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Gender differences exist in the susceptibility, incidence, progression, and

prognosis of bacterial infections in males and females, influenced by various

factors including lifestyle and habits. Multiple reports have indicated that

estrogen plays a crucial immunomodulatory role in many pathogenic microbial

infections, highlighting a complex relationship between estrogen, its receptors,

and bacterial infections. Estrogen and its receptors regulate host immune

responses, affecting the host’s ability to clear bacteria and thus influencing the

likelihood and difficulty of infection eradication. Variations in estrogen levels may

lead to differences in the occurrence and progression of bacterial infections, with

estrogen playing varied roles in diseases caused by the same bacterial pathogens.

The interaction between estrogen and bacterial infections represents a complex

and crucial aspect of human physiology and clinical medicine. Understanding

this interaction is essential for advancing infection prevention and treatment

strategies. This article reviews the correlation and mechanisms between

estrogen and bacterial infections, emphasizing the importance of further

research in this field.
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1 Introduction

Bacterial infections pose a common yet significant health challenge, continuously

impacting global human health (1). Gender differences play a crucial role in the incidence,

severity, and prognosis of bacterial infections, thus attracting widespread attention to the

role of gender factors in infectious pathology (2). Over the past few decades, researchers

have identified numerous physiological and immunological differences related to gender (3,

4). However, in recent years, there has been a growing recognition of the role of estrogen in

modulating bacterial infections (5). Estrogen not only plays a pivotal role in the female

reproductive system but also exerts diverse physiological functions in other organs and

systems (6–8). Increasing evidence has suggested that estrogen and its receptors not only

influence the host’s susceptibility to bacterial infection and clearance capabilities but also

directly or indirectly impact bacterial growth, survival, and virulence (4, 9). Understanding
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the mechanisms of interaction between estrogen and bacterial

infections is crucial for developing more effective prevention and

treatment strategies. Therefore, this paper aims to review the latest

research progress on the role of estrogen in modulating bacterial

infections, with the hope of providing new insights and directions

for future studies.
2 Estrogen

Estrogen, a growth-inducing sex hormone, is expressed in both

males and females and exerts its effects through binding to estrogen

receptors (ER) a, b (ERa/b), as well as G protein-coupled estrogen

receptor (GPER) (10, 11). The interaction between estrogen and its

receptors is integral to immune regulation and disease development.

They influence the host’s susceptibility to various pathogens, regulate

inflammatory responses, influence the differentiation and function of

immune cells, and contribute to the initiation and progression of

autoimmune diseases (12–15). In bacterial infections, estrogen and its

receptors could impact the recognition and clearance of bacteria by

immune cells, as well as influence the development and progression

of such infections by affecting inflammatory cytokines and signaling

pathways. (Effects of Estrogen on Bacteria as Seen in Supplementary

Materials Tables 1, 2).
3 Estrogen and bacteria

3.1 Chlamydia trachomatis

C. trachomatis, a Gram-negative bacterium, primarily

parasitizes within eukaryotic cells (16). This bacterium is the

main pathogen causing trachoma and is a common pathogen of

sexually transmitted diseases globally. Infections of C. trachomatis

in the urogenital tract could lead to various diseases, including

urethritis, cervicitis, and pelvic inflammatory disease (17).

Furthermore, it can result in severe complications such as tubal

infertility and ectopic pregnancy, posing serious health issues to

patients (18). Estrogen plays a crucial role in the female

reproductive system, and variations in estrogen levels may affect

the structure and immune function of the reproductive tract,

thereby increasing the risk of C. trachomatis infection (19).

Studies have shown an association between estrogen and its

related receptors with an increased incidence of C. trachomatis

infection (20–23).

Membrane estrogen receptors (mERs) facilitate the entry of C.

trachomatis into host cells, and mER signaling promotes the

development of inclusions in C. trachomatis infection. Hormones

that enhance the C. trachomatis infection also involve stromal

signals and direct stimulation of uterine epithelial cells by

estrogen (21). Activation of mERs leads to the activation of the

phosphoinositide 3-kinase (PI3K) signaling pathway, which is

involved in cell proliferation. The C. trachomatis III effector

molecule TARP interacts with PI3K to promote infection.
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Estradiol also affects the expression of TLR4 and downstream

signaling molecules (IRAK4 and Nuclear factor kB), reducing the

gene expression of Th1-related cytokines IL-12, IL-6, TNFa, and
IFNg, resulting in incorrect recognition of C. trachomatis by

dendritic cells and thus increasing susceptibility to C. trachomatis

infection (22) (Figure 1).

After C. trachomatis infection, inhibitors of estrogen receptor

signaling reduces epithelial ER signaling exposure, affecting the

MAPK signaling pathway, including ERK phosphorylation,

regulation of downstream effector cPLA2, and the PI3K/AKT

signaling pathway and calcium mobilization, all crucial for C.

trachomatis inclusion development (19, 21).

During C. trachomatis infection, the lack of ERa alters the

shedding of C. trachomatis in the vagina. Compared to WT animals

expressing both ERs or only ERa, the progression of C. trachomatis

infection is faster, and the clearance from the reproductive tract is

more rapid in mice with only ERb (ERaKO) (20) (Figure 1). ERa
regulates T cell responses to C. trachomatis infection in mice. In

ERaKOmice infected with C. trachomatis, the expression of T cells,

FOXP3, and IFNe significantly increase. The defect of ERa
expression increases stimulation of CD4+ T cells in mice’s

macrophages. FOXP3, a transcription factor, is a critical marker

of regulatory T cells (Tregs), indicating that Tregs are also involved

in the clearance of C. trachomatis in condition of ERa
deficiency (20).

