positive

regulation of phagocytosis, and chemotaxis (Figure 3E). The

downregulated genes were primarily focused on metabolic

processes, including lipid and fatty acid metabolism and

biosynthesis, phosphorylation, glutathione metabolism, and acetyl

coenzyme metabolism (Figure 3F). KEGG pathway enrichment

analysis revealed that the upregulated DEGs were primarily

involved in protein processing in the endoplasmic reticulum,
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complement coagulation cascade reaction, nod-like receptor

signaling pathway, and leukocyte migration (Figure 3E).

Downregulated DEGs were associated with metabolic pathways,

including carbon metabolism, the citric acid cycle, PPAR signaling

pathway, oxidative phosphorylation, and propionic acid metabolism

(Figure 3F). The CC and MF of the GSE166488 are shown in the

supplementary diagram (Supplementary Figures S2C, D). The LPS

model effectively recapitulated core inflammatory pathology of

human SLI through activation of inflammatory/immune pathways

and partial metabolic alterations. Compared to CLP, LPS

demonstrated stronger enrichment of inflammation-associated

DEGs, providing superior capability in modeling disease-specific

inflammatory responses.
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3.3.3 Both mouse models partially reproduced
the mechanism of liver injury in human sepsis

Integrated analysis reveals fundamental mechanistic

distinctions between mouse SLI models and human samples

despite lacking overlapping DEGs. Venn diagram analysis

identified 7,794 model-specific DEGs (CLP: 4,274; LPS: 1,952)

and 779 shared genes (Figures 4A–C). Shared DEGs mediate core

inflammatory/metabolic processes (e.g., acute-phase response,

neutrophil chemotaxis; Figure 4D), whereas CLP-specific DEGs

(e.g., NLRP3, CASP1, VEGFA) enrich apoptosis/angiogenesis

pathways (Figure 4E), recapitulating polymicrobial sepsis

complexity via inflammasome-mediated pyroptosis and vascular

remodeling (29). Conversely, LPS-specific DEGs (e.g., CXCL1,
FIGURE 2

Correlation of sepsis and core DEGs with immune cell infiltration. (A) Histogram showing the proportions of infiltration for 22 types of immune cells.
(B) Differences in immune infiltration between normal and septic patient sera (blue represents the normal control group, and red represents the
sepsis group. A p–value of <0.05). (C) Immune infiltration levels of the 22 immune cell types were obtained using the single-sample gene set
enrichment analysis (ssGSEA) algorithm. Lollipop plots analyzed the correlation between the expression levels of ITGAM, HSP90AA1, CD44, MMP9,
S100A12, CD74, MAPK14, BCL6, FCER1G, NLRC4, and SOCS3 and the infiltration of 22 immune cell types.
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CXCL9, CSRP3) primarily regulate TLR4/NF-kB-driven cytokine

storms (Figure 4F), enabling rapid innate immune activation ideal

for acute intervention studies (30). GSEA confirmed acute

inflammation as a shared process with model-specific signatures

(Figures 4G, H): CXCL1 dominates neutrophil recruitment in LPS

(31), while VEGFA governs CLP-specific vascular repair (32). This

functional dichotomy defines complementary model value—LPS

uniquely models cytokine-driven acute injury for therapeutic

screening (30), while CLP authentically replicates subacute repair

processes through inflammasome/angiogenesis axes (29, 32).
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3.4 SOCS3 was significantly increased in
both mouse models of SLI

To validate the core biomarkers associated with SLI, SLI models

were established using CLP and intraperitoneal injection of LPS.

