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Lung diseases, including acute lung injury (ALI) and acute respiratory distress

syndrome (ARDS), are associated with various etiological factors and are

characterized by high mortality rates. Current treatment strategies primarily

focus on lung-protective ventilation and careful fluid management. Despite

over 50 years of basic and clinical research, effective treatment options remain

limited, and the search for novel strategies continues. Traditionally, platelets have

been viewed primarily as contributors to blood coagulation; however, recent

research has revealed their significant role in inflammation and immune

regulation. While the relationship between platelet count and ALI/ARDS has

remained unclear, emerging studies highlight the “dual role” of platelets in these

conditions. On one hand, platelets interact with neutrophils to form neutrophil

extracellular traps (NETs), promoting immune thrombosis and exacerbating lung

inflammation. On the other hand, platelets also play a protective role by

modulating inflammation, promoting regulatory T cell (Treg) activity, and

assisting in alveolar macrophage reprogramming. This dual functionality of

platelets has important implications for the pathogenesis and resolution of ALI/

ARDS. This review examines the multifaceted roles of platelets in ALI/ARDS,

focusing on their immunomodulatory effects, the platelet-neutrophil interaction,

and the critical involvement of platelet-Treg cell complexes in shaping the

inflammatory environment in ALI.
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1 Introduction

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) present clinically as

rapid-onset respiratory failure, with a mortality rate reaching approximately 40% in severe cases

(1, 2). Recent epidemiological studies estimate the global incidence of ARDS to range from 10 to

86 cases per 100,000 people per year, depending on population demographics and diagnostic

criteria (3, 4). Despite advances in intensive care, ARDS remains associated with substantial

morbidity andmortality, with hospital mortality rates ranging from 30% to over 40%, particularly

in moderate-to-severe cases (5). Even with optimal supportive care, a major clinical trial reported

a 42.8% mortality rate by day 90 in patients with moderate-to-severe ARDS, underscoring the

urgent need for improved therapeutic strategies (6). A variety of precipitating factors, including
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severe infections, inhalational lung injuries, ischemia-reperfusion events,

multi-trauma, extensive blood transfusions, and acute pancreatitis, can

directly or indirectly damage lung tissue or associated vasculature, often

serving as precursors to the rapid onset of respiratory failure (7). A

marked increase in ARDS cases was observed during the coronavirus

disease 2019 (COVID-19) pandemic, caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), underscoring ARDS as a

critical global health challenge (8).

The concept of ALI and ARDS was first introduced by

Ashbaugh et al. in 1967 (9). In 1994, a collaboration between

European and American experts established diagnostic criteria for

ALI and ARDS, specifying the presence of acute bilateral lung

infiltrates on chest imaging, no evidence of elevated left atrial

pressure, and a ratio of arterial oxygen partial pressure to

fractional inspired oxygen (PaO2/FiO2) ≤ 300 mmHg for ALI or

< 200 mmHg for ARDS (10, 11). The Berlin definition, introduced

in 2012, further refined these parameters by standardizing the

grading of ARDS severity based on oxygenation levels: mild (200

< PaO2/FiO2 ≤ 300 mmHg), moderate (100 < PaO2/FiO2 ≤ 200

mmHg), and severe (PaO2/FiO2 ≤ 100 mmHg). This updated

framework also provided objective diagnostic tools and

emphasized clinical markers, addressing limitations in the earlier

US-European Consensus Conference criteria (12). Despite these

advancements, the clinical mortality rate for ALI and ARDS

remains alarmingly high, with treatment options largely limited to

supportive care. Current approaches focus primarily on protective

mechanical ventilation, corticosteroid-assisted fluid management,

and interventions targeting the underlying cause (13, 14). However,

even with optimal supportive care, a major clinical trial reported a

42.8% mortality rate by day 90 in patients with moderate-to-severe

ARDS (15). Although mechanical ventilation is indispensable, it is

associated with risks such as ventilator-induced ALI (VILI), which

exacerbates inflammation and may increase the likelihood of

pulmonary fibrosis (16, 17). These challenges highlight the need

for a deeper understanding of the complex pathogenesis of ALI and

ARDS, as well as for developing novel therapeutic strategies.

Recent studies suggest that ARDS is not a single disease entity but

rather a syndrome composed of distinct phenotypic subgroups that

exhibit different inflammatory responses, clinical outcomes, and

treatment responses (18, 19). While traditional clinical trials have

treated ARDS as a homogeneous condition, emerging evidence

supports the need for a phenotype-driven approach to improve

patient selection and therapeutic efficacy. Genome-wide association

studies (GWAS) have identified platelet count as a key intermediate

phenotype in ARDS, linking platelet activation to disease severity and

genetic susceptibility (20). Moreover, phenotypic variability has

significantly influenced the success rates of clinical trials evaluating

novel ARDS treatments, highlighting the necessity of patient enrichment

strategies to enhance study design and improve therapeutic targeting

(21). Integrating genetic and phenotypic stratification into ARDS

research and clinical management may lead to more precise and

effective interventions, ultimately improving patient outcomes.

Excessive inflammatory responses are central to the pathogenesis

of ALI and ARDS, leading to a massive influx of neutrophils,

macrophages, and other inflammatory cells that cause extensive
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damage to pulmonary vascular endothelial and alveolar epithelial

barriers (22, 23). Platelets, long recognized for their role in

coagulation, have recently emerged as key mediators of

inflammation and immune regulation (24). Increasing evidence

suggests that platelets interact closely with neutrophils to form

platelet-neutrophil complexes, which amplify inflammatory

cascades and contribute to tissue damage (25). For instance,

Semaphorin 7A (Sema7A), a glycosylphosphatidylinositol-anchored

protein, interacts with PlexinC1 receptors on neutrophils, enhancing

neutrophil activation, chemotaxis, and adhesion (26). This

interaction facilitates the formation of platelet-neutrophil

aggregates, which promote the release of neutrophil extracellular

traps (NETs), a process closely linked to endothelial cell injury and

alveolar-capillary barrier disruption (26, 27). NETs, though initially

protective by capturing pathogens, release cytotoxic histones and

proteases that exacerbate pulmonary inflammation, edema, and

tissue damage (28). The Sema7A-PlexinC1 axis has also been

shown to enhance neutrophil transmigration across the endothelial

barrier, further reinforcing the role of platelet-neutrophil interactions

in ALI and ARDS (26).

Platelets store and release a wide range of inflammatory

mediators, including cytokines and chemokines, which propagate

the immune response upon activation (29). For example, activated

platelets release factors such as P-selectin, platelet factor 4 (CXCL4),

and interleukin-1b (IL-1b), which recruit neutrophils to sites of

injury and amplify leukocyte aggregation (29). Platelet-endothelial

interactions also exacerbate inflammation by increasing vascular

permeability and disrupting the alveolar-capillary barrier, further

contributing to pulmonary edema and impaired gas exchange (30).

