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Gender differences exist in the susceptibility, incidence, progression, and prognosis

of diseases caused by viral infections. These differences are influenced by various

factors, including lifestyle and habits between males and females. Some reports

have pointed out that estrogen plays an important immune-modulatory role in

many viral infections. In certain viral infections, estrogen exhibits a protective and

regulatory effect, while in others, it has a synergistic and promoting effect. The

action of estrogen and its receptors affect the occurrence and prognosis of viral

infections to some extent. This article reviews the correlation and the related

mechanisms between estrogen and viral infections.
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1 Introduction

Pathogenic microorganism infections, particularly viral infections, pose a significant

threat to human health (1). In recent years, a number of emerging infectious diseases

caused by viral infections, including novel coronaviruses, influenza viruses, and others,

have emerged, leading to a major public health crisis (2, 3). Although many factors lead to

infection, epidemiological data showed that there are gender differences in many

pathogenic microorganism infections (4–7). In some viral infection, men showed higher

infection susceptibility and worse infection prognosis compared with women. While

various factors, such as variations in immune responses and lifestyle habits between

genders, may contribute to this phenomenon, growing research suggests that estrogen plays

a critical role in viral infections and the associated molecular mechanisms.

This review provides a summary of current research on estrogen-related viral infections

and the associated molecular mechanisms.
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2 Estrogen

Estrogen is a sex steroid hormone that plays a crucial role in the

development of female secondary sexual characteristics and the

regulation of the reproductive system in adult women. It also

demonstrates a wide range of functions and impacts in various

aspects (8).Several studies had indicated that virus infection

modulated the estrogen expression in host cells (9). Furthermore,

estrogen levels impact the host’s susceptibility and immune

response to viruses (10). The types of estrogen in the human

body include estrone (E1), estradiol (E2), estriol (E3) and estetrol

(E4), with estradiol being the most active (8, 11).Estrogen exerts its

biological effects primarily by binding to estrogen receptors (ERs).

The classical ERs is a nuclear receptor consisting of ERa and ERb
isoforms. Additionally, estrogen can also bind to membrane

receptors and exert indirect transcriptional regulatory functions

through the second messenger (12).
3 Estrogen and virus

3.1 Human immunodeficiency virus

HIV, a single-stranded RNA virus belonging to the lentivirus

genus of the family Retroviridae (13), causes destruction of the

human immune system, particularly CD4+ lymphocytes. This leads

to a decrease or loss of immune function and renders the body highly

vulnerable to other pathogenic microorganisms. HIV infection is

caused by one of two types of retroviruses, HIV-1 and HIV-2. HIV-1

is responsible for the majority of global HIV infections.

Global data suggests that females are more susceptible to HIV-1

infection compared to males, with the reproductive tract mucosa

serving as the portal of entry for HIV (14, 15). Estrogen therapy

enhances the natural protective barrier of the reproductive tract

tissues, effectively preventing the transmission of HIV-1 (16).

Mechanisms of estrogen action include increased production of

cervical mucus, reduced cervical ectopy, and alteration of vaginal

bacterial communities, thereby enhancing anti-HIV infectivity (17).

Studies have found that, compared to males, females exhibit

stronger interferon-inducible gene expression in response to HIV-1

infection at the same viral load levels, indicating amore robust immune

activation (18). Estrogen plays a crucial role in regulating innate

immune function, as evidenced by 17b-estradiol therapy enhancing

TLR7-dependent IFNa production in postmenopausal women

dendritic cells, thus preventing systemic infection (18). Interestingly,

estrogen exhibits protective effects against HIV-1 infection, while

progesterone increases susceptibility to HIV-1 (16, 19). Experiments

have shown that female macaques exposed to vaginal SIV are less

susceptible during the follicular phase of the menstrual cycle (when

estrogen levels are higher) compared to the luteal phase (when

progesterone levels are higher). During the proliferative phase of the

menstrual cycle, elevated progesterone levels typically suppress the

immune system, providing opportunities for virus invasion and

colonization. Therefore, the high levels of progesterone during the

luteal phase may lead to a “susceptibility window” for HIV infection,
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increasing the risk of vaginal transmission in menstruating women (20,

21). Furthermore, peak estrogen levels downregulate adhesion

molecules, reducing the recruitment of inflammatory T cells and

macrophages. Progesterone increases the expression of CCR5 on

human cervical CD4+ T cells, making females more susceptible (21).