The successful establishment of these models was confirmed by

measuring serum ALT and AST levels and conducting a histological

examination of the liver using H&E staining. The results

demonstrated that there was a significant increase in serum ALT

and AST levels in both models compared with the control group
FIGURE 3

Identification and correlation analysis of DEGs in SLI in the mouse CLP and LPS models. (A, B) Volcano plots of the GSE184167 and GSE166488
datasets. Gene symbols are used to label the top 10 upregulated and downregulated genes, with upregulated genes indicated in red, downregulated
genes in blue, and no change in gene expression level represented by gray. (C, D) The top 10 upregulated genes identified through BP and KEGG
pathway analysis in the GSE184167 and GSE166488 datasets. (E, F) The top 10 downregulated genes identified through BP and KEGG pathway
analysis in the GSE184167 and GSE166488 datasets.
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(Figures 5A–D, A: p < 0.0001; B: p = 0.0319; C: p < 0.0001; D: p <

0.0001). Histopathological analysis of the liver revealed disrupted

liver structure, hepatocyte swelling, necrosis, and inflammatory cell

infiltration in the experimental group compared with the control

group (Figure 5E). Eleven core genes with a connectivity degree of 6

or higher were identified (ITGAM, HSP90AA1, CD44, MMP9,

CD74, MAPK14, BCL6, FCER1G, NLRC4, SOCS3, S100A12), and

their expression was validated in two animal models using PCR,

with the exception of S100A12, which is not expressed in mice

(33).The results indicated that, among these 10 core genes, only

SOCS3 was significantly upregulated in both SLI models

(Figures 5F, G, F: p = 0.0377; G: p = 0.0080). CD44 was

differentially expressed only in the LPS group (Figures 5H, I, H:

p = 0.2432; I: p < 0.0001), whereas NLRC4 was significantly
Frontiers in Immunology 08
expressed only in the CLP group (Figures 5J, K, J: p = 0.0245; K:

p = 0.9164). The other genes exhibited no significant differences

(Supplementary Figure S6). SOCS3 may serve as a potential

biomarker for SLI.
3.5 The expression of SOCS3 in patients
with sepsis changed with time

To examine the temporal characteristics of SOCS3 expression in

patients with sepsis, we analyzed the GSE131411 dataset obtained

from the GEO database. Changes in SOCS3 expression were

determined in patients with septic shock (SS) and cardiogenic

shock (CS) at the following three time points: within 16 h of ICU
FIGURE 4

Comparison of human sepsis DEGs between DEGs from two mouse sepsis liver injury models. (A) Venn analysis of DEGs common to human sepsis and
the CLP mouse model of liver injury. (B) Venn analysis of DEGs common to human sepsis and the LPS mouse model of sepsis liver injury. (C) Venn
analysis of DEGs shared between human sepsis and the CLP mouse model of liver injury. (D) The top 10 DEGs specific to the CLP model. (E) The top 10
DEGs specific to the LPS model. (F) The shared genes between the two models based on BP and KEGG analyses. (G, H) GSEA enrichment analysis of the
intersecting genes associated with inflammatory response mechanisms in the CLP and LPS models.
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admission (T1), 48 h after study enrollment (T2), and on day 7 after

ICU admission or before discharge from the ICU (T3). The results

indicated that SOCS3 was significantly upregulated in patients with

SS compared with those with CS, with significant differences

observed at T1 (Figure 6A, SS vs. CS: T1: p = 0.0075; T2: p =

0.9079; T3: p = 0.8465). Furthermore, we evaluated the temporal
Frontiers in Immunology 09
changes in SOCS3 expression within the septic shock group at T1,

T2, and T3. SOCS3 expression exhibited the most significant

increase during the early stage of sepsis, with statistically

significant differences compared with the T2 and T3 periods

(Figure 6B, T1 vs. T2: p = 0.0052; T1 vs. T3: p = 0.0002; T2 vs.

T3: p = 0.0222).
FIGURE 5

Validation of mouse CLP models (n=3) and LPS models (n=3) and the expression of core DEGs. (A, B) Serum ALT and AST levels in the CLP group.
(C, D) Serum ALT and AST levels in the LPS group. (E) H&E-stained image of livers from the CLP and LPS groups. (F–K) Relative mRNA expression
levels of SOCS3, ITGAM, MMP9, BCL6, FCER1G in the CLP and LPS groups. *p < 0.05, **p < 0.01, ****p < 0.0001.
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4 Discussion

The pathogenesis and treatment of sepsis remain challenging.