Consequently, platelets are often regarded as amplifiers of ALI and

ARDS, driving hyperreactive inflammatory cascades (31). However,

in addition to their well-characterized pro-inflammatory role,

platelets are increasingly recognized as key regulators of immune

balance through their interactions with various immune cells,

including regulatory T cells (Tregs) and alveolar macrophages

(30, 32). These interactions contribute not only to modulating

inflammatory responses but also to promoting tissue repair and

resolution of ALI. While the immunoregulatory functions of

platelets have gained attention in recent years, the precise

molecular mechanisms governing these processes remain

incompletely understood, highlighting the need for further

investigation. Earlier reviews, such as the work by Middleton

et al. (2018) (33), have provided a detailed discussion of platelet

involvement in ALI/ARDS, particularly emphasizing their role in

inflammation and thrombosis. Our review extends this discussion

by incorporating recent findings that shed light on platelet-driven

immune modulation. Specifically, we examine how platelet

interactions with Tregs and macrophages shape the inflammatory

milieu and influence lung recovery. Furthermore, our work takes a

more translational perspective by exploring a broader range of

antiplatelet and immunomodulatory therapies, assessing their

potential use across different ARDS phenotypes. In addition, we

discuss the emerging significance of lung-resident megakaryocytes

and their potential contributions beyond platelet production,

offering new insights into their role in both local and systemic
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immune regulation within the context of ALI/ARDS. Emerging

evidence suggests that targeting platelets may provide therapeutic

benefits. For instance, antiplatelet therapies such as aspirin have

demonstrated the ability to attenuate hyperoxia-induced ALI by

modulating platelet-driven inflammatory pathways (34, 35).

Additionally, platelet glycoprotein VI (GPVI) has been identified

as a key mediator of neutrophil recruitment, migration, and

NETosis in early ALI and ARDS (36). Novel therapeutic

approaches, such as tea polyphenol-loaded nanoparticles coated

with platelet membranes, have shown promise in ameliorating

lipopolysaccharide (LPS)-induced ALI, further highlighting

platelets as a potential therapeutic target (37).

Interestingly, platelets exhibit a dual role in ALI and ARDS (38).

In the early stages, platelets amplify inflammation by releasing pro-

inflammatory mediators, while in the later stages, they contribute to

the resolution of inflammation (39). In infectious pneumonia,

platelets maintain the alveolar-capillary barrier and reduce the

virulence of pathogens, thereby protecting against severe

pulmonary complications (40, 41). During the resolution phase,

platelets promote macrophage polarization from the pro-

inflammatory M1 phenotype to the anti-inflammatory M2

phenotype, facilitating tissue repair and recovery (42, 43).

Furthermore, platelets interact with regulatory T cells (Tregs),

enhancing their activation and secretion of anti-inflammatory

cytokines such as transforming growth factor-beta (TGF-b) and

interleukin-10 (IL-10) (44). These interactions are crucial for

suppressing excessive inflammation and promoting the clearance of

apoptotic neutrophils (41, 42). This dual functionality raises critical

questions: What molecular signals govern the transition of platelets

from pro-inflammatory to anti-inflammatory states? How do

platelets interact with other immune cells to balance inflammation

and tissue repair? Addressing these questions may provide insights

into novel therapeutic strategies for ALI and ARDS.
2 Activated platelets are essential
inflammatory and immune effector
cells in ALI/ARDS

Platelets, anucleate cells derived from megakaryocytes, are

second only to red blood cells in abundance within circulation.

Historically, platelets were thought to originate exclusively from

bone marrow megakaryocytes. Recent studies have revealed that

lung-resident megakaryocytes also actively produce circulating

platelets, adding an important dimension to their biology (45,

46). Platelets are crucial for physiological hemostasis and

pathological thrombosis, as they rapidly adhere to damaged vessel

walls, form aggregates, and initiate clot formation (47, 48). Damage

to the vascular wall triggers platelets to release procoagulant factors,

recruiting leukocytes and red blood cells to form a thrombotic

barrier at the injury site, preventing further bleeding and microbial

invasion (32, 49).

Beyond hemostasis, platelets are now recognized as key players

in immune responses. They interact with various immune cells,

such as neutrophils and macrophages, releasing bioactive molecules
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from intracellular granules (50, 51). These molecules act to bridge

innate and adaptive immunity, positioning platelets as critical

drivers of inflammation, particularly in the pathogenesis of ALI/

ARDS (51–53). Platelets fine-tune immune responses by

modulating the phenotype and activity of immune cells, thereby

influencing the progression and resolution of ALI (54).
2.1 Platelet surface adhesion molecules
and receptors

Platelet activation is a multistep process triggered by vascular

injury or inflammation. Once activated, platelets adhere to

neutrophils, endothelial cells, and other immune cells, forming

platelet-leukocyte aggregates that amplify the inflammatory

response (55, 56). Platelets recognize von Willebrand factor

(VWF) and collagen at the site of injury through specific

receptors, such as glycoproteins (GP) Ib-IX-V, GPVI, and GPIIb/

IIIa (57–59). These interactions not only promote adhesion to the

endothelium but also initiate rapid intracellular signaling that

stabilizes thrombus formation and amplifies inflammation (60, 61).

A key mediator of platelet-neutrophil interactions is P-selectin,

which binds to P-selectin glycoprotein ligand-1 (PSGL-1) on

neutrophils. This interaction triggers signaling cascades, such as

extracellular signal-regulated kinase (ERK)1/2- mitogen-activated

protein kinase (MAPK), activating neutrophil integrins like Mac-1

and LFA-1 (30, 62). These integrins facilitate neutrophil adhesion and

migration across the endothelium, further amplifying the inflammatory

response in ALI/ARDS (63, 64). The formation of platelet-neutrophil

aggregates (PNAs) enhances neutrophil activation, leading to ROS

production and NETs release, which exacerbate endothelial

dysfunction and alveolar injury (65, 66), as described earlier.

Recent studies have highlighted the role of mitochondrial

dynamics in platelets, showing that mitofusin-2 (Mfn2) regulates

platelet-neutrophil interactions by influencing mitochondrial ROS

production (67, 68). Dysregulation of this pathway exacerbates

platelet-neutrophil aggregate formation, worsening inflammation

and ALI (67). Moreover, platelet GPIIb/IIIa binds to soluble

fibrinogen, creating a bridge with neutrophil Mac-1, further

stabilizing platelet-neutrophil complexes during inflammation

(64, 69). Additionally, P-selectin stored in platelet alpha granules

and endothelial Weibel-Palade bodies mediates platelet-leukocyte

adhesion, making it a key player in ALI (70).

Therapeutic strategies targeting these interactions, such as P-

selectin inhibitors and GPVI signaling blockers, have shown promise

in preclinical models (71, 72). These approaches reduce platelet-

neutrophil aggregates, mitigate NET formation, and alleviate

inflammation, offering potential avenues for ARDS treatment (63).
2.2 Platelets are rich in a variety of immune
mediators

Platelets are small anucleate cells that store and release various

thrombosis and immune regulation-associated bioactive substances
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(Table 1). These molecules, packaged in alpha granules, dense

granules, and lysosomal granules, are released upon platelet

activation in response to vascular injury or inflammatory

stimuli (83).

Alpha granules are particularly important for inflammation and

immune regulation, as they contain mediators such as platelet factor

4 (PF4), RANTES, and interleukin-8 (IL-8). These mediators play

key roles in recruiting neutrophils and other leukocytes to sites of

injury (84–86). PF4, a member of the CXC chemokine family,

exhibits dual roles in promoting neutrophil recruitment and

modulating immune responses. Elevated PF4 levels have been

correlated with disease severity in ARDS, underscoring its clinical

relevance (84, 87).
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Dense granules store small molecules, including ADP, ATP, and

serotonin (5-HT), which amplify platelet activation through

feedback mechanisms involving the P2Y12 receptor (88). Recent

research has identified 5-hydroxyindoleacetic acid (5-HIAA), a

serotonin metabolite released by activated platelets, as a ligand for

G protein-coupled receptor 35 (GPR35) (89, 90). This signaling axis

promotes neutrophil migration and adhesion, highlighting the

intricate role of platelet-derived mediators in inflammation (80).