E2 and lactobacilli alleviate the adverse effects of HIV-1 on

barrier function of epithelial cells in the reproductive tract and pro-

inflammatory cytokine production (22). Estrogen regulates innate

immune and inflammatory responses in the female genital tract

(FGT), playing a predominant role in reducing local inflammation,

and exerting significant anti-inflammatory effects on epithelial cells,

such as reducing the secretion of TNF-a, IL-1a, and IL-8 (22, 23).

Lactobacilli provide nonspecific defense in the vagina, promoting

the immune competence of FGT. Estrogen stimulates the

maturation and proliferation of vaginal epithelial cells and

accumulation of glycogen, favoring the proliferation of

lactobacilli. Lactobacilli produce lactic acid and lower pH to resist

HIV invasion (22–24).

Local application of estrogen can also increase the production of

keratin proteins in the male foreskin epithelial cells and increase the

thickness of the protective layer of epithelial cells, thereby reducing

the viral load in contact with Langerhans cells (25, 26), thus

contributing to enhanced resistance to HIV infection in males.

HIV also infects astrocytes and microglia, causing

neurotoxicity. Infected glial cells can release viral proteins, leading

to neuronal damage and resulting in cognitive impairment in

patients (13, 27). HIV-1 Tat protein activates HIV-1 LTR-

directed gene expression by directly interacting with the

transcriptional activation response (TAR) element in the long

terminal repeat (LTR) and other cis-acting elements in LTR,

thereby promoting HIV-1 infection (28, 29). Studies have shown

that physiological levels of E2 and ER-a agonists can inhibit Tat-

induced HIV LTR transcription in human astrocytes (27, 30). E2

also regulates neuronal growth by mediating neurite outgrowth and

reducing cell apoptosis signals induced by Tat via Erb (31).

Furthermore, exposure to HIV has been shown to decrease the

expression of tight junction proteins such as ZO-1, claudin-5, and

occludin, thereby disrupting the blood-brain barrier (32). Estrogen

can maintain the integrity of the blood-brain barrier by inducing

the expression of Sonic hedgehog signaling protein through the

activation of the ERa pathway (33, 34).

Estrogen can also alter neuronal anti-apoptotic signaling

pathways in a receptor-dependent manner to promote neuronal

survival, provide nutritional support to neurons and glial cells,

promote the expression of nerve growth factor and its receptor,

inhibit neuronal inflammation, and exert antioxidant and anti-

inflammatory effects (35–37). The mechanism of estrogen action is

illustrated in area A of Figure 1.
3.2 Human papilloma virus

HPV, a DNA virus belonging to the family Papillomaviridae, is

associated with various skin infections and is a major etiological

factor in cervical cancer. This virus encodes potent oncogenes E6
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and E7 (38–40). Despite numerous types of papillomaviruses

associated with reproductive tract lesions and malignancies, mere

HPV infection alone is insufficient to induce malignant

transformation (41, 42).

During HPV infection, estrogen and its receptors play pivotal

roles in the occurrence and progression of cervical cancer. Studies

indicate that elevated estrogen levels in women with high-risk HPV

infections can promote the onset and progression of cervical cancer,

with pregnant women diagnosed with cervical cancer having a

higher risk of mortality (43–45). Estrogen stimulates HPV16

transcription and increases E6/E7 mRNA levels in cervical cancer

cells. Moreover, transfection and immortalization of cells with

HPV16 increase 16a-hydroxyestrone, a mechanism through

“autocrine” means to prolong estrogen action and enhance cell

proliferation. The synergistic effects of HPV and 16a-hydroxylation
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promote cervical cancer cell proliferation. Progesterone-responsive

elements are also observed in the viral promoter region of the

HPV16 genome, where progesterone can increase HPV mRNA

levels and stimulate viral replication (42, 46–48). The loss of p53, in

conjunction with prolonged estrogen exposure and cooperation

with HPV oncogenes, promotes the development of cervical and

mammary cancers, as well as squamous cell carcinomas in the

genital tract (49–51). HPV infection is also recognized as one of the

risk factors for head and neck squamous cell carcinoma (HNSCC),

with male sex hormones exhibiting potential toxic effects in the

development and progression of HNSCC (52).