C. trachomatis infection is also considered as a major cause of

recurrent spontaneous abortion (24). Infection of the trophoblast

layer by C. trachomatis impairs cellular cholesterol biosynthesis,

depleting substrates for estrogen and progesterone synthesis,

affecting functions such as implantation and placental formation

in the trophoblast layer, thereby influencing pregnancy outcomes

(25, 26). Studies have found that decreased progesterone levels lead

to increased expression of pro-inflammatory cytokines in recurrent

spontaneous abortion associated with infection, resulting in

miscarriage by disrupting maternal tolerance of the embryo/fetus

(27). Higher susceptibility has been observed during the

proliferative phase of the menstrual cycle when estrogen levels are

elevated, while progesterone enhances the innate immune response

to C. trachomatis infection, thereby reducing susceptibility to C.

trachomatis infection (28, 29).
3.2 Lactobacillus

Lactobacillus, representative microorganisms of normal vaginal

flora, are characterized by being Gram-stain positive,

microaerophilic, acid-resistant, non-spore-forming, and capable of

producing lactic acid. In the vaginal microbiota of healthy women,

Lactobacillus dominates, accounting for over 90% of the total

vaginal flora (30, 31). Maintaining an acidic microenvironment of

the vagina inhibited the growth of pathogens, including C.

trachomatis, Neisseria gonorrhoeae (N. gonorrhoeae), and

Escherichia coli (E. coli) (32).
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During puberty, the increase in circulating estrogen promotes the

proliferation of lactobacilli, leading to the production of lactic acid and

hydrogen peroxide, which inhibited the growth of pathogens (33).

Previous studies have shown that some postmenopausal patients who

take estradiol could maintain vaginal pH around 4.5 and normal serum

estradiol levels (34). The hormonal imbalance during the female

reproductive cycle leads to bacterial vaginosis (BV), with the

imbalance of vaginal microbiota playing a role.

The incidence of urinary tract infections begin to rise during

menopause, and recurrent urinary tract infections are considered a

feature of genitourinary syndrome of menopause, characterized by

thinning of the vaginal epithelium, various symptoms associated with

vaginal atrophy, and a relative loss of lactobacilli in the vaginal

microbiota (35). The loss of estrogen during menopause lead to

changes in the vaginal microbiota of women, with a decrease in the

relative abundance of lactobacilli (36). Studies have shown that

colonization of E. coli is more frequent in women who have not

received estrogen replacement therapy, and it is negatively correlated

with the presence of lactobacilli (37, 38) (Figure 1). Estrogen stimulates

the proliferation of lactobacilli in the vaginal epithelium, reduces the

pH value, prevents excessive colonization of intestinal bacteria in the

vagina, and thus prevents urinary tract infection (39).

The use of local estrogen preparations to treat menopause-related

estrogen deficiency can reduce the incidence of recurrent urinary tract
Frontiers in Immunology 03
infection in most women and restore lactobacilli in the vagina (35).

Estrogen also lowers the pH value by stimulating the vaginal mucosa to

produce acid to maintain vaginal flora balance. In postmenopausal

women with recurrent cystitis, low-dose vaginal estrogen therapy

controls the growth of pathogens in the vagina (40). Additionally,

higher estrogen levels produced by adipose tissue increases the

glycogen content in vaginal epithelial cells. The increase in glycogen

promotes the colonization of lactobacilli and the production of lactic

acid, thus supporting a more ideal vaginal environment (41).

Research has a l so found tha t proges t e rone and

dehydroepiandrosterone (DHEA) have effects on lactobacilli.

Progesterone increases the population of lactobacilli, affecting brain

function by modulating gut microbiota and upregulating the

expression of brain-derived neurotrophic factor (BDNF) genes,

thereby alleviating depression and anxiety during menopause (42).

Additionally, DHEA lowers vaginal pH by stimulating lactobacilli,

thus relieving symptoms of atrophic vaginitis duringmenopause (43).
3.3 E. coli

E. coli is a Gram-negative rod bacterium commonly colonized

in the intestines of animals and humans. Most strains are harmless

and play important physiological roles in the intestines (44).
FIGURE 1

The figure illustrates the effects of estrogen on C. trachomatis, E. coli, Lactobacillus, S. aureus, P. aeruginosa, and H. pylori. Estrogen promotes the
growth of C. trachomatis and Lactobacillus and can also synergize with P. aeruginosa to accelerate the occurrence and development of pulmonary
cystic fibrosis. It has dual effects on S. aureus, H. pylori, and E. coli.
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However, certain strains may be pathogenic, causing various

diseases, including sepsis, diarrhea, and urinary tract infections

(UTIs) (45).

Among common urinary tract pathogens associated with the

development of UTIs, uropathogenic E. coli (UPEC) is the main

cause (23, 46). The incidence of UTIs significantly increases in

postmenopausal women. Decreased estrogen levels may promote

the colonization of UPEC in the urinary genital tract and enhance

its ability for persistent infection (47–50). UPEC infection is

included in a multi-stage infection pathway, including adhesion,

invasion, replication, and persistent infection. Studies have shown

that estrogen increases the thickness of extracel lular

glycosaminoglycan (GAG) layer on the bladder surface, affecting

the composition and sulfation status of GAG, thereby preventing

urinary tract infections caused by E. coli (51). However, some

studies have found that high-dose estrogen therapy lead to a

higher bacterial infection rate of three clinical isolates, type 1, P,

and Dr fimbriae of UPEC, in the kidneys (52) (Figure 1).