Lysosomes, though less studied, contain acid hydrolases and

glycohydrolases that dissolve platelet aggregates, helping regulate

thrombosis and inflammation (91).

Although platelets lack nuclei, they retain functional mRNA

and splicing machinery, allowing them to synthesize proteins such
TABLE 1 Important platelet-derived immune mediators.

Category ingredient Functions

Alpha granules Integrins aIIbb3 Initiates bidirectional signal transduction promotes platelet activation (55)

Chemokines PF4 (CXCL4) Aggravates pulmonary fibrosis by stimulating endothelial cells to transform into
mesenchymal tissue

RANTES (CCL5) T and B cell responses and development (27)

Adhesion molecule GPIB/IX/V complex Binds to P-selectin and mediates platelet adhesion and aggregation; binds to vWF and
activates aIIbb3 (73)

P-selectin
(CD62P)

Its binding to PSGL-1 on neutrophils initiates the platelet-neutrophil interaction (74)

PECAM-1
(CD31)

As an adhesive stress response protein, it maintains endothelial cell integrity and
accelerates the recovery of vascular barriers

TLT-1 receptor Enhances platelet aggregation and mediates interactions with neutrophils and
endothelial cells

Cytokines IL-1I (IL-1a, L-1b) Platelets affect the IL-1 production in the body and regulate it to drive inflammation

Growth factors TGF-b It regulates fibroblast recruitment to the site of lung tissue injury and promotes lung
tissue repair (75)

PDGF Promote damage repair and differentiation and proliferation of VSMC

TLR Surface
TLRS

TLR2and TLR4

Recognizes surface protein components of pathogens, amplifies platelet activation (76)
and aggregation, and induces NETs formation (77)

Endosomal TLRs TLR7 Receptors for single-stranded viral RNA

TLR9 Platelet TLR9 is a functional platelet receptor that links oxidative stress, innate
immunity, and thrombosis (78)

d-granule molecules Amines and mediators Thrombin In patients with COVID-19, platelet thrombin is associated with alveolar-capillary
microthrombosis (79)

5-HIAA Acts on the GPR35 ligand of neutrophils to promote neutrophil migration to damaged
tissue (80)

Nucleotides ADP Recruitment of activated platelets and exposure of P-selective velocity (81)

Lysosomes Glycohydrolases Heparinase A lytic enzyme that can induce thrombocytopenia

Surface protein
expression

CLEC-2 Termination of signaling by PMN recruited in the early stages of acute lung
inflammation (82)
5-HIAA, 5-hydroxyindole acetic acid; ADP, adenosine diphosphate; CCL5, Chemokine (C-C motif) ligand 5; CLEC-2, C-type lectin-like receptor; GPIB, glycoprotein IB complex; gpr35, G
protein-coupled receptor; HAG, hetero-aggregate; IL-1, interleukin 1; NETs, neutrophil extracellular traps; PDGF, platelet-derived growth factor; PDPN, podoplanin; PECAM-1, Platelet/
endothelial cell adhesion molecule-1; PF4, Platelet factor 4; PMN, polymorphonuclear leukocytes; PRRS, pattern recognition receptors; PSGL-1, P-selectin glycoprotein ligand-1; TGF-b,
transforming growth factor-beta; TLR1-9, toll-like receptor 1-9; TLT-1, Trem-like transcript 1; vWF, von Willebrand factor; VSMC, vascular smooth muscle cell.
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as interleukin-1 beta (IL-1b) in response to stimuli (92, 93). This

dynamic capability enables platelets to adapt to changing

inflammatory env i ronments . A l t e ra t ions in p la te l e t

transcriptomes, observed in COVID-19 patients, have revealed

upregulation of inflammatory pathways, such as MAPK signaling,

linked to severe ALI (94).

Platelet-derived extracellular vesicles (EVs), including

exosomes and microvesicles, are another important mechanism

by which platelets influence inflammation (95). These vesicles carry

cytokines, chemokines, and nucleic acids, modulating endothelial

barrier function and reducing inflammation in preclinical ALI

models. Recent advancements in biomimetic nanoparticle

technology have demonstrated the potential of platelet-derived

vesicles as targeted drug delivery systems, offering new

therapeutic opportunities (94, 96–100).
3 Platelets promote neutrophil
recruitment, pathogen elimination,
and induction of neutrophil
extracellular traps release in ALI/ARDS

The activation and recruitment of neutrophils are essential

processes in the pathogenesis of ALI (ALI) and acute respiratory

distress syndrome (ARDS) (101). These processes are closely
Frontiers in Immunology 05
associated with platelet-neutrophil interactions during the

inflammatory surge in ALI/ARDS. Platelet activation enhances

neutrophil recruitment through P-selectin-PSGL-1 interactions

and promotes the formation of platelet-neutrophil aggregates

(PNAs). This interaction amplifies neutrophil activation and

inflammatory mediator release, contributing to endothelial

damage and alveolar injury (Figure 1) (102, 103). Evidence

from lipopolysaccharide (LPS)-induced pneumonia models

suggests that platelet depletion leads to a significant reduction

in neutrophil recruitment, highlighting the platelet ’s

indispensable role in coordinating the inflammatory response

(104). Furthermore, studies have demonstrated that inhibiting

platelet-derived chemokines such as CCL5 and CXCL4

effectively prevents the progression of ALI (105). In addition,

platelet integrin-mediated signaling inhibition reduces NET

release, thereby mitigating lung tissue damage in ALI VILI

models (106).

Platelet P-selectin stored in alpha granules plays a key role in

mediating platelet-neutrophil interactions. Blocking P-selectin has

been shown to diminish platelet-neutrophil aggregates and slow

ALI progression in acid-induced ALI models (65). Protease-

activated receptor 2 blockade has also been reported to inhibit

carbamoyl-platelet-activating factor (PAF)-mediated neutrophil

recruitment and inflammation in mouse lung tissue (107).

Furthermore, cigarette smoke-induced severe influenza has been

shown to worsen due to platelet-driven pulmonary microvascular
FIGURE 1

The interaction between platelets and neutrophils aggravates ALI/ARDs. This schematic illustration highlights the critical role of platelet-neutrophil
interactions in the pathogenesis of ALI and ARDS. Upon activation, platelets release inflammatory mediators such as PF4, P-selectin, and CCL5,
which facilitate neutrophil recruitment and adhesion. The formation of platelet-neutrophil aggregates enhances NET release, a process that
contributes to endothelial damage, increased vascular permeability, and alveolar inflammation. Additionally, interactions between PSGL-1 on
neutrophils and P-selectin on platelets promote immune cell crosstalk, amplifying inflammatory responses. Excessive NET formation releases
cytotoxic histones and proteases that disrupt the alveolar-capillary barrier, exacerbating lung injury. These mechanisms collectively contribute to the
progression of ARDS, underscoring the potential of targeting platelet-neutrophil interactions as a therapeutic strategy. Abbreviations: ALI, acute lung
injury; ARDS, acute respiratory distress syndrome; PF4, platelet factor 4; NETs, neutrophil extracellular traps; PSGL-1, P-selectin glycoprotein ligand-
1; CCL5, chemokine (C-C motif) ligand 5.
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occlusion, underscoring the role of platelet-neutrophil aggregation

in exacerbating ALI (108).
3.1 Platelets and neutrophil recruitment in
ALI/ARDS

Physiologically, red and white blood cells are primarily located

in the central vascular region, while platelets are concentrated near

the vascular endothelium, positioning them to interact with

leukocytes under both physiological and pathological conditions

(109). Even in the absence of inflammation, transient interactions

occur between platelets and neutrophils near the vascular

endothelium (110, 111). Once activated, platelets regulate

neutrophil rolling and adhesion, which are critical for neutrophil

recruitment during inflammation, as demonstrated in various

pneumonia models (65).