ERa is essential for the progression and maintenance of cervical

cancer in mice, mediating estrogen-stimulated MAPK/ERK signaling

pathways, thereby promoting invasion, migration, and proliferation of

cervical cancer cell lines. Blocking estrogen receptors can prevent and
FIGURE 1

Image 1 illustrates the signaling pathways mediated by estrogen and its receptors in HIV, HPV, and CVB virus infections. In HIV infection (A), estrogen
and its receptors modulate signaling pathways to counteract HIV virus-induced infection. In HPV infection (B), estrogen and its receptor-mediated
signaling pathways promote human papillomavirus infection and facilitate the occurrence and development of cervical cancer. In CVB virus infection
(C), estrogen and its receptor-mediated signaling pathways, along with macrophage polarization and dendritic cell inhibition, regulate CVB infection.
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treat cervical cancer (53–56). Estrogen can also mediate G protein-

coupled receptor 30 (GPR30) involvement in the progression of

cervical adenocarcinoma (57). GPR30 expression in normal

endometrial glands, E2 through GPR30 increases proliferation of

cervical columnar and glandular cancer cells, and induces genomic

instability exacerbating HPV infection (58). In addition to directly

promoting the growth of cervical epithelial cells, estradiol also enhances

the function of stromal and infiltrating immunosuppressive cells such

as Tregs, MDSCs, and cancer-associated fibroblasts, indirectly

promoting tumor growth (45). However, studies have also shown

that exogenous high concentrations of estradiol can inhibit the

proliferation of HeLa cells and induce apoptosis in HPV-positive

cervical cancer cells (45, 59). Dihydrotestosterone can slow down the

proliferation of transduced androgen receptor W12 cells and promote

the expression of squamous differentiation-related genes, thereby

helping to slow the development of cervical epithelial neoplasia

(60).The mechanism of estrogen action is illustrated in area B

of Figure 1.
3.3 Coxsackie virus B

CV, known as Coxsackievirus, belongs to the genus enterovirus.

It is a non-enveloped, linear, single-stranded RNA virus, which is

classified into two subtypes: group A and group B (61). Group A

consists of one serotype, while group B consists of six serotypes:

CVB1, CVB2, CVB3, CVB4, CV-B5, and CV-B6 (62).

Viral myocarditis is typically caused by viral infections, with

one of the most common pathogenic viruses being Coxsackievirus

B3 (CVB3), which exhibits gender disparities (63, 64). In males, the

incidence and mortality rates of CVB3 infection are higher, possibly

due to testosterone enhancement and estrogen suppression, leading

to the systemic progression of the disease (65, 66). Following CVB3

infection, male mice generate a virus-specific soluble T-cell

response, thereby accelerating disease progression, which may be

associated with testosterone levels, while estrogen can protect

female mice from exacerbating responses to CVB infection by

stimulating antibody production (65).

In males infected with CVB3, T cells play a significant role in

the pathogenesis of CVB3-induced myocarditis. More Th17 cells

are produced in male mice infected with CVB3, correlating with

viral load. Th17 cells adversely affect myocardial cells by promoting

virus replication and the production of pro-inflammatory cytokines

(TNF-a and IL-1b), exacerbating CVB3-induced myocarditis (66).

Compared to testosterone’s negligible effect on Th17 cell induction,

estrogen can suppress CVB3-induced Th17 cells by directly

interacting with ER-a on T cells or indirectly impairing IL-23

produced by dendritic cells (66, 67).

CVB3 stimulation induces NK cell production of IFN-g, with
male mice being more susceptible to CVB3-induced myocarditis.

High doses of estradiol during the menstrual cycle can inhibit NK

activity and its mediated cytotoxicity (68). Estrogen affects the

production of IFN-g in NK cells stimulated by CVB3 by

downregulating the expression of Th1-specific T-box transcription
Frontiers in Immunology 04
factor (T-bet), thereby reducing cellular infiltration in male mice and

preventing further myocarditis progression (63, 69).