The differences in research results may be related to the

“dosage” or pathway of estrogen administration. Additionally,

studies have found that under the influence of androgens, both

males and females have exhibited increased susceptibility to urinary

tract infections caused by UPEC, and activation of the androgen

receptor (AR) have increased susceptibility to the formation of

pyelonephritis and renal abscesses resulting from E. coli

infection (53).

The recurrence rate of E. coli infection in the urethra is low

among women receiving E2 treatment, which is related to the

production of antimicrobial peptides (such as human b-defensins
HBD-1, HBD-2, ribonuclease (RNase) 7) and the stability of the

common microbiota (54). Among postmenopausal women

receiving estrogen therapy, an increase in mRNA encoding HBD-

1 and HBD-3, psoriasin, and cAMP are observed, thereby reducing

the risk of bacterial infection (55).

E2 enhances epithelial integrity by increasing the production of

antimicrobial peptides and strengthening intercellular connections,

thus promoting epithelial barrier function (55, 56). BD2, also

known as b-defensin 2, is a host defense peptide produced by

host cells with bactericidal activity against various bacteria,

including UPEC. Studies have shown that the concentration of

BD2 in the vagina increased in patients receiving estrogen therapy,

enhancing bladder innate responses and strengthening urethral

epithelial integrity to prevent invasion by pathogenic E. coli

(57) (Figure 1).

E2 also inhibits the production of IL-1b and lipopolysaccharide

(LPS)-induced inflammatory effects by E. coli. During acute E. coli

infection, estrogen restricts its proliferation and reduces residual

bacteria (55, 56). Lipocalin-2 (Lcn2) is an important molecule that

prevents bacterial infection by sequestering iron ions, and E. coli

induces the expression of Lcn2 in the endometrium. Further

research have shown that estrogen induces the expression of Lcn2

in the endometrial epithelium through ERa, thereby enhancing

resistance to E. coli infection during early pregnancy (58) (Figure 1).

E. coli may also cause bacteremia, which may lead to sepsis,

organ failure, and death when bacteria accumulate and persist in the
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body (59). Women have lower incidence and mortality rates of E.

coli bacteremia (4). Studies have shown that colonic pathogenic E.

coli in the bloodstream is rapidly phagocytosed by Kupffer cells in

female mice, while bacterial uptake is delayed in male mice (60).

There is a class of natural antibodies against colonic pathogenic E.

coli in female mouse serum but not in male mouse serum. These

antibodies are mainly composed of IgM and IgG3 subtypes, mainly

produced by B1 cells, and estrogen indirectly promotes the

production of natural antibodies by B1 cells through its effect on

peritoneal macrophages (61) (Figure 1).

Antibodies against LPS-O127 reduce inflammatory tissue

damage and provide life-saving protection in infants. Several

research have found that estrogen-mediated interactions between

peritoneal macrophages and B1 cells regulate the production of

innate antibodies against LPS-O127 (60). Therefore, estrogen-

driven natural antibodies against E. coli infection play a dual

protective role in women and their offspring.
3.4 Pseudomonas aeruginosa
(P. aeruginosa)

P. aeruginosa, is a ubiquitous Gram-negative bacillus existed in

soil, water bodies, plant surfaces, as well as on the surfaces of

humans and animals (62). It is a highly drug-resistant pathogen,

particularly common in hospital-acquired infections and

immunocompromised patients, leading to various infections

including respiratory tract infections, urinary tract infections, and

wound infections (63).

P. aeruginosa is one of the common pathogens causing

pulmonary infections in cystic fibrosis (CF) patients, seriously

impacting the health of CF patients, resulting in deteriorating

lung function, respiratory distress, acute exacerbations, chronic

inflammation, and potentially leading to pulmonary fibrosis and

airway damage, exacerbating the condition of CF patients (64, 65).

Studies have indicated a significant gender difference in cystic

fibrosis (CF). Compared to male, the survival rates of female

patients are lower and the prognosis is worse (66). Female mice

are more susceptible to P. aeruginosa infection than male mice, as

estrogen and its receptors exacerbate lung inflammation and P.

aeruginosa infection in CF patients (67). Supplementation of

estrogen in male and female mice infected with P. aeruginosa

reduce bacterial clearance ability (66).

17b-estradiol mediates neutrophil response in the environment

of P. aeruginosa infection. In ovariectomized mice treated with E2

after P. aeruginosa infection, TNF-a, KC, IL-10, and IL-6

significantly increase, along with chemoattractants including

granulocyte-macrophage colony-stimulating factor (GM-CSF),

monocyte chemoattractant protein-1 (MCP-1), macrophage

inflammatory protein-1a (MIP-1a), and MIP-1b (66, 68).