In inflammatory environments, platelets act as navigators,

bridging neutrophils and endothelial cells. P-selectin on platelets

interacts with neutrophil P-selectin glycoprotein ligand-1 (PSGL-1),

mediating high-affinity activation of neutrophil integrin b2 via ERK1/
2 MAPK signaling. This activation enhances neutrophil adhesion and

transmigration across endothelial barrier (112). Integrins such as

LFA-1 and Mac-1 further stabilize platelet-neutrophil complexes and

promote neutrophil extravasation (113, 114).

Besides direct interactions, platelets also maintain vascular

endothelial integrity indirectly through mechanisms involving

phosphoinositide 3-kinase (PI3K) isoforms, particularly p110b. In
pneumococcal pneumonia-induced mouse ALI models, p110b
promotes platelet activation, neutrophil extravasation, and

bacterial clearance (115). These findings underscore the

indispensable role of platelets in coordinating neutrophil

recruitment and regulating vascular inflammation.
3.2 Neutrophil functions: reactive oxygen
species and phagocytosis

Neutrophils play critical roles in pathogen elimination and the

regulation of pulmonary injury (116, 117). ROS generated by

neutrophils are essential for microbial killing but can exacerbate

tissue injury when excessively produced (118). Platelet-neutrophil

aggregates amplify ROS production. Specifically, studies have

shown that when neut rophi l s b ind to p la t e l e t s on

immunoglobulin G (IgG)-coated surfaces, ROS release is

significantly increased (119). ROS also influences specific

pathways involved in NET formation, further enhancing

pathogen clearance capacity (120). Platelets further enhance

neutrophil phagocytosis through signaling pathways such as

TLR2/PI3K/AKT (121). These pathways facilitate bacterial

engulfment by neutrophils, though the detailed molecular

mechanisms remain a promising area for future investigation (122).
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3.3 NET formation and its dual role in ALI/
ARDS pathogenesis

NETs, composed of DNA scaffolds modified by histones,

myeloperoxidase (MPO), and neutrophil elastase (NE), serve as

robust antimicrobial barriers (123). Dysregulated NET formation

contributes to aseptic inflammation, thrombosis inflammation, and

tissue injury in ALI/ARDS (Figure 2) (124, 125). NET production is

primarily driven by ROS generated through NADPH oxidase,

which stimulates MPO and NE activity, leading to chromatin

decondensation (126). Pore-forming proteins like gasdermin D

facilitate the extracellular release of NETs in the NADPH oxidase

2 (NOX2)-ROS-dependent pathway (127).

During pulmonary infection, platelet-neutrophil complexes

critically modulate NET release through multiple mechanisms.

These include PSGL-1 signaling, platelet glycoprotein VI (GPVI)

signaling, and high mobility group box 1 (HMGB1)-mediated

autophagy (64, 128). Platelet P-selectin also promotes NET

release by binding to PSGL-1, while fibrinogen-mediated

interactions between platelet integrin b3 and neutrophil Mac-1

further enhance NET formation (129). Inhibition of GPVI signaling

has shown promise in experimental LPS-induced ALI models by

reducing NET release and mitigating lung inflammation (37).

Therapeutic strategies targeting platelet-mediated NET

formation represent a potential avenue for ALI/ARDS treatment.

For example, GPVI signaling inhibitors and HMGB1-targeting

therapies have demonstrated efficacy in reducing NET-mediated

tissue damage in experimental models (130).
3.4 Concluding remarks on platelet-
neutrophil interactions in ALI/ARDS

Severe infection, inhalation injury, and massive blood

transfusion are significant risk factors for ALI and ARDS. In

these contexts, platelets play pivotal roles in neutrophil

recruitment and NET formation, processes that are central to the

inflammatory and immune responses in ALI/ARDS. For instance,

platelet P-selectin-PSGL-1 interactions promote neutrophil

adhesion and migration to injured alveoli. Platelet-derived

chemokines, including CXCL4 and p110b, enhance neutrophil

phagocytic capacity, aiding in bacterial clearance (106). Moreover,

platelet-neutrophil complexes amplify ROS production and NET

release, further influencing the disease’s progression.

While NETs serve protective roles by limiting pathogen spread,

their dysregulated release can exacerbate tissue damage and

promote immunothrombosis. Therefore, therapeutic strategies

that modulate platelet-neutrophil interactions, particularly NET

formation, hold promise for mitigating inflammation and

improving clinical outcomes in ALI/ARDS. Future research

should aim to elucidate the precise molecular mechanisms

underlying these interactions and identify novel therapeutic targets.
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4 Activated platelets, endothelial cells,
and neutrophils mixed results in the
formation of immunothrombosis
aggravate ALI/ARDS

Innate immunity serves as the first line of defense against

pathogens. Platelets play a crucial role not only in directly

eliminating microorganisms but also in mediating the

formation of immune thrombosis, a process referred to as

“immunothrombosis” (131). Unlike classical thrombosis, activated

platelets can interact with neutrophils and complement proteins to

trigger the coagulation cascade, forming thrombi within

microvessels. This disruption of the balance between coagulation

and inflammation leads to severe inflammatory responses, resulting

in widespread damage to pulmonary capillaries and alveolar edema

(132). The complex formation of immunothrombosis involves the

activation of platelets, endothelial cells, neutrophils, NETs, and

microparticles, all of which are recognized as key contributors to the

pathogenesis of ALI/ARDS [119]. In the case of COVID-19 caused

by SARS-CoV-2, nearly 25% of patients with severe disease exhibit

pronounced hypercoagulability (133). Postmortem lung tissue

analyses from COVID-19 patients have consistently revealed the

presence of disseminated microthrombi (134–136).
4.1 Role of endothelial cells in ALI/ARDS-
related inflammation

ALI is characterized by intricate interactions among immune

cells, inflammatory mediators, and tissue components (137). The
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progression from acute inflammation to healing involves a series of

coordinated cellular pathways (138). Initially, during ALI, alveolar

epithelial cells are activated by pro-inflammatory cytokines, which

leads to an increase in vascular permeability and allows immune

cells, especially neutrophils, to infiltrate the lung tissue (139). This

inflammatory cascade is regulated by signaling pathways such as

NF-kB and MAPK, with key inflammatory mediators like TNF-a
and IL-1b playing crucial roles (140, 141).

An intact endothelial barrier is crucial for maintaining vascular

permeability and ensuring the diffusion of nutrients, oxygen, and

metabolic waste products (142). In the context of ALI/ARDS,

endothelial cells regulate vascular permeability, and platelet

activation and aggregation can lead to the formation of

microthrombi (38). Endothelial cells are covered by a glycocalyx,

a multi-layered structure that limits direct contact between

endothelial cells and blood components, thereby inhibiting

l eukocy t e and p la t e l e t adhe s ion , coagu l a t i on , and

microthrombosis (136, 143). However, this protective barrier is

compromised in the inflammatory environment of ARDS (144).