In CVB3-induced myocarditis, there are gender differences in

macrophage infiltration phenotypes. M1-type macrophages can

produce pro-inflammatory responses and related factors, while

M2-type macrophages can produce anti-inflammatory responses

and repair damaged tissues (70). Male mice mainly exhibit M1

phenotype macrophage infiltration, while female mice mainly

exhibit M2 phenotype macrophage infiltration, and high levels of

IFN-g can also inhibit M2 polarization in male mice (71). Studies

have shown that E2 can polarize macrophages towards the M2

phenotype, thereby slowing down the progression of diseases

induced by CVB infection (72). Additionally, autophagy can

improve cardiac function by limiting myocardial cell death during

acute ischemia-reperfusion injury (73–75), with studies indicating

that GPR30 can regulate autophagy via the AKT/mTOR signaling

pathway to protect myocardial cells (76). The mechanism of

estrogen action is illustrated in area C of Figure 1.
3.4 Hepatitis virus

Hepatitis viruses are the primary pathogens responsible for viral

hepatitis. Among them, HAV, HBV, HCV, HDV, and HEV

constitute the major global burden of viral hepatitis (77, 78).

Research has identified a correlation between estrogen and the

infections caused by Hepatitis B virus (HBV), Hepatitis C virus

(HCV) and Hepatitis E virus (HEV) (79).

HBV infection leads to hepatocellular degeneration and

necrosis, accompanied by varying degrees of inflammatory cell

infiltration, which may progress to hepatitis, cirrhosis, and even

hepatocellular carcinoma (HCC) (80). Epidemiological

investigations indicate that the incidence and prognosis of HBV-

related cirrhosis (HBV-LC) and hepatocellular carcinoma (HBV-

HCC) are more severe in males and postmenopausal females,

possibly due to changes in estrogen levels (79, 81, 82).

HBV affects mitochondrial function to generate reactive oxygen

species (ROS) altering the redox state of cells and activate

transcription factors to influence virus replication (83). Studies

have shown that ER-a can reduce the DNA binding capacity of

HNF-4a to the core region of enhancer I, thereby reducing viral

load and decreasing the incidence of liver cancer in females infected

with HBV (80, 84, 85). Additionally, E2 can protect damaged liver

cells by inhibiting the activity of NADH/NADPH oxidase, thereby

preventing the secretion of reactive oxygen species (ROS) and TGF-

b (81, 86).

Estrogen can enhance the immune activity of NK cells in

women infected with HBV through multiple pathways, helping

the body clear the virus (87). E2 can also regulate cytokines,

attenuate the induction of redox-sensitive transcription factors,

and alleviate HBV-related liver damage to slow disease

progression (81, 88). The sodium taurocholate cotransporting

polypeptide (NTCP) is a functional receptor for HBV infection of

liver cells (89). Estrogen can downregulate the expression of NTCP
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on the surface of liver cells in HBV patients, thereby inhibiting the

ability of HBV to infect liver cells (90).

E2 is also considered a protective factor for the progression of

fibrosis in patients with chronic hepatitis (91). HBV infection

activates hepatic stellate cells, leading to their transformation into

myofibroblast-like cells (92). E2 can inhibit the activation of hepatic

stellate cells (HSCs) and thus suppress liver fibrosis (81). Chronic

HBV infection can cause hepatic steatosis, and the accumulation of

hepatic lipids can affect liver fibrosis, inflammation, apoptosis, and

cancer (81, 93, 94). Estrogen prevents liver fibrosis caused by

hepatic steatosis by altering fat distribution in men to more

closely resemble the subcutaneous fat distribution in women (95).