As a main target of sepsis, the liver plays an important role in

regulating the inflammatory response and maintaining immune

homeostasis, and SLI is considered a prognostic indicator of sepsis

(34–36). Currently, sepsis has been extensively studied, but the

specific biomarkers for diagnosing and treating liver injury in sepsis

are still not well understood. At present, the clinical diagnosis of SLI

mainly relies on clinical manifestations and related biochemical

indicators [such as C-reactive protein, procalcitonin (PCT), tumor

necrosis factor a (TNF-a), and interleukin-6 (IL-6)] for

comprehensive assessment (37–40). However, these methods are

not highly sensitive, and the therapeutic effects are not ideal.

Therefore, we explored specific biomarkers for septic liver

damage and their correlation with immune cell infiltration

through comprehensive and objective biological information, with

a view to providing new insights into the detection and diagnosis

of sepsis.

The pathogenesis of SLI is driven by interconnected immune

dysregulation cascades wherein innate immune hyperactivation

manifests as monocyte-derived macrophage adherence to hepatic

sinusoids via ITGAM/CD44-mediated mechanisms (41), promoting

TLR4/NF-kB-dependent M1 polarization that amplifies cytokine

storms and mitochondrial dysfunction to directly induce hepatocyte

death (42, 43). Concurrently, MMP9-activated gd T-cell/neutrophil

axis triggers neutrophil infiltration and NETosis formation (44),

exacerbating sinusoidal obstruction and hypoxic injury. Adaptive

immunity fails through CD74/FCER1G-regulated dendritic cell and

T-cell hyperactivation (45), which disrupts antigen presentation to

induce CD8+T-cell exhaustion and Treg suppression, ultimately

crippling immune surveillance. Compounding this pathology,

insufficient IL-10 production and aberrant SOCS3 signaling impede
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anti-inflammatory M2 macrophage conversion (46), perpetuating

tissue damage. These processes collectively establish a self-

amplifying inflammation-damage-immunoparalysis cycle (38). Our

experimental models provide complementary validation: the LPS

model optimally recapitulates acute TLR4/NF-kB-dominated innate

hyperinflammation, while the CLP model more faithfully mirrors

progressive human SLI dynamics including T-cell exhaustion and

repair mechanisms. Crucially, ten hub genes (ITGAM, CD44, MMP9,

CD74, FCER1G, MAPK14, BCL6, NLRC4, S100A12) mechanistically

bridge specific immune cell subsets, confirming their roles as central

orchestrators of SLI’s immune landscape.

To further elucidate the pathogenesis of SLI, we analyzed mouse

sepsis liver injury datasets constructed using CLP and LPS models

from the GEO database. DEGs and their underlying molecular

mechanisms were compared between these datasets and human

datasets. Venn analysis revealed no overlapping DEGs between

animal models and human serum samples. However, functional

predictions showed that both mouse models contained DEGs

associated with inflammatory responses, bacterial responses, and

immune processes, which are also involved in the development of

human sepsis-induced liver injury. This suggests a common

mechanism by which these models replicate SLI, as both can

reproduce certain phenotypes of human SLI through the

processes described above. In addition, previous studies have

shown distinct characteristics between the two models, In the LPS

model, direct intraperitoneal injection of endotoxin induces a rapid

and intense inflammatory response, whereas in the CLP model,

direct exposure to the mouse’s own intestinal microbiota via the

abdominal cavity triggers sepsis and associated liver injury (27). The

latter more closely resembles the complex and diverse

pathophysiological processes of human sepsis (47, 48). Our study

further demonstrated that, compared to the LPS model, the DEGs

in the CLP model were involved in a broader range of biological
FIGURE 6

Temporal characterization of SOCS3 expression in human SLI. (A) Expression of SOCS3 in T1, T2, and T3 time points. (B) Changes in SOCS3
expression in patients with SS at T1, T2, and T3 time points. *p < 0.05, **p < 0.01, ***p < 0.001.
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processes and pathways in the progression of sepsis, including the