ALI/ARDS is a life-threatening lung condition characterized by

the disruption of the alveolar-capillary barrier, leading to

pulmonary edema and impaired gas exchange (145). Endothelial

cell injury and inflammation are central to the development of ALI/

ARDS (146). As a highly dynamic and metabolically active tissue,

the endothelium plays a critical role in maintaining organ

homeostasis (147). During inflammation, endothelial cells are

among the first to respond to inflammatory stimuli (148). In ALI/

ARDS, the activation of inflammatory cells (e.g., neutrophils) and

the release of inflammatory mediators (e.g., TNF-a, interleukins)
exacerbate endothelial cell injury (149). This endothelial damage

results in the increased release of inflammatory mediators, which
FIGURE 2

Formation of NETs, components of NETs and mechanisms affecting ARDS. (A) The formation of NETs can be divided into NADPH oxidase-
dependent and independent formations. (B) The major components of NETs include DNA, histones, NE and MPO. (C) NETs and their components
can cause pulmonary tissue edema, damage alveolar epithelial cells and microvessels, cause the formation of immune thrombosis and activation of
endothelial cells, and mediate the pyroptosis of macrophages and the release of downstream cytokines.
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further attract additional immune cells, creating a vicious cycle of

sustained inflammation. Consequently, endothelial injury increases

the permeability of the blood vessel wall, promoting the

development of pulmonary edema and impairing gas exchange,

ultimately leading to symptoms such as dyspnea and hypoxemia

(150). Recent studies suggest that lung endothelial cells are key

regulators of both innate and adaptive immunity, playing an

essential role in the pathogenesis of ARDS (142). Additionally,

endothelial cell vesicles (ECVs) have been shown to exacerbate ALI/

ARDS by transmitting inflammatory signals. These vesicles carry

FSTL1, which activates inflammatory pathways like the TLR4/

JAK3/STAT3/IRF-1 pathway (151). Moreover, TRIM47 has been

implicated in enhancing the inflammatory response and promoting

endothelial activation in ALI/ARDS (152).
4.2 Interaction between activated platelets
and endothelial cells

Activated platelets interact with endothelial cells to induce

immune responses that promote immunothrombosis. Specifically,

IL-1b released by activated platelets stimulates endothelial cells,

increasing their permeability and accelerating the extravasation of

fluid and proteins (153). Additionally, activated platelets bind to

endothelial cell PSGL1 via P-selectin, while glycoprotein GPIb

interacts with von Willebrand factor on endothelial cells (154).

This interaction facilitates the migration of inflammatory cells,

thereby promoting the formation of immunothrombosis (155,

156). Clinical manifestations of ARDS, such as endothelial

dysfunction and immune-thrombosis-related complications, are

attributed to this complex interplay between platelets and

endothelial cells (142, 157, 158). Flow chamber analyses have

shown that platelet-endothelial interactions are critical for

maintaining vascular integrity and regulating blood flow (159).
4.3 Activated platelets mediate the
formation of NETs, promoting
immunothrombosis

Neutrophils are central to the early stages of ALI, as they release

ROS and proteolytic enzymes that damage both the endothelial and

epithelial barriers (101). However, the unchecked activation of

neutrophils can worsen the condition by sustaining the

inflammatory response and causing further tissue damage (138).

Beyond their traditional role in clot formation, platelets also

contribute significantly to the regulation of inflammation (160).

The interaction between platelets and neutrophils, mediated by P-

selectin, amplifies the inflammatory response by enhancing

neutrophil recruitment and promoting the formation of NETs (161).

As ALI progresses, activated platelets express P-selectin, which

binds to neutrophil PSGL-1 to promote the formation of NETs,

structures that trap pathogens (162). However, in this process, the
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presence of tissue factor within NETs stimulates the release of

thrombin, which in turn activates platelets, initiating a vicious cycle

of immune thrombosis and potentially leading to disseminated

intravascular coagulation (DIC) (163, 164). Activated platelets also

secrete various proinflammatory molecules, including soluble P-

selectin, platelet factor 4 (PF4), platelet-activating factor, and

neutrophil-activating peptides, which promote neutrophil

recruitment to sites of thrombosis (131, 165). Furthermore, high

mobility group box 1 (HMGB1) released from activated platelets

contributes to NET formation. HMGB1 interacts with the receptor

for advanced glycation end products (RAGE) on neutrophils,

promoting autophagy and NET generation, independent of

NADPH oxidase-mediated ROS production (130, 166, 167).

Platelet TLR4 signaling plays a pivotal role in this process. When

LPS binds to TLR4, activated platelets interact with neutrophils

through GP1b and neutrophil integrin b2, facilitating NET

formation (66, 168). In experimental models of transfusion-

associated ALI, the inhibition of platelet activation via aspirin or

GPIIb/IIIa blockers has been shown to reduce NET formation and

alleviate ALI (169, 170). The release of tissue factor (TF) from NETs

further amplifies the imbalance between inflammation and

coagulation, exacerbating immunothrombosis and leading to poor

ALI prognosis (164). This process is heavily influenced by the

activation of the STING (stimulator of interferon genes) pathway

and TLR2 on endothelial cells (171). In summary, activated platelets

not only induce NET formation but also recruit platelets to vascular

sites under high shear conditions, triggering further platelet

activation and perpetuating a cycle of immunothrombosis (172).
5 Investigation of the role of platelets
in regulating the resolution of
inflammation in patients with ALI/
ARDS

Damage to tissues or microbial invasion triggers an acute

response to protect the host. However, excessive and prolonged

acute inflammation can cause tissue damage and impair organ

function, ultimately leading to disease. To limit inflammation and

prevent collateral damage to healthy tissue, lung tissue orchestrates

the formation of specific pro-resolving mediators, such as lipoxins,

protectins, and maresins (173). These mediators act at specific

nodes to prevent further leukocyte recruitment, promote

apoptosis of neutrophils, eliminate apoptotic cells, convert

macrophages from a pro-inflammatory to a pro-resolving

phenotype, and inhibit pro-inflammatory mediators, ultimately

restoring homeostasis (174, 175). Platelets play a crucial role in

controlling the resolution of inflammation in ALI/ARDS by

influencing macrophage activity, T cells, and the secretion of anti-

inflammatory mediators (176, 177). Consequently, research on

platelet immune function is increasingly focusing on their role in

pro-resolution rather than in promoting inflammation (178).
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5.1 Role of platelets in macrophage
polarization

Macrophages and T regulatory (Treg) cells are essential in the

resolution of inflammation in ALI (179). To restore balance, the

effector function of macrophages shifts from a pro-inflammatory

(M1) to an anti-inflammatory (M2) phenotype (180–182). During

ALI, M1 macrophages initially take the lead in guiding neutrophils

to eliminate pathogens (183). Platelets, in association with GPIb-

CD11b interactions, promote monocyte-mediated M1 macrophage

polarization (184). As ALI progresses into the resolution phase, M2

macrophages dominate, regulating the proliferation and

differentiation of alveolar type 2 (AEC2) cells, thus promoting

lung tissue repair (185, 186). These M2 macrophages secrete

prostanoids like PGE2, which regulate the production of anti-

inflammatory lipoxin A4, downregulate CXCR2 expression,

reduce ROS levels, inhibit polymorphonuclear neutrophil (PMN)

migration, and prevent the release of NETs (187).