Neutrophil granule proteins myeloperoxidase (MPO) and

neutrophil elastase (NE) are significantly enriched in lung tissues

of mice treated with E2 (66). Furthermore, E2 enhances the

production of pro-inflammatory Th17 mediators (IL-23/IL-17

pathway molecules), increases granulocyte colony-stimulating
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factor (G-CSF) to stimulate the neutrophil production, induces IL-

17-mediated chemoattractant factor MIP-2 levels, recruits

neutrophils to the site of inflammation, exacerbates the severity of

P. aeruginosa pneumonia, and promotes lung tissue damage (4, 68).

Under gradually increasing E2 doses, the killing ability of

neutrophils against P. aeruginosa is inhibited (66) (Figure 1).

In female CF patients, increased levels of estradiol mediates

upregulation of secretory leukocyte protease inhibitor (SLPI)

expression via ERb, thereby inhibiting TLR-dependent IL-8

release in cystic fibrosis bronchial epithelial cells, making female

with cystic fibrosis more susceptible to infection and colonization

by P. aeruginosa (4). E2 also modulates the formation of P.

aeruginosa biofilms by affecting antimicrobial peptide lactoferrin

(LTF), a component of innate immunity that interferes with

bacterial biofilm development (68) (Figure 1). E2 treatment

significantly reduces mRNA levels of antimicrobial peptide LTF

in lung tissues and PIP in trachea, with LTF mRNA levels almost

completely eliminated after exposure to E2.

Excessive production of alginate in CF patients exacerbates

respiratory symptoms and increased the risk of respiratory

infections (69). P. aeruginosa actively metabolizes steroid

hormones and utilized estradiol as a carbon source to promote

the production of alginate (70, 71). In menstruating CF females,

circulating estradiol levels positively correlates with exacerbations,

and increased proportions of the mucoid transition of P. aeruginosa

are isolates during the period of higher estradiol levels (72). Short-

term exposure of P. aeruginosa to estradiol results in increased

hydrogen peroxide levels, and inhibits hydrogen peroxide

detoxifying enzyme activity. Estradiol promotes mucoid transition

of P. aeruginosa, increases alginate production and selectively

induces mucA gene mutations (a negative regulator of alginate

synthesis), which is due to impaired catalase activity and increased

hydrogen peroxide levels (72).Therefore, female CF patients are

infected with P. aeruginosa earlier than males, transitioning to

mucoid strains prematurely, exacerbating respiratory symptoms,

and making infections more difficult to clear (72).

The incidence of bacterial pneumonia is high in patients with

severe traumatic brain injury (TBI) (73), with P. aeruginosa being

one of the most common pathogens (74). Studies have found that P.

aeruginosa pneumonia after TBI lead to higher mortality and

reduced bacterial clearance, and gender differences are observed.

Compared to female mice, male mice have higher mortality rates

(75). There are differences between male and female macrophages,

with female macrophages secreting higher levels of TNF-a
compared to male macrophages (75). Severe TBI patients are at

higher risk of bacterial pneumonia due to immune suppression. The

administration of estradiol reduces mortality in male or

ovariectomized wild-type female mice, and increases lung

bacterial clearance, possibly mediated by differences in alveolar

macrophage function (Figure 1).

The role of estrogen in P. aeruginosa infection varies depending

on the type of disease, possibly related to estrogen dose, route of

administration, and mediated signaling pathways.
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3.5 Staphylococcus aureus

S. aureus is a prevalent Gram-positive bacterium found on the

human skin and mucous membranes. Although it is usually harmless,

S. aureus could also cause various infections, including skin infections,

food poisoning, respiratory tract infections, and sepsis (76).

As a major pathogen of global skin and soft tissue infections

(SSTIs), the toxin alpha-hemolysin (Hla) produced by S. aureus is a
key virulence factor causing skin necrosis and inflammation,

promoting invasive infections by destroying cell junctions (77–

79). Studies have shown that males are more susceptible to SSTIs

caused by S. aureus compared to females (80) (Figure 1).

Furthermore, research have found that estrogen plays an

important role in regulating the innate immune response of

females to S. aureus pathogens (14, 80). Female mice exhibit

lower levels of pro-inflammatory cytokines such as IL-1b, TNFa,
IL-6, and CXCL1 at the site of S. aureus infection, along with

stronger neutrophil bactericidal activity (80). Female mice show

estrogen-dependent reduction in skin necrosis, lower levels of local

inflammatory cytokines, and a significantly reduced bacterial

burden after infection. Additionally, in the rat uterus, E2 induces

antimicrobial peptides to inhibit the invasion of S. aureus

(55) (Figure 1).

G-1, a highly selective ligand of GPER, has been shown to

reduce the expression of the Hla receptor ADAM10 on the surface

of keratinocytes by modulating GPER, thereby limiting the

disruption of epithelial barrier integrity mediated by Hla, further
alleviating the severity of S. aureus-induced SSTIs. In the mouse

infection model, G-1 reduces the production of pro-inflammatory

cytokines and enhances the host innate immune defense against

major bacterial toxins (81) (Figure 1).

Nasal carriage of S. aureus is the most important reservoir of

this pathogen, with significant implications for pathogen

transmission and infection (82). Research has found that women

taking hormonal contraceptives are more likely to become

continuous carriers of S. aureus in the nose, and reproductive

hormone intake is correlated with the persistence of S. aureus

nasal colonization (83). However, this study does not specifically

differentiate between estrogen and progesterone contraceptives for

an in-depth investigation. While physiological concentrations of

progesterone has been found to inhibit the growth of

Staphylococcus aureus, the specific role of estrogen in nasal

colonization by S. aureus remains unclear (84).

