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From ex vivo to in vitro models:
towards a novel approach
to investigate the efficacy
of immunotherapies on
exhausted Vg9Vd2 T cells?
Morgane Chauvet1,2,3, Dorothée Bourges3*

and Emmanuel Scotet1,2*

1Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’AngersCRCI2NA, Nantes, France,
2LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France, 3Sanofi, Oncology, Vitry-sur-
Seine, France
Human gd T cells demonstrate remarkable and diverse antitumor properties driven

by TCR-dependent activation. Their non-alloreactive nature and pivotal role in

cancer immunity position them as attractive targets for immunotherapies.

However, upon infiltrating tumors, due to mechanisms induced by the tumor

microenvironment’s immune evasion strategies, these cells frequently become

exhausted, greatly weakening the efficacy and antitumor potential of novel

immunotherapeutic treatments. While being extensively characterized in CD8+ T

cells, research on gd T cell exhaustion remains scarce. There is a growing need for

comprehensive models to investigate the reinvigoration properties of exhausted gd
T cells. This review synthesizes current strategies and models for evaluating novel

immunotherapies aimed at rejuvenating exhausted gd T cells. It explores a

progression of approaches, from ex vivo studies and in vivo murine models to

emerging in vitro systems. The advantages and limitations of these models are

discussed to provide a comprehensive understanding of their potential in

advancing therapeutic research. Furthermore, recent findings suggesting in vitro

exhaustion phenotypes closely mirror those observed ex vivo highlight

opportunities for preclinical innovation. By refining these models, researchers

can better optimize the immunotherapies targeting this unique T cell subset.
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• Ex vivo Models

These involve direct collection of exhausted T cells from

patient samples, providing the closest representation of

tumor microenvironment conditions. However, they are

limited by the availability of samples, the variability of the

tumors, a low cell yield, and the inherent heterogeneity of

the cells.

• Murine Models

Widely used due to their flexibility and established

protocols, murine models enable the study of T cell

exhaustion mechanisms without relying on human samples.

However, the lack of Vg9Vd2 T cells or a human tumor

microenvironment and key species-specific differences

restrict their applicability for studying gd T cells.

• Non-Human Primate Models

These models offer the closest immune system

approximation to humans, enabling in vivo study of

Vg9Vd2 T cell exhaustion. Nonetheless, their lack of tumor

models, high cost, complexity, and ethical considerations

limit their routine use.

• Humanized Mouse Models

Immunodeficient mice engrafted with human immune

components allow partial reconstitution of the human

immune system, including Vg9Vd2 T cells. While promising

for translational research, challenges such as incomplete

immune system representation, cytokine dependency for cell

survival, and high cost remain significant.

• In vitro Models

These models use expanded T cells exposed to conditions

mimicking exhaustion, such as sustained stimulation,

hypoxia, or nutrient deprivation. They are highly

customizable and capable of producing large numbers of

cells for high-throughput testing. However, they struggle to

replicate the full complexity of the tumor microenvironment

and lack sufficient data for Vg9Vd2-specific protocols.
1 Introduction

Unlike conventional ab T cells, gd T cells express a unique T

cell receptor (TCR) composed of g and d chains, with minimal or no

expression of CD4 or CD8 coreceptors (1, 2). These cells emerge

early in thymic development and migrate to tissues in successive

waves (3). Human gd T cells constitute approximately 1 to 5% of

circulating T cells, but are enriched in mucous membranes and

areas in contact with the external environment (4) where they play a

critical role in anti-pathogen control, immunosurveillance and

tissue repair (5). Human gd T cells are classified into distinct

subsets based on their TCR Vd chain usage, with the main

subsets being Vg9Vd2, Vd1, and Vd3 T cells (6).

Among these, Vg9Vd2 T cells are the predominant circulating

subset, arising early during fetal development and playing a key role

in frontline immune defense. Unique to humans and a few other
tiers in Immunology 02
species, such as non-human primates and camelids (7), they detect

tumor-derived phosphoantigens via butyrophilin molecules

expresses by target cells, particularly BTN3A1 and BTN2A1 (8),

which undergo conformational changes upon antigen binding,

leading to TCR engagement and cell activation. Beyond TCR

stimulation, Vg9Vd2 T cell activation is finely tuned by co-

stimulatory and co-inhibitory signals, including NK-like receptors

such as NKG2D, DNAM-1, and CD16 (9), enabling them to sense

stress ligands and antibody-coated targets. This activation triggers

robust effector functions, including direct tumor cell lysis through

the release of perforin and granzyme, as well as pro-inflammatory

cytokine secretion, notably IFN-g and TNF-a, which further

amplify immune responses. Additionally, Vg9Vd2 T cells

modulate the tumor microenvironment by producing chemokines

such as CCL3, CCL4, and CCL5 (10), thereby recruiting and

activating other immune players, including ab T cells (11), NK

cells (12) and iNKT cells (13). Their ability to bridge innate and

adaptive immunity, combined with their cytotoxic and

immunoregulatory properties, positions them as key mediators of

both anti-tumor and antimicrobial immunity (14, 15).

Meanwhile, Vd1 and Vd3 subsets, primarily located in epithelial

and mucosal tissues, contribute to barrier immunity and tissue

homeostasis, underscoring the complementary roles of gd T cell

subsets in immune defense (6).