The two types of pulmonary alveolar macrophages (AMs) are

monocyte-derived alveolar macrophages (Mo-AMs) and tissue-

resident alveolar macrophages (TR-AMs) (188). Compared to

TR-AMs, Mo-AMs are more plastic and derived from monocytes

that enter the alveoli after ALI (189, 190). The properties and

functions of Mo-AMs depend on the regulation of the lung

microenvironment. Early inflammatory Mo-AMs exhibit the M1

phenotype, exerting significant pro-inflammatory effects that can

exacerbate tissue injury (191). During the resolution phase, Mo-

AMs adopt a transcriptional profile favoring tissue repair (192–

194). TR-AMs, which are the “guardians” of the alveoli, effectively

recognize and absorb inhaled pathogens (195). TR-AMs also

support the termination and resolution of ALI inflammation

through mechanisms potentially driven by b-catenin-hypoxia
inducible factor-1a signaling (196). TR-AMs also release anti-

inflammatory mediators like transforming growth factor beta

(TGF-b) and IL-10, facilitating tissue repair (197, 198).

Recent studies have shown that ALI can trigger antigen-specific

CD4+ T cell activation, amplifying Treg regulatory function during

acute tissue injury (199). CD4+ T cells differentiate based on the

signals they receive (200). For example, IL-2 and Janus kinase (JAK)

tyrosine kinases initiate T-cell receptor (TCR) signaling, engaging

signal transducer and activator of transcription 5 (STAT5) and

Foxp3, leading to Treg differentiation (201, 202). Tregs regulate

neutrophil apoptosis, prevent neutrophil migration, and promote

lung tissue repair by releasing TGF-b (203, 204). Additionally,

Tregs stimulate the proliferation and differentiation of AEC2 and

directly aid in the regeneration of damaged alveolar epithelial cells

(205–207). In contrast, IL-6 promotes Th17 differentiation through

the JAK/STAT3/RORgt pathway, exacerbating ALI by releasing the
pro-inflammatory cytokine IL-17A (208–210). The synergistic

interaction between macrophages and Tregs promotes ALI

resolution. Macrophages regulate the Th17/Treg balance in ALI,

increasing the number of anti-inflammatory cells during the

resolution phase, while Tregs guide macrophages toward the M2

phenotype (179, 211). Tregs also enhance macrophage phagocytic
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capacity by secreting IL-13 and stimulating macrophages to release

anti-inflammatory cytokines such as TGF-b and IL-10 (211, 212).
5.2 Platelet-Treg cell interactions in ALI
resolution

Platelets are instrumental in the resolution of inflammation

(30). As the inflammatory response shifts toward healing, platelets

release anti-inflammatory mediators like TGF-b, IL-10, and PGE2

(213). These factors help promote the polarization of macrophages

to an M2 phenotype, which is associated with tissue repair and the

resolution of inflammation (214). Moreover, platelets engage with

regulatory T cells (Treg cells), fostering their differentiation and

enhancing their anti-inflammatory effects (30). This interaction is

thought to be critical for transitioning the immune response from a

pro-inflammatory state to a reparative phase, thus aiding in the

resolution of ALI. Additionally, platelet-Treg cell aggregation

supports the shift of macrophages to an anti-inflammatory state,

optimizing alveolar macrophage phagocytosis (215).

Recent studies highlight that platelets play a role in the

resolution of lung inflammation through their interactions with

Tregs and macrophages (216) (Figure 3). Specifically, platelet P-

selectin binds to PSGL-1 on T cells, forming platelet-Treg

aggregates that promote CD4+ T cell differentiation into Tregs.

Additionally, platelets are the primary source of soluble CD40L

(sCD40L), which is released upon activation and further enhances

platelet aggregation and activation. This interaction increases the

number of Tregs in the lungs and facilitates the secretion of anti-

inflammatory agents, contributing to inflammation resolution (215,

217). In vitro studies of platelet-T cell cocultures showed a marked

increase in the proliferation and differentiation of the FoxP3+ Treg

subset by day 3 (218). Platelet-derived PH4 promotes IL-10

secretion, a potent anti-inflammatory cytokine (218, 219).

Platelets regulate T cell effector responses in a context-dependent

manner through PF4-TGFb interactions, with platelet coculture

enhancing sTGFbRIII release, amplifying TGFb signaling, and

promoting CD4+ T cell effector functions (54). During the

resolution phase of inflammation, Tregs in the lungs enhance

macrophage internalization of apoptotic neutrophils through the

Vav1-Rac1 pathway (211, 220). This process accelerates

macrophage phagocytosis of apoptotic neutrophils and aids in the

transition of macrophages from a pro-inflammatory to a

reparative phenotype.
5.3 Platelet-derived mediators and their
role in ALI recovery

Platelets can act directly or through mediators to regulate

macrophage responses, enhancing bacterial clearance and

reducing inflammation. Activated platelets release PGE2,

prompting mononuclear macrophages to reduce TNF-a secretion

while promoting the release of anti-inflammatory mediators and
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facilitating inflammation resolution (211, 221). A study by Tang

et al. on acute liver injury repair provides an intriguing new

perspective. Typically, neutrophils use ROS production to

increase the release of NETs, which exacerbates inflammation

(222). However, this study hypothesized that ROS activates AMP-

activated protein kinase (AMPK), which shifts macrophages toward

the repair phenotype, promoting liver repair (223). It remains an

exciting question whether this mechanism also plays a role in ALI

recovery. The balance between Th17 and Tregs is intricately linked

to the resolution of pneumonia in ALI (224). In ALI/ARDS,

neutrophil-platelet aggregates enhance the synthesis of

MAResin1, a pro-resolving mediator released by platelets.

MAResin1 regulates the balance between Th17 and Tregs,

improving lung function during acute inflammation (225–227).

However, the precise mechanism by which MAResin1 affects Th17/

Treg differentiation remains unclear, and further studies are needed

to unravel the complex mechanisms involved in ALI resolution.

In the resolution phase of ALI/ARDS, alveolar edema is

significantly reduced, and lung function improves dramatically

(228). During this period, platelets coordinate the resolution of

pulmonary inflammation through interactions with Tregs and

macrophages (216). P-selectin binds to PSGL-1 on Tregs, forming

stable platelet-Treg aggregates, which release inflammatory

mediators like TGF-b and IL-10 (229). sCD40L produced by

Tregs mediates platelet activation, leading to the release of factors

such as PH4 and sTGFbRIII, which enhance the number of Tregs in

the lung (229). Moreover, platelet-Treg aggregates promote

macrophage internalization of apoptotic neutrophils through the

Vav1-Rac1 pathway, enhancing the phagocytic capacity of
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macrophages (211, 220). The balance between Th17 and Treg

differentiation plays a crucial role in alleviating lung

inflammation (224). In ALI/ARDS, neutrophil-platelet aggregates

promote MAResin1 synthesis, which regulates Th17/Treg signaling

and improves lung function during acute inflammation (225, 226,

230). Future studies should further elucidate the mechanisms by

which platelets mediate MAResin1 signaling to regulate the Th17/

Treg balance in ALI resolution.
6 Antiplatelet agents in the prevention
and treatment of ALI/ARDS

6.1 Clinical relevance of antiplatelet
therapy in ALI/ARDS

Acute critical illnesses, such as ALI/ARDS, pose significant

clinical challenges and are associated with high morbidity and

mortality rates. According to the Berlin definition, a study by

Hendrickson reported mortality rates of 34.9%, 40.3%, and 46.1%

for mild, moderate, and severe ARDS cases, respectively (231).