regulation of protein expression and transport, as well as the

initiation of cell death (49). Based on these findings, we

conc luded tha t the CLP mode l be t t e r r efl e c t s the

pathophysiological characteristics of human sepsis. Finally, we

validated the expression of core hub genes (excluding S100A12)

in the two mouse models using qRT-PCR, identifying SOCS3 as a

potential key biomarker of sepsis-induced liver injury. Additionally,

we analyzed temporal changes in SOCS3 expression during sepsis.

By comparing transcriptomic changes in whole blood from patients

with septic shock and cardiogenic shock, we observed that SOCS3

expression was significantly upregulated in the early stages of sepsis.

This further supports the hypothesis that SOCS3 may serve as a

biomarker of liver injury in human sepsis.

SOCS3 is a member of the SOCS family of proteins and acts as a

key negative regulator in various biological processes (50). Studies

have shown that SOCS3 expression exerts a protective effect on

endothelial cells during sepsis, and its deficiency leads to endothelial

dysfunction, thereby exacerbating tissue injury (51). Additionally,

SOCS3 mitigates inflammatory damage by promoting macrophage

polarization to the M2 phenotype, maintaining vascular

homeostasis, and improving survival rates in sepsis patients (52).

Moreover, SOCS3 plays a critical role in liver repair after injury by

inhibiting IL-6-induced JAK/STAT signaling, which suppresses

hepatocyte proliferation (53). Our results demonstrated that SLI

is closely associated with SOCS3 and overall immune function.

However, immune correlation analysis revealed no significant

association between SOCS3 and the 22 types of immune cells

analyzed, which contradicts findings from previous studies (54).

This discrepancy may be attributed to factors such as heterogeneity

in disease types and states, limited sample size, and variations in

computational algorithms. Further research is needed to clarify

these differences. In conclusion, SOCS3 likely plays a critical

regulatory role in the development and progression of SLI

through various mechanisms. These findings offer valuable

insights and potential directions for future therapeutic

strategies.This mechanism prevents excessive regeneration and

reduces the risk of malignant transformation. Taken together,

SOCS3 appears to play a pivotal role in regulating the

pathogenesis of SLI through various mechanisms, providing new

avenues for future therapeutic strategies. Notably, PS Grutkoski

et al. first demonstrated that SOCS3 is upregulated and exhibits

time-dependent expression in a mouse model of sepsis (55).

Consistent with this, our study confirmed the time-dependent

nature of SOCS3 expression and its association with liver injury,

offering novel insights into the diagnosis and treatment of SLI.

In summary, this study highlights that the CLP model is more

representative for studying human septicemic liver injury. Through

bioinformatics analysis, we identified and validated several hub

genes and, for the first time, proposed that SOCS3 may serve as a

biomarker for septicemia-induced liver injury. While the findings

provide valuable insights, they require further validation in larger

studies. This study has several limitations. Previous research has

demonstrated genetic overlap and functional similarities between

mouse sepsis models and LPS-induced transcriptional responses in
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human cells (56), suggesting that the transcriptional responses in

mouse sepsis models mirror those observed in humans. However, in

this study, no overlapping genes were identified between the human

and mouse sepsis datasets, likely due to the heterogeneity of human

tissue samples. Previous studies utilized human blood mononuclear

cells and mouse peritoneal macrophages, while our analysis focused

on whole human blood and mouse liver tissue, leading to differing

results.Additionally, the datasets used in this study were obtained

from public databases and were not assessed for data quality.

Variability in datasets, platforms, and statistical methods may

have influenced the reliability of the results. Furthermore,

differences in model construction methods, sample size, age, race,

and disease status may have reduced the overall integrity of the

study. Despite these limitations, this study has identified potential

biomarkers of SLI, offering valuable directions for future research

into the pathogenesis and treatment of SLI.
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