HBV-related HCC is a severe consequence of chronic HBV

infection, and estrogen plays an important role in the development

of HCC (80). Constitutive activation of the transcription factor

STAT3 is observed in the liver tissues and HCC cell lines of nearly

half of HCC patients, and it is an important factor inducing cell death

(96, 97). Estrogen plays an anticancer or antitumor role by mediating

ER-a to inhibit the activation of NF-kB and the release of IL-6, and

by attenuating the sustained activity of STAT3 in liver cells (80). In

addition, ER-a can inhibit the activity of STAT3 by enhancing

protein tyrosine phosphatase receptor O (PTPRO) and the tumor

suppressor gene SORBS3a on chromosome 8. The NLR family pyrin

domain containing 3 (NLRP3) inflammasome is a critical factor in

HCC tissue (98). NLRP3 inflammasome is regulated by the ERb/
mitogen-activated protein kinase (MAPK) pathway, and E2 regulates

this pathway to inhibit the proliferation, migration, and colony

formation ability of HCC cells (80). Furthermore, estrogen can

inhibit the activation of inflammasomes and the transformation

activation of tumor-associated macrophages through its receptors,

thereby suppressing the growth of HCC (99, 100).

Hepatitis C virus (HCV) is a positive-sense RNA virus that infects

the host and leads to the development of hepatitis C. The progression

of liver fibrosis and cirrhosis associated with HCV infection is closely

related to the development of chronic liver diseases, ultimately

culminating in hepatocellular carcinoma (101, 102). Studies have

demonstrated that females infected with HCV exhibit higher rates of

viral clearance and slower disease progression, indicating a protective

role of estrogen in the chronic course of hepatitis C (103, 104). Some

protective mechanisms parallel those observed in chronic hepatitis B

virus infection: estrogen can inhibit the proliferation and fibrosis of

hepatic stellate cells (105).

17b-Estradiol can regulate hepatic cell type I interferon to

control HCV infection and mediate ERa inhibition of mature

HCV viral particle production (79, 104, 106). Additionally, 17b-
estradiol can interfere with the HCV lifecycle through its

intracellular receptors, disrupting both early (viral entry) and late

(assembly/release) stages of the HCV lifecycle, significantly

reducing particle release (107). G protein-coupled estrogen

receptor 1 (GPER) is a membrane receptor that specifically binds

estrogen and exerts rapid effects on target cells (12). HCV can enter

cells via the tight junction protein occludin. Estrogen can bind to

GPER, inducing metalloproteinase 9 (MMP) cleavage of tight

junction protein occludin to inhibit HCV entry into hepatocytes
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(108). Estrogen also activates the sterol regulatory element-binding

protein (SREBP) pathway, which may interfere with the viral release

stage (109). SREBP can regulate microsomal triglyceride transfer

protein (MTP), affecting the proper release of infectious particles

and regulating apolipoprotein on newly formed particles (110–112).

Research suggests that E2 prevents the accumulation of

monocytes and macrophages and suppresses the production of

pro-inflammatory cytokines during the course of persistent liver

damage caused by HCV through ER. Conversely, progesterone

enhances the accumulation of inflammatory response cells and

their cytokine production to counteract the positive effects of E2

(113). Testosterone also accelerates the progression of hepatitis C. A

cross-sectional study involving male veterans with chronic HCV

infection revealed that elevated serum total testosterone increases

the risk of advanced HCV infection activity and liver fibrosis (114).

Hepatitis E virus (HEV) is a positive-sense RNA virus belonging

to the family Hepeviridae, widely recognized as a major etiological

agent of acute viral hepatitis worldwide (115). Infection with HEV can

lead to high mortality rates and diffuse hepatic failure, with elevated

levels of estrogen during pregnancy associated with increased HEV

titers, exacerbating the infection (116, 117). Elevated estrogen levels

and its metabolites exert inhibitory effects on hepatocytes, rendering

them more susceptible to hepatic dysfunction/failure upon exposure

to infectious pathogens (118–120).

In pregnant women infected with HEV, elevated estrogen levels

result in placental dysfunction, leading to preterm birth, low birth

weight, and fetal death (121, 122). Studies indicate that in HEV

infection, estrogen and ERa sustained activation interact with HEV

and enhance infection through the cAMPK-PKA-CREB and PI3K-

AKT-mTOR signaling pathways, thereby increasing HEV mRNA

and protein levels (116, 119, 123).

Furthermore, estradiol inhibits IFN-mediated antiviral activity

within the liver and mediates ERa suppression of the host’s innate

immune response during HEV infection to promote HEV infection

(117, 122–124). Progesterone also influences the progression of

hepatitis E. Pregnant women with fulminant liver failure exhibit

elevated levels of progesterone and hepatitis E virus RNA. Studies

have reported that progesterone can stimulate ROS production,

promote HSCs activation, transforming growth factor expression,

and extracellular collagen formation, which may also be critical

factors in promoting hepatocellular carcinoma development (125).