Notably, the 28-day mortality rates for mild, moderate, and severe

cases were 29.6%, 35.2%, and 40.9%, respectively (231). The

pathological features of ALI/ARDS include increased pulmonary

microvascular permeability, alveolar exudates rich in proteins, and

pulmonary edema (232). Given the limited treatment options, such

as mechanical ventilation and restrictive fluid management, there is

an urgent need for safer and more effective pharmacological

interventions (233).
FIGURE 3

The platelets and Treg cells crosstalk mediate the resolution of ALI/ARD inflammation. This schematic illustration highlights the interaction between
platelets and Tregs in facilitating the resolution of inflammation in ALI and ARDS. Activated platelets release key mediators such as TGF-b and PF4, which
enhance Treg activation and function. In response, Tregs secrete anti-inflammatory cytokines, including IL-10 and TGF-b, which contribute to
immunosuppression and the resolution of inflammation. These cytokines also promote macrophage polarization toward the M2 phenotype and assist in
neutrophil apoptosis, aiding in the restoration of immune balance and tissue repair. The platelet-Treg crosstalk plays a crucial role in limiting excessive
inflammation and promoting recovery in ARDS, highlighting its potential as a therapeutic target. Abbreviations: ALI, acute lung injury; ARDS, acute
respiratory distress syndrome; TGF-b, transforming growth factor-beta; PF4, platelet factor 4; IL-10, interleukin-10; Treg, regulatory T cell.
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6.2 Efficacy of antiplatelet agents in ALI
management

Animal model studies have suggested that antiplatelet agents,

including aspirin (ASA) and lipid compounds, could help alleviate

ALI symptoms (234–236). Retrospective clinical observations have

further supported the potential of antiplatelet agents in improving

ARDS symptom management (234, 237, 238). Clinical data from

Philip Toner et al. have also demonstrated the potential of ASA in

the treatment of ALI/ARDS (239). However, a study assessing early

ASA administration for ARDS found no significant difference in

morbidity between the ASA and placebo groups by day 7 (240, 241).

This suggests that ASA alone may not significantly alter the

progression of ALI/ARDS. It has been hypothesized that ASA

does not effectively reduce platelet-driven neutrophil recruitment

or prevent neutrophil rolling on endothelial cells through P-

selectin, which could contribute to suboptimal therapeutic

outcomes (242, 243). Additionally, the efficacy of ASA in ALI/

ARDS treatment may be influenced by factors such as dosage and

timing of administration (244, 245). The relatively small number of

positive control patients in the ARDS trial at day 7 may have limited

the study’s power to detect the full potential of ASA (240, 246).

Thus, the results of the LIPS-A study could have been improved

with a larger sample size.

It is important to emphasize that platelets play a crucial role in

maintaining the integrity of the alveolar-capillary barrier and in

promoting alveolar recovery (240, 246). Recent research has

revealed that, in addition to their well-established production in the

bone marrow, platelets can also originate from megakaryocytes

(MKs) residing in the lungs (247). These lung-derived MKs serve

as an extramedullary site of thrombopoiesis, contributing to platelet

homeostasis under both physiological and pathological conditions

(248). Unlike bone marrow-derived platelets, those produced within

the pulmonary microenvironment may possess specialized functional

properties, particularly in immune regulation (249). Studies suggest

that lung MKs not only replenish platelet levels but also actively

influence endothelial integrity, neutrophil trafficking, and

macrophage polarization (250). These findings indicate that lung-

derived platelets may play a unique role in ARDS pathogenesis, with

potential contributions to both inflammatory responses and tissue

repair processes. As lung-resident platelets exhibit distinct immune-

regulatory roles, systemic antiplatelet therapies may differentially

impact pulmonary and circulating platelet populations (251). In

particular, lung-derived platelets may interact directly with the

alveolar microenvironment, influencing local immune responses

and endothelial stability, which could have critical implications for

ARDS progression (31, 252). Understanding how these locally

generated platelets contribute to immune homeostasis and tissue

repair could lead to new therapeutic strategies that specifically target

lung MKs and their platelet output. A more refined approach that

considers the local effects of lung megakaryocytes and their platelets

could improve the efficacy of pharmacological interventions

in ARDS.

This emerging understanding has significant implications for

antiplatelet therapies in ARDS, as systemic platelet inhibition may
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affect lung-resident platelet populations differently from circulating

platelets. Tailoring therapeutic strategies to account for both

systemic and lung-specific platelet activity could be crucial for

optimizing treatment efficacy. Further investigation is needed to

clarify the precise role of pulmonary MKs in ARDS and explore

whether targeting lung-specific platelet production could offer novel

therapeutic avenues for managing platelet-driven inflammation in

ALI. In the later stages of tissue repair, once inflammation begins to

resolve, continued use of antiplatelet agents could suppress these

beneficial responses. While ASA and other antiplatelet agents have

shown promise in ALI/ARDS treatment, the multifaceted role of

platelets must be carefully considered, particularly the potential

effects of pharmacological interventions at different stages of

the disease.

The role of platelet activation in ARDS pathogenesis varies

across distinct ARDS phenotypes, emphasizing the need for a

precision medicine approach (253). Recent studies have classified

ARDS into hyperinflammatory and hypoinflammatory subtypes,

with the hyperinflammatory phenotype exhibiting heightened

platelet activation and an increased risk of thromboinflammatory

complications (254, 255). This suggests that antiplatelet strategies

may be particularly effective in hyperinflammatory ARDS patients,

whereas their benefit in hypoinflammatory cases remains uncertain

(256). Furthermore, biomarker-based classification has enabled

better patient selection in clinical trials, improving the efficacy of

pharmacologic interventions in ARDS subpopulations (257).

Emerging research also suggests that platelet count may serve as a

biological marker for ARDS severity, providing a valuable tool for

stratifying patients in future clinical studies (20). Incorporating

ARDS subphenotyping into clinical practice could help optimize

treatment outcomes and guide individualized therapies.

Beyond aspirin, recent investigations have identified additional

antiplatelet strategies for ARDS, aiming to curb platelet-driven

inflammation while maintaining essential hemostatic functions.

P2Y12 receptor inhibitors, such as ticagrelor, have shown promise

in attenuating platelet-neutrophil interactions and reducing

immune thrombosis, thereby mitigating vascular injury associated

with ARDS (258). Likewise, GP IIb/IIIa inhibitors may help regulate

platelet aggregation, decreasing microvascular occlusion and

improving pulmonary perfusion in severe cases (259). Moreover,

pro-resolving lipid mediators, including aspirin-triggered lipoxins

and resolvins, are being actively studied for their dual role in

modulating platelet activity and facilitating inflammation

resolution (260). Unlike traditional antiplatelet agents, which

broadly suppress platelet function, these bioactive lipids appear to

fine-tune platelet responses, reducing excessive inflammation while

preserving their beneficial contributions to tissue repair (261). This

selective mechanism makes them particularly compelling as

potential therapeutic options for ARDS. Given the complexity of

ARDS pathophysiology, a more structured approach to antiplatelet

therapy is needed. Recent evidence suggests that the effectiveness of

antiplatelet drugs may vary depending on the phase of ARDS

progression (262). In the early inflammatory phase, targeting

platelet activation could mitigate endothelial dysfunction,

immune thrombosis, and neutrophil-driven tissue damage.
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However, during the resolution phase, an overly aggressive

inhibition of platelet function might hinder tissue repair.

Beyond antiplatelet therapy, additional immunomodulatory

and regenerative treatments are being explored for ARDS.