As an opportunistic bacterium, S. aureus may also cause

anaerobic vaginitis (85). Studies suggest that ERa may be a key

factor in S. aureus -induced vaginal infections. A certain dose of E2

may promote the adhesion of S. aureus to human vaginal epithelial

cells through the ERa/FAK/Src/iNOS axis, thereby accelerating S.

aureus infection of the vagina (86) (Figure 1).

Previous studies have shown that estrogen has a dual effect on

diseases caused by S. aureus infection, and the specific role of

estrogen should be determined based on the type of disease.

Therefore, estrogen can be used as an intervention point to take
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corresponding preventive and therapeutic measures to prevent and

slow down disease progression.
3.6 Helicobacter pylori

H. pylori is a Gram-negative spiral-shaped bacterium

commonly found on the mucous membranes of the human

stomach (87), which is considered to be the major causative

factor for gastric ulcer disease and gastric cancer (88).According

to epidemiological data, the incidence of gastric cancer in humans is

predominantly higher in males, with a male-to-female ratio of

2:1 (89).

In H. pylori-induced gastric injury, pro-inflammatory Th1

cytokines including IFN-g, IL-1b, and TNF-a, along with Th17

cells, participates in the pathogenesis (90, 91). Foxp3-positive

regulatory T cells and pro-inflammatory Th17 cells play crucial

roles in the development of H. pylori-induced gastric inflammation

in mice. Studies have indicated that E2 treatment in male INS-GAS

mice infected with H. pylori can reduce mRNA levels of IFN-g and
IL-1b by upregulating gastric IL-10 activity and increase mRNA

expression of Foxp3 (92). Furthermore, E2 supplementation also

reduces gastric epithelial cell proliferation in bothH. pylori-infected

and uninfected mice (92, 93). Treatment with E2 after H. pylori

infection trigger a Th2-skewed cytokine profile in the gastric

mucosa while alleviating gastric pathology (93) (Figure 1). Studies

have also shown that the female sex hormone progesterone can

mediate anti-inflammatory responses, inhibiting the growth of H.

pylori and exerting a protective effect (94, 95).

GPER, a membrane estrogen receptor, mediates rapid non-

genomic estrogen actions by binding with estrogen on the cell

membrane (96). Cytotoxin-associated gene A (CagA) is one of the

major virulent factors produced by H. pylori (97). IL-8 is a typical

inflammatory cytokine upregulated in H. pylori infection and

correlates with the histological severity of damaged gastric mucosa

(98, 99).The activation of the CagA-mediated signaling pathway

promotes the expression of the inflammatory cytokine IL-8 via the

NF-kB pathway, leading to chronic gastritis and peptic ulcers (100)

(Figure 1). Studies have shown that GPER can downregulate IL-8

expression in gastric cell lines by inhibiting NF-kB promoter

activation induced by CagA expression, thereby mitigating

inflammation and gastric mucosal damage (100) (Figure 1).

Estrogen-related receptor gamma (ER-g) is a nuclear receptor

identified as a tumor suppressor gene in several cancers, particularly

sex-related tumors (101). In gastric cancer, ER-g binds to the Trefoil

factor 1(TFF1) promoter and induces TFF1 gene expression (102, 103).

TFF1, a tumor suppressor, is a downstream target of ER-g, and
H. pylori infection downregulates ER-g expression. NF-kB is an

inflammatory transcription regulator, and the enhanced

phosphorylation of NF-kB/p65 occurs in H. pylori infection and its

related CagA pathogenic protein (104). Research has found that ER-g
protects gastric cells fromH. pylori infection and inhibits gastric cancer

cell growth by regulating TFF1 and NF-kB (105) (Figure 1).
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H. pylori infection is also a risk factor for diffuse gastric cancer

(DGC), with higher mortality rates observed in young female DGC

patients (106, 107). Studies have found that estrogen affects DGC

organoids and directly regulates the oncogenic HOTAIR, promoting

tumorigenesis in the presence of ERa (108, 109) (Figure 1). Estrogen-

dependent activation of HOTAIR can occur in various forms, and the

Mixed Lineage Leukemia factor (MLL) family is a known ER co-

regulator. MLL1 and MLL3 bind to the promoter of the HOTAIR

gene in the presence of 17b-estradiol (110). In ERa-positive Diffuse
Gastric Cancer (DGC),H. pylori secretes CagA, which recruits the co-

regulatory factor MLL3 to promote HOTAIR transcription.

Consequently, estrogen binds to the Estrogen Response Element on

the HOTAIR promoter, thereby enhancing the expression of

oncogenic HOTAIR. This leads to the induction of epithelial-

mesenchymal transition (EMT) and stem cell phenotypes in both

diffuse gastric cancer cells and organoids, thereby accelerating the

progression of diffuse gastric cancer (109).

H. pylori also promotes the occurrence and progression of

cholangiocarcinoma. In vitro observation of human intrahepatic

biliary epithelial cells (HIBECs) reveals that H. pylori and 17b-
estradiol, either alone or in combination, promote HIBEC

proliferation, inhibit apoptosis, and induce a certain degree of

invasiveness (111) (Figure 1). In general, estrogen plays different

roles in diseases caused by H. pylori infection.
3.7 Non-tuberculous Mycobacteria and
Mycobacterium tuberculosis

NTM are a group of Gram-positive rods widely distributed in

soil, natural water, and artificial aquatic systems. Humans are often

exposed to NTM, the majority of which are non-pathogenic, but

some strains could cause human diseases (112, 113).