The mechanism of estrogen action is illustrated in Figure 2.
3.5 Influenza A virus

Influenza virus is a common respiratory virus belonging to the

Orthomyxoviridae family, categorized into four types: A, B, C, and

D. Influenza A virus (IAV) is highly pathogenic, causing damage to

lung epithelial cells and potentially leading to severe pneumonia,

respiratory failure, and acute respiratory distress syndrome (126–

130). Female prognosis with IAV infection tends to be worse, often

associated with decreased body temperature and significant weight

loss (131–134). Despite similar viral titers between genders in lung
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tissues, females exhibit higher levels of pro-inflammatory cytokines

and chemokines, such as TNF-a, IFN-g, IL-6, and CCL2 (133, 135–

137). These inflammatory responses may lead to cytokine storms,

significantly increasing morbidity and mortality associated with

IAV infection (138–142).

IAV infection also impairs ovarian function and decreases estrogen

and progesterone levels in female mice, with pregnancy being a risk

factor for severe outcomes related to influenza (132, 143). The role of

estrogen in IAV infection is mediated through pro-inflammatory

responses, where low concentrations of estradiol promote excessive

inflammation and disease progression (144). However, high-dose

estradiol exerts anti-inflammatory effects by inhibiting NF-kB

transcriptional activity and mediating the ERa signaling pathway,

suppressing the transcription of pro-inflammatory genes and

cytokine production, thereby reducing the production of lung TNF-

a and CCL2 and improving survival rates (145).
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Physiological concentrations of progesterone can also promote

faster repair of damaged lung tissues to prevent fatal and sublethal

IAV infections (132). The mechanism primarily involves

progesterone promoting higher concentrations of anti-

inflammatory cytokines and lower concentrations of pro-

inflammatory cytokines, reducing nitric oxide production, while

maintaining macrophages and dendritic cells in a less activated

state, thereby exerting protective effects during IAV infection

(146–149).

Studies have shown that in lung tissues infected with the

influenza virus, males exhibit faster resolution of inflammation

and tissue repair compared to females, possibly due to elevated

levels of certain growth factor proteins and testosterone levels in

males (150). Testosterone can promote the contraction of

pneumonia inflammatory monocytes during the peak of the

disease and control the frequency of lung-specific CD8+ T cells
FIGURE 2

Image 2 depicts the role of estrogen in hepatitis virus infections. HBV, HCV, and HEV. In HBV infection (A), estrogen-mediated receptors inhibit HBV
entry into cells and its viral replication, as well as transcription factor activity in hepatoma cells. In HCV infection (B), estrogen and its receptors
regulate signaling pathways and interfere with interferon affecting the release of viral particles and inflammatory cell aggregation. In HEV infection
(C), estrogen-mediated receptor-regulated signaling pathways promote HEV infection.
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and eosinophils, thereby improving the outcome of IAV

infection (151).
3.6 Severe acute respiratory syndrome
coronavirus 2

SARS-CoV-2, a member of the Coronaviridae family, is an RNA

virus with high transmissibility and pathogenicity. It emerged in

late 2019, precipitating the global COVID-19 pandemic. COVID-19

manifests as pulmonary inflammation and acute respiratory distress

syndrome, posing significant threats to human health and public

safety (152, 153). Epidemiological data indicate gender disparities in

the incidence and mortality rates of COVID-19, with males

exhibiting higher rates of infection, mortality, and disease severity

compared to females (154). Studies suggest that estrogen and its

receptors contribute to this gender difference, exerting effects

through various mechanisms such as modulating the cellular

entry of SARS-CoV-2, the immune response, and influencing

coagulation function (155).