Cytokine inhibitors, including IL-6 and TNF-a blockers, have

shown potential in dampening excessive inflammation and

improving oxygenation in severe cases (21). Mesenchymal stem

cell (MSC) therapy has also emerged as a promising approach due

to its ability to modulate immune responses, promote alveolar

epithelial repair, and reduce fibrosis (256). Additionally, biologics

targeting immune checkpoints and metabolic pathways involved in

platelet-leukocyte interactions may present new therapeutic

opportunities (21). While these treatments remain under

investigation, their integration into ARDS management could

enhance current strategies by complementing antiplatelet

interventions, offering a more comprehensive approach across

different disease stages.
6.3 Future directions for antiplatelet
strategies

Emerging research suggests that combination therapy strategies,

integrating multiple classes of antiplatelet and anti-inflammatory

agents, may enhance therapeutic efficacy. By combining classical

antiplatelet agents (e.g., P2Y12 inhibitors) with pro-resolving lipid

mediators, it may be possible to suppress excessive inflammation

while preserving the platelet-mediated resolution of ALI (263, 264).

Moreover, precision medicine approaches that tailor antiplatelet

interventions based on ARDS phenotypes and biomarkers may

improve patient outcomes by optimizing drug selection and timing.

These strategies warrant further investigation to determine their

clinical feasibility and long-term benefits.

As research on platelet involvement in ARDS advances, it has

become evident that antiplatelet interventions may need to be

tailored to different stages of the disease. In the early

inflammatory phase, dampening platelet-driven immune

activation may help prevent endothelial dysfunction and excessive

thrombosis, whereas in the later phase, a more controlled approach

that preserves platelet-mediated tissue repair may be preferable (31,

176). Integrating a precision medicine approach-wherein

biomarkers and ARDS phenotypes guide therapeutic decisions-

could help identify patient subgroups most likely to benefit from

antiplatelet interventions. Future studies should also focus on

elucidating the potential role of lung-resident platelets in

modulating the immune microenvironment of the alveoli and

whether distinct platelet subtypes exist with differential

contributions to ARDS progression. Future should explore how

combining different antiplatelet agents or adjusting their

administration timing can optimize their efficacy while

minimizing potential adverse effects. Also should be focused on

refining these therapeutic strategies, identifying optimal treatment

windows, and determining which patient populations stand to

benefit most from targeted antiplatelet interventions. In addition,
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to explore the potential synergies between antiplatelet agents and

novel ARDS treatments, including immunotherapy and

regenerative medicine, to optimize clinical outcomes.
7 Future directions for ALI/ARDS
research and treatment

7.1 Platelet involvement in ARDS and its
implications

The pathological hallmark of ALI/ARDS is the exacerbation of

inflammation and disruption of the alveolar vascular endothelial

barrier. Recent studies have underscored the critical role of platelets

and their immunomodulatory functions in lung diseases, which can

be compared to their role in thrombosis. Given that pulmonary

megakaryocytes are the source of platelets, a key question arises: do

platelets derived from these megakaryocytes have a distinct role in

ALI/ARDS? Identifying functional and pathway differences between

pulmonary megakaryocyte-derived platelets and myeloid platelets

may be crucial in identifying novel markers for intervention and

prognosis in ALI/ARDS, potentially offering new therapeutic

strategies for lung diseases. Emerging data indicate that lung-

resident megakaryocytes may give rise to platelets with distinct

phenotypic and functional traits adapted to the pulmonary immune

landscape. Investigating these differences could uncover localized

regulatory mechanisms and aid in identifying platelet-influenced

subtypes of ALI/ARDS.

Platelet-neutrophil aggregation plays a critical role in the

inflammatory process of ALI/ARDS. Platelets recruit neutrophils

to inflamed areas of the lung via the P-selectin-PSGL-1 axis. This

interaction amplifies neutrophil-derived ROS and enhances the

body’s inflammatory defense. Platelet activation plays a role in

modulating NET formation, a process that, while beneficial in

pathogen defense, may also drive immunothrombosis and tissue

damage. Investigating how platelets influence NET dynamics could

provide novel therapeutic approaches for ALI/ARDS, as

previously described.
7.2 Advancing precision medicine in ARDS

Given the heterogeneity of ARDS, future studies should focus on

identifying patient subgroups most likely to benefit from platelet-

targeted interventions. Advances in molecular profiling and

biomarker discovery could help refine precision medicine strategies,

allowing for more individualized and effective therapeutic approaches

(257). Additionally, ARDS subphenotyping has been shown to enhance

clinical trial design, improving patient selection and minimizing

variability in treatment responses (256). GWAS studies have further

highlighted platelet-related pathways in ARDS, suggesting their

potential as novel therapeutic targets (20). Integrating ARDS

phenotyping into future clinical trials will be crucial for advancing

precision medicine and improving patient outcomes.
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7.3 Emerging therapeutic approaches for
ARDS

The clinical management of ALI and ARDS has primarily

focused on supportive care, including mechanical ventilation,

fluid management, and nutritional support (265). However, there

is a clear need for more targeted therapeutic approaches. While

corticosteroids have been considered for their anti-inflammatory

effects, their clinical use remains debated due to concerns over

adverse effects such as delayed wound healing and increased

infection risk.

Recent interest has emerged in using antiplatelet agents such as

aspirin (ASA) to modulate platelet activity and neutrophil

recruitment in ARDS. Clinical trials suggest that ASA may help

alleviate ARDS symptoms by disrupting platelet-leukocyte

interactions, though further studies are needed to clarify its full

clinical benefit. Additionally, biological therapies targeting

inflammatory cytokines, such as IL-6 inhibitors and TNF-a
blockers, have demonstrated potential in reducing ARDS severity.

Stem cell therapies represent another promising avenue, as they

facilitate tissue repair and immune regulation, potentially

accelerating inflammation resolution in ARDS (261, 266, 267).

Platelet-targeted therapies, designed to modulate platelet

function and enhance their tissue-repairing roles, also hold

significant promise (31, 252). Given the dual role of platelets in

both fostering and resolving inflammation, optimizing the timing of

platelet modulation in ALI/ARDS remains crucial. Some studies

suggest that in later stages, platelet activity may support tissue

repair, whereas early inhibition of platelet aggregation could help

prevent further injury. Thus, a deeper understanding of the

temporal dynamics of platelet activity is crucial to prevent

inadvertent disruption of reparative immune processes. Future

research should focus on stage-specific platelet behavior and

determine optimal windows for intervention to enhance clinical

outcomes while limiting potential adverse effects.
8 Conclusion

ALI/ARDS remains a challenging clinical syndrome with

significant mortality and a lack of effective pharmacological

treatments. Recent research has drawn attention to the

multifaceted role of platelets- not only as contributors to

inflammatory damage but also as regulators of immune

resolution. Their interactions with neutrophils, endothelial cells,

macrophages, and Tregs reveal a complex network that governs the

progression and potential recovery of lung injury.

Recognizing the phase-specific functions of platelets, and how

these differ among patient subgroups, may inform the design of

more nuanced therapeutic approaches. The integration of platelet-
Frontiers in Immunology 13
related markers into ARDS subphenotyping frameworks holds

promise for advancing individualized treatment. Further studies

aimed at linking platelet biology to clinical phenotypes will be

critical in translating these insights into practical strategies for care.
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133. Akpınar S, Oran M, Doğan M, Çelikkol A, Erdem I, Turgut B. The role of
oxidized phospholipids in COVID-19-associated hypercoagulopathy. Eur Rev Med
Pharmacol Sci. (2021) 25:5304–9. doi: 10.26355/eurrev_202108_26551

134. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in
patients with severe novel coronavirus pneumonia. J Thromb Haemostasis: JTH. (2020)
18:1421–4. doi: 10.1111/jth.14830

135. Zhao J, Xu X, Gao Y, Yu Y, Li C. Crosstalk between platelets and SARS-coV-2:
implications in thrombo-inflammatory complications in COVID-19. Int J Mol Sci.
(2023) 24:14133. doi: 10.3390/ijms241814133
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