NTM infections lead to chronic pulmonary diseases, with NTM

lung diseases becoming increasingly common among

postmenopausal women with slender body shapes (114). Studies

have suggested that postmenopausal women with NTM lung

diseases show estrogen imbalance. Additionally, experimental

evidence suggests that estradiol can inhibit the activation of the

transcription factor NF-kB in mouse macrophages (115) (Figure 2).

NF-kB inhibition results in apoptosis of macrophages infected with

M. tuberculosis, which is a well-known mechanism of M.

tuberculosis skilling. Thus, estrogen may enhance its killing effect

by promoting the intracellular mycobacterial apoptosis (114, 116).

Lady Windermere syndrome, characterized by low body mass

index (BMI), tall stature, and a high prevalence of kyphoscoliosis,

pectus excavatum, and mitral valve prolapse, is associated with

NTM pulmonary infections (117). It is believed that estrogen

deficiency leads to immune response disorders and other aspects

of NTM, resulting in this syndrome (118). Moreover, the relative

leptin deficiency in lean individuals can lead to decreased estrogen

levels, which is another potential risk factor for NTM

infections (114).
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The prevalence and burden of nontuberculous mycobacterial

pulmonary disease (NTM-PD) are increasing globally (119). The

duration of hormone replacement therapy is positively associated

with the risk of NTM-PD in postmenopausal women (120).

Furthermore, research has found the regulatory effect of estrogen

receptors. In M. tuberculosis infection, ER-a-deficient mice produce

more infection-controlling cytokines, namely IL-18 and IFN-g (121).
M. tuberculosis is the causative agent of tuberculosis (122),

which can enter the human body through droplet transmission,

causing pulmonary tuberculosis, or invading other organs, leading

to other forms of tuberculosis, such as lymph node tuberculosis and

skeletal tuberculosis (123). After being engulfed by host cells, M.

tuberculosis replicates within the infected cells and prevents the

elimination of target bacteria by inhibiting the maturation of

phagosomes. Host cells control this evasion mechanism by

inducing autophagy, a complex cellular process that gradually

eliminated bacteria and reduce the bacterial load within infected

cells (124). Studies have shown that ER-a is a transcriptional

activator of autophagy genes, promoting the initiation and

execution of autophagy by regulating the expression of

autophagy-related genes, thereby enhancing the host’s defense

against intracellular pathogens (125). In the context of
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tracheobronchial tuberculosis infection, estradiol primarily acts

through ERa binding, affecting ROS generation and the AKT

signaling pathway, thereby inhibiting autophagy in M.

tuberculosis-infected cells and controlling the proliferation of

intracellular M. tuberculosis (126) (Figure 2).
3.8 Sepsis

Sepsis is a severe systemic inflammatory response, typically

caused by bacterial infection (127). When the body responds to the

infection, the immune system releases a large amount of chemicals

into the bloodstream, initiating an inflammatory response which

leads to systemic symptoms such as fever, accelerated heart rate,

shortness of breath, and lower blood pressure (128, 129).

Clinical studies have shown a higher incidence of sepsis in

males compared to age-matched female populations (130).

Research has indicated that agonists of ER-b provide significant

survival advantages in experimental models of bacterial sepsis,

while reducing tissue damage and decreasing levels of various

pro-inflammatory proteins (131). ER-b is present in intestinal

epithelial cells, and the gastrointestinal mucosa is a major source
FIGURE 2

The figure illustrates the effects of estrogen on 12 types of bacteria, including M. tuberculosis, Listeria, S. pneumoniae, Klebsiella, and C. difficile.
Estrogen can regulate bacterial infections through receptors and related signaling pathways. It inhibits infections caused by Klebsiella, C. difficile, S.
pneumoniae, Enterococcus, Brucella, M. tuberculosis, and C. burnetii. Conversely, it promotes infections by Listeria, N. gonorrhoeae, Salmonella,
and Nocardia. For non-tuberculous mycobacterial infections, estrogen has dual effects.
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of microbiota-derived mediators released systemically during sepsis

(132). ER-b agonists can reduce the level of circulating endotoxin

and peritonitis cytokines, decrease the number of intestinal bacteria

in the bloodstream after cecal ligation and puncture in mice,

thereby improving the results of experimental systemic infections,

and maintaining the function and structure of the gastrointestinal

mucosa (132, 133).

Heat shock protein 70 (HSP70) is a molecular chaperone

involved in heat stress, promoting protein folding and preventing

the secretion of inflammatory mediators, thereby reducing the

mortality of sepsis (134, 135). Modulation of the heme

oxygenase-1 (HO-1) pathway can offset oxidative stress, improve

myocardial function in endotoxemia, and increase survival rates in

septic mice (136). Studies have proved that estrogen receptor

modulators upregulated HSP70 and HO-1 by mediating ER-a
activation, exerting antioxidant and anti-inflammatory effects, and

alleviating the severity of sepsis (137).

In septic infections, serum haptoglobin (Hp) plays a balanced

role in maintaining the cascade of pro-inflammatory and anti-

inflammatory responses. Estrogen can regulate the increase in Hp

levels, while Hp maintains endotoxin tolerance by reducing TNFa
levels (the main mediator of cytokine storm), thereby slowing the

progression of bacterial sepsis (138).