Angiotensin-converting enzyme 2 (ACE2) is expressed in

various epithelial cells, including those in the lungs and

respiratory tract, where it regulates fluid balance and the renin-

angiotensin-aldosterone system (RAAS) (154, 156). SARS-CoV-2

can bind to ACE2 to enter cells, concurrently downregulating ACE2

expression, leading to an imbalance between ACE2 and Ang II

levels, affecting the human RAAS system (157). Additionally, the

spike protein of SARS-CoV-2 interacts with ACE2, facilitating

membrane fusion and releasing viral RNA by binding to ACE2

on the host cell surface, thereby accelerating the progression of

respiratory diseases (154, 158). Estrogen-responsive elements are

present in the promoter region of ACE2, exerting their effects by

regulating ACE2 gene expression, resulting in lower ACE2

expression levels in the lungs of females compared to males,

thereby reducing interactions with the viral spike protein (159,

160). ACE2 glycosylation can enhance the stability and affinity of

virus spike protein binding to host cell receptors. Estrogen, by

binding to almost all sites including ACE2 glycan, inhibits host viral

infection, reducing receptor surface energy, making it less prone to

interact with the virus (161).

Estrogen also exerts anti-inflammatory effects by modulating

innate and adaptive immunity, thereby inhibiting COVID-19

progression. SARS-CoV-2 infection leads to increased levels of

Th1 cytokines interferons, inflammatory cytokines, and monocyte

chemoattractant protein-1 (MCP-1) (162, 163). These cytokine

storms activate monocytes/macrophages and neutrophils, leading

to multi-organ failure, acute respiratory distress syndrome, and

disseminated intravascular coagulation (158). Studies indicate that

estrogen therapy attenuates MCP-1 expression in the blood,

alleviates endothelial dysfunction, thereby inhibiting the

occurrence of inflammatory responses and improving trauma

outcomes (164). Infected lung epithelial cells produce IL-6, IL-1b,
and IFN-I/III, which induce inflammatory programs in
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macrophages and recruit inflammatory monocytes, granulocytes,

and lymphocytes from circulating blood, causing inflammatory

responses (165). Estrogen receptors (ERs) are transcription factors

crucial in regulating immune cell development and both innate and

adaptive immune pathways (166, 167). High concentrations of

estrogen upregulate ER signaling, suppress cytokine storms, and

clear accumulated inflammatory cells (168).

In vitro experiments suggest that estrogen therapy can also regulate

the NF-kB signaling pathway and the production of IL-6 and TNF-a
(164, 166). E2 downregulates the expression of monocyte chemotactic

factor receptors 2 (CCR2) and 3 (CXCR3) in mice, reducing monocyte

recruitment (169). Moreover, estrogen inhibits the production of pro-

inflammatory cytokines (including IL-6, IL-1b, and TNF-a) by

monocytes and macrophages, exerting innate immune anti-

inflammatory effects, while also preventing the migration of

neutrophils and monocytes, among other innate immune cells, to the

inflammatory area, thereby slowing disease progression (153).

Most severe COVID-19 patients exhibit reduced T

lymphocytes. E2 promotes extrathymic T cell differentiation,

affecting thymic tissue cell growth, and plays a role in immune

system regulation. Specifically, estrogen alters the number and

function of peripheral blood T lymphocytes through the sex

hormone receptor pathway and conveys relevant information to

the immune system (170). Maintenance of immune function

typically relies on moderate lymphocyte apoptosis and Th1/Th2

balance, where Th1 and Th2 mutually inhibit each other (171).

COVID-19 pathogenesis is complex, but characterized by Th1/

Th17 immune responses. Overactivation of Th1/Th17 cells leads to

the release of pro-inflammatory cytokines, resulting in lung injury

(172). Th2-type immunity and regulatory T cells (Tregs) have the

ability to alleviate systemic inflammation and complications.

Estrogen therapy reduces the secretion of Th1 cytokine IFN-g and
promotes the secretion of Th2 cytokine IL-4, thereby correcting

Th1/Th2 imbalance and enhancing the body’s ability to combat

extracellular microbial infections (173). Tregs limit immune

pathological reactions in the lungs of respiratory virus-infected

patients. Tregs are significantly reduced in COVID-19 patients,

estrogen promoting Treg cell expansion playing a protective role in

SARS-CoV-2 infection (174, 175).

In terms of cellular immunity, estrogen stimulates plasma cells

to produce immunoglobulins, regulates B cell maturation,

upregulates the expression of pro-B cell survival mediators, and

downregulates the expression of pro-B cell apoptosis mediators,

thereby slowing SARS-CoV-2 infection (176). Estrogen also

regulates the number of eosinophils and increases their migration,

adhesion, survival, and degranulation in vivo and in vitro, affecting

adaptive immunity (169, 177). Eosinophils can produce antiviral

molecules and participate in the adaptive immune response caused

by SARS-CoV-2 (178).

Due to the highly inflammatory response, platelet activation,

endothelial dysfunction, and congestion, COVID-19 patients are

prone to thrombotic diseases (179). Estrogen activates endothelial

nitric oxide synthase transcription by binding to classical ER or
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GPR30, upregulating nitric oxide expression, maintaining endothelial

homeostasis, and vasodilation (180). In vitro experiments have also

shown that estrogen inhibits platelet aggregation by promoting the

efflux or reuptake activity of Ca2+ (181).

SARS-CoV-2 infection is related not only to estrogen but also to

testosterone and progesterone. High levels of testosterone promote

virus entry, adversely affecting male resistance to COVID-19 (182).

Transmembrane serine protease 2 (TMPRSS2) can cleave ACE2

and promote virus entry into host cells (183, 184). Androgen

receptor activity is necessary for TMPRSS2 gene transcription,

with high levels of testosterone upregulating its expression,

making males more susceptible to COVID-19 (185). Unlike

testosterone, progesterone has a protective effect in SARS-CoV-2

infection. Progesterone can promote CD4+ T cell bias from Th1 to

Th2, promote anti-inflammatory responses, and regulate Siglec

receptor to exert direct antiviral effects (186, 187). The

mechanism of estrogen action is illustrated in area B of

supplementary figure.
4 Conclusion

Gender-based disparities in disease incidence and mortality

following viral infections have been extensively documented, with

variations in hormonal profiles between males and females and the

differential involvement of hormones in response mechanisms (7,

188). Hormones also exhibit synergistic and antagonistic

interactions. Evidence suggests estrogen’s regulatory role in

human susceptibility to viruses and immune responses (189, 190).

Disparities in estrogen levels between genders and the pathways

mediated by hormones may be pivotal factors in the divergent

outcomes post-viral infection. As previously mentioned, males

demonstrate heightened susceptibility, severe illness, and poorer

prognoses across most viral infections. Estrogen exerts protective

effects post-infection, attenuating disease onset and progression.

However, recent studies have unveiled estrogen’s synergistic role

with human papillomavirus (HPV) in promoting cervical

carcinogenesis. Furthermore, elevated estrogen levels and ERa
activation during pregnancy facilitate hepatitis E virus (HEV)

infection in females. The protective effects of estrogen are

typically realized through immunomodulation and anti-

inflammatory actions (145, 189). Estrogen also influences

macrophage classification, promoting an increase in M2

macrophage numbers, thereby aiding in disease control (191).

Estrogen typically necessitates ER binding to modulate the

estrogen receptor signaling pathway, thereby further regulating

other signaling pathways. Apart from its anti-inflammatory

effects, estrogen exhibits varied protective effects against different

viral infections.

Numerous clinical studies have substantiated the therapeutic

potential of exogenous estrogen therapy. Exogenous estrogen or

ERa agonist therapy may be necessary for diseases where estrogen
Frontiers in Immunology 08
confers beneficial effects in viral infections (192–194). Conversely,

ERa antagonists may hold therapeutic benefits for HPV, HEV, and

other viruses. Future research should delve into elucidating the

specific biological mechanisms of estrogen in viral infections,

exploring improved estrogen therapy methods, including dosage,

administration routes, and more appropriate targets, while

balancing these aspects with other health risks.
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SUPPLEMENTARY FIGURE 1

The role of estrogen in influenza virus and SARS-CoV-2 infections. In

influenza virus A (IVA) infection (A), low concentrations of estrogen
promote the release of inflammatory factors, while high concentrations of

estrogen, mediated by its receptors, inhibit the release of inflammatory
factors through signaling pathways. In SARS-CoV-2 infection (B), estrogen
and its receptor regulate signaling pathways and immune cells and proteins to

counteract viral infection.
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