In addition to the protective effects of estrogen in sepsis,

progesterone can also improve the sepsis syndrome by reducing

the levels of inflammatory factors IL-6 and TNF-a, and by restoring
antioxidant enzyme activity in some tissues (139).
3.9 Other bacterial infections

Listeria: Listeria monocytogenes (L. monocytogenes) is a Gram-

positive bacterium commonly found in soil, water, and animal feces.

It can cause foodborne infections, and for pregnant women,

infection with L. monocytogenes may result in miscarriage,

stillbirth, or neonatal infection (140). Studies have shown a direct

correlation between estrogen activity and increased susceptibility to

L. monocytogenes infection. Estrogen exposure inhibits the

accumulation of lymphocytes and monocytes in the peritoneal

cavity of mice, possibly mediates through the estrogen receptor

mechanism, partly via thymus regulation, and ultimately suppresses

the activation of T-cell-dependent defense mechanisms, thereby

exacerbating the infection (141) (Figure 2). Additionally, estrogen

may reduce the proliferation of antigen-sensitive T lymphocytes by

inhibiting IL-2 production, thereby weakening the host’s resistance

to L. monocytogenes (142).

Streptococcus pneumoniae: Streptococcus pneumoniae (S.

pneumoniae) is a Gram-positive bacterium commonly present in

the human upper respiratory tract and oropharynx, capable of

causing various diseases including pneumonia, otitis media,

meningitis, and sepsis (143).Female mice exhibit stronger resistance

to S. pneumoniae, with research indicating that estrogen mediates this

enhanced host resistance by affecting NOS3 in pulmonary

macrophages of female mice (144) (Figure 2). In pneumococcal

meningitis caused by S. pneumoniae infection, ER-b influences
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microglial cell status by downregulating the NF-kB signaling

pathway, promoting neuronal recovery through wound healing

mechanisms (145–147). The activation of ER-b also induces the

expression of brain-derived neurotrophic factor, a neuroprotective

factor that promotes the survival of local neurons after injury (146).

Klebsiella pneumoniae: Klebsiella pneumoniae (K. pneumoniae)

is a Gram-negative bacillus commonly found in the respiratory tract

and can cause pneumonia (148). Research suggest that E2 enhances

the transport of sIgA to the respiratory tract and increases TLR-4

expression, thereby helping to prevent K. pneumoniae-infected

pneumonia (149) (Figure 2).

K. pneumoniae is also known as a pathogen colonizing on the

skin (150). LPS delays several aspects of wound healing, inducing

excessive cell death, stalling keratinocyte activation, enhancing local

inflammation, and reducing collagen deposition (151). Studies

suggest that estrogen weakens LPS-induced inflammatory signals

through IL6 and TNFa, thereby reducing macrophage infiltration

and improving wound closure and delays epidermal regeneration

(151) (Figure 2).

Clostridium difficile: Clostridium difficile (C. difficile) is a Gram-

positive bacterium commonly found in soil, water, and feces. It

forms heat-resistant spores, which can cause C. difficile infection

(CDI), leading to gastrointestinal inflammation and symptoms such

as diarrhea, abdominal pain, and fever (152, 153). Macrophage

inflammatory protein 1a (MIP-1a) mediates CDI, which typically

results in epithelial damage and neutrophil infiltration in the

colonic mucosa of infected mice (154). Studies have shown that

soy isoflavones, acting as estrogen-like compounds, reduces

mortality in infected hamsters by inducing an anti-apoptotic

effect in epithelial cells mediated by ER/GPER/WNK1 and

inhibiting MIP-1a expression, thereby improving cecal damage

and CDI disease activity and providing protective effects against

C. difficile toxins (154, 155) (Figure 2).

N. gonorrhoeae: N. gonorrhoeae, a Gram-negative bacterium, is the

pathogen of gonorrhea, which is most commonly manifested by male

urethritis and female cervicitis or urethritis (143). Animal studies have

indicated that female mice are most susceptible to N. gonorrhoeae

infection in the early stage of estrus. The treatment of estradiol affected

the bactericidal activity of polymorphonuclear leukocytes mediates by

myeloperoxidase, enhancing the susceptibility of mice to disseminated

gonococcal infection (23, 156) (Figure 2).

Gonococcal vaginitis is the most common form of N.

gonorrhoeae infection in children after the neonatal period.

Compared to adolescents and adults, due to the low level of

estrogen, the vaginal environment of prepubertal children is

relatively normal to alkaline pH, with a thinner layer of vaginal

mucosal cells, making it easier for N. gonorrhoeae to infect and

colonize the vagina (157).

Brucella: Brucella is a genus of Gram-negative bacteria that can

cause brucellosis, which is a zoonotic disease. The bacteria are primarily

present in mammals such as cattle, sheep, and pigs, and are transmitted

to humans through contact with infected animals (158).

Osteoarticular brucellosis is the most common presentation of

active brucellosis in humans, where Brucella spp. directly or

indirectly impaired osteoblast function and induced osteoblast
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apoptosis. Furthermore, Brucella infection lead to the occurrence of

pathological osteoclasts, resulting in damage to the bones and joints

of patients with osteoarticular brucellosis (159). Studies have shown

that Brucella infection inhibited extracellular matrix deposition by

osteoblasts, while DHEA treatment can reverse this response via

estrogen receptor signaling (160). Additionally, Brucella infection of

human synovial cells induces increased expression of RANKL.

Overexpression of RANKL in pathological conditions may lead to

osteoporosis, fractures, and other skeletal diseases. Research

suggests that ER regulates osteoclast formation in Brucella-

infected synovial cells by modulating the key molecule RANKL

(161) (Figure 2). Furthermore, low estradiol levels are also an

important risk factor for osteoporosis (162).

Enterococcus: Enterococcus is a genus of Gram-positive cocci and

is commonly found in the intestines of both animals and humans.

Enterococcus causes healthcare-associated infections, especially

in patients who are already debilitated or immunocompromised

(163). Estradiol administration prevents bacteremia following

intraperitoneal inoculation of Enterococcus in ovariectomized rats

by increasing TNF-a and NO levels (4) (Figure 2).

Coxiella burnetii: Coxiella burnetii (C. burnetii), the pathogen of

Q fever, is a Gram-negative bacterium (164). Q fever is a zoonotic

infectious disease caused by C. burnetii, typically transmitted to

humans via respiratory tract or contact with infected sources.

Symptoms of Q fever usually include high fever, headache,

muscle pain, cough, and complications such as pneumonia,

hepatitis, and pericarditis may occur in severe cases (4) (Figure 2).

Studies have shown that in female mice infected with C.

burnetii, the number of granulomas in the spleen is lower

compared to that of male mice infected with C. burnetii, and

treatment with 17b-estradiol can reduce C. burnetii load and

prevent the upregulation of granuloma formation (165).

Salmonella spp.: Salmonella is a genus of Gram-negative rods

and is a common pathogen, causing various diseases such as food

poisoning and gastrointestinal infections (166).

Research indicates a significant association between estrogen

therapy and Salmonella infection. Estradiol-treated mice are more

susceptible to typhoid Salmonella than the control group, with a

higher mortality rate (167). Additionally, estrogen exposure weakens

the antibacterial effect of Salmonella in the abdominal cavity (168).

Studies have found that S. typhimurium induces hepcidin

expression, hypo-ferraemia, and ERRg expression in mice. ERRg
acts on the downstream of IL-6 and negatively impacts host defense

against infection (169) (Figure 2). Furthermore, overexpression of

ERRg induces hepcidin production and hypoferraemia, while ERRg
inverse agonists can reduce its activity. These inverse agonists

improve Salmonella-induced hepcidin expression, hypo-ferraemia,

and hepatic and splenic iron accumulation, while reducing bacterial

load, macrophage iron content, and pro-inflammatory cytokine

production, thereby enhancing host survival rates (169, 170).

Nocardia: Nocardia is a type of Gram-positive bacteria that

is typically found in soil, water, and decaying organic matter (171).

In medicine, Nocardia infections are often associated with

respiratory infections, skin infections, and infections in other

organs, often requiring long-term antibiotic treatment (172).
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Studies have found that female mice infected with Nocardia have

a higher mortality rate. E2 is found to impair the ability of mice to

clear Nocardia, as it can bind to ER-a and ER-b to facilitate the

entry of Nocardia into host cells, leading to severe cellular damage.

Additionally, E2 is observed to promote bacterial survival by

inhibiting the inflammatory response mediated by the MAPK

pathway (173) (Figure 2).

Disseminated odontogenic infections results from a large

number of bacteria entering surrounding tissues from the root

canal system, evading and disrupting local immune mechanisms.

Bacterial dissemination lead to serious complications such as

sinusitis, airway obstruction, cavernous sinus thrombosis, brain

abscess, and even death (174). Studies suggest that females may

have higher resistance to the spread of odontogenic infections

compared to males. IL-1 promotes the activity of neutrophils and

monocytes, enhancing their antimicrobial activity. Estradiol

stimulates and activates neutrophils by increasing IL-1 expression,

constituting a critical host defense mechanism against the spread of

odontogenic infections (175).
4 Conclusion

The difference in estrogen levels between men and women may

be a key factor in determining different outcomes after bacterial

infections. Estrogen influences the regulatory role of the immune

system against bacteria. In some bacterial infections, such as SSTI

induced by S. aureus, gastric cancer caused by H. pylori infection,

and bacterial infections caused by lung diseases induced by NTM,

males tend to exhibit higher susceptibility. Additionally, estrogen

can mediate the progression of diseases through estrogen receptor

signaling pathways. For example, in C. trachomatis infection,

antibodies against ERa and/or ERb can reduce the infectivity of

Chlamydia. During early pregnancy, ERa enhances resistance to E.

coli infections. Furthermore, ERb agonists lowers circulating

endotoxin levels and pro-inflammatory cytokines, reducing the

number of intestinal bacteria entering the bloodstream.

Modulating GPER alleviates the severity of skin and soft tissue

infections caused by S. aureus and mitigates the inflammatory

response and gastric mucosal damage caused by H. pylori.

Extensive clinical studies have demonstrated the therapeutic

potential of exogenous estrogen treatment. Administering

exogenous estrogen or estrogen receptor agonists is necessary for

diseases in which estrogen plays a beneficial role in bacterial

infections. The availability of these treatment modalities provides

important avenues for improving patient prognosis. Conversely,

estrogen receptor antagonists, which mediated pro-inflammatory

responses, may have beneficial therapeutic effects.

For different types of bacterial infections, individualized

treatment plans for different gender and estrogen levels may be

required. By comprehensively considering the biological effects of

estrogen and clinical research findings, we can better understand

the role of estrogen in bacterial infections and develop more

effective prevention and treatment strategies to improve the

prognosis and quality of life for patients.
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