The promising antitumor capabilities of Vg9Vd2 T cells have

spurred the development of specific immunotherapies targeting this

subset. Active immunotherapies, such as administering

aminobisphosphonates (e.g., zoledronate or pamidronate)

combined with low doses of IL-2, have been shown to induce the

activation and proliferation of Vg9Vd2 T cells in some cancer

patients (16–18). Passive immunotherapies, including adoptive

autologous transfer, have demonstrated effective in vivo

amplification of Vg9Vd2 T cells with minimal side effects in renal

carcinoma patients (19). Moreover, innovative treatments such as

allogenic transfers, which involve donor Vg9Vd2 T cells to enhance

immune response (20), T cell engagers that redirect T cells to target

cancer cells (21) and CAR-Vg9Vd2 T cells engineered to recognize

specific tumor antigens (22, 23) are showing great promise, with

early success in tumor regression and minimal side effects.

However, the therapeutic success of these approaches remains

limited, possibly to the exhaustion that Vg9Vd2 T cells undergo within

the tumor microenvironment (TME). Immune cell exhaustion in the

TME results from continuous stimulation by tumor antigens and the

presence of immunosuppressive factors like cytokines (e.g., TGF-b and

IL-10) and metabolic stress (nutrient deprivation, hypoxia) (24). These

factors, along with an increased presence of immunosuppressive cells

such as regulatory T cells (Tregs), Tumor-Associated Macrophages

(TAMs) andMyeloid-Derived Suppressor Cells (MDSC), disrupt T cell

function and promote exhaustion (25). TGF-b and IL-10 contribute by
impairing T cell cytotoxicity and promoting the differentiation of naive

T cells into Tregs (26). Additionally, these changes lead to metabolic

stress, further weakening the antitumor immune response. Immune

escape mechanisms triggered by the tumor can suppress T cell effector

functions, slow their metabolism, and alter their transcriptomic profiles

(27). This exhaustion phenotype was initially characterized in CD8+ T
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cells during chronic viral infections in mice (28), and later extended to

other T cell subtypes, including those involved in bacterial, parasitic,

and cancer-related responses in humans (29).

Exhausted T cells have been identified in patient-derived tumor

samples and studied ex vivo, where their phenotypic markers,

functional impairments, metabolic alterations, and transcriptomic

profiles have been described (27). Meanwhile, murine and in vitro

models are increasingly being developed to provide a more

comprehensive understanding of the mechanisms underlying T

cell exhaustion (30). With growing insights into Vg9Vd2 T cell

exhaustion, there is a pressing need to develop in vitro systems that

can replicate this state. Such models would enable high-throughput

screening of novel immunotherapies under conditions that closely

mimic physiological environments.

In this review, we first summarize the current understanding of

Vg9Vd2 T cell exhaustion. We then examine various approaches to

generate exhausted Vg9Vd2 T cells for research purposes, ranging

from ex vivo cell collection and in vivo murine models to cutting-

edge in vitro experimental setups.
2 Ex vivo Vg9Vd2 T cell exhaustion
phenotype

T cell exhaustion was first identified in CD8+ T cells during

chronic viral infections in mice (28). It is defined as a dysfunctional

state caused by persistent antigenic stimulation, where cells persist

but lose their ability to eliminate pathogenic threats (31). Since its

initial discovery, exhaustion has been characterized in various

animal models and in human chronic viral, bacterial, parasitic

infections, and cancers (29). This state is now primarily

understood as a loss of effector functions, sustained expression of

checkpoint inhibitors (e.g., PD-1, TIM-3, LAG-3, CTLA-4, TIGIT)

(27), and more recently, metabolic and epigenetic alterations (30).

Although many of these features are observed in exhausted gd T

cells, it remains unclear if the mechanisms of exhaustion differ

significantly between CD8+ and gd T cells. Unraveling the precise

mechanisms underlying gd T cell exhaustion could reveal novel

therapeutic opportunities.

Exhausted Vd2+ T cells have been identified ex vivo in a variety

of chronic infections and cancers. For example, exposure to

Plasmodium vivax induces increased expression of exhaustion

markers, including PD-1, CTLA-4, TIM-3, and LAG-3, in gd T

cells (32). Similarly, in tuberculosis, Vg9Vd2 T cells exhibit elevated

PD-1 levels, which are correlated with impaired STAT3

phosphorylation and disrupted IL-2 and IL-23 signaling pathways

(33). Preclinical studies have identified exhausted Vg9Vd2 T cells in

cancer patients undergoing treatment with zoledronate and IL-2,

including those with hormone-refractory prostate cancer (34),

refractory renal cell carcinoma (35), and breast cancer (36).

Single-cell RNA sequencing has also revealed the presence of

exhausted Vg9+ T cells in virus-related cancers, such as head and

neck squamous cell carcinoma (HNSCC) and Hodgkin’s lymphoma

(HL), with tissue-resident cells displaying higher exhaustion levels

than circulating cells (37). In acute myeloid leukemia (AML),
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exhausted Vd2+ T cells co-express PD-1 and TIM-3, which is

associated with reduced TNF-a and IFN-g production and

increased IL-17 secretion (38, 39). In non-M3 AML (non-acute

promyelocytic leukemia), TIGIT+ exhausted Vd2+ T cells have

been linked to poor prognosis (40) while in breast cancer,

terminally differentiated Vd2+ T cells with PD-1 expression are

correlated with tumor-draining lymph node invasion (41).

The role of PD-1 in gd T cell exhaustion remains a subject of

debate. For instance, in common variable immunodeficiency

(CVID), PD-1hi Vd2+ T cells have been observed alongside

heightened expression of activation markers (e.g., CD38, HLA-

DR) on both Vd2+ and Vd1+ T cells (42). A higher expression of

PD-1 was observed on Vd2+ cells compared to Vd1+, with an

expansion of Vd1+ and a loss of Vd2+. While PD-1 expression is

well-considered as a hallmark of CD8+ T cell exhaustion (43–47),

recent findings suggest it may not universally signify exhaustion in

gd T cells. Instead, high PD-1 levels in gd T cells have been

associated with retained IFN-g production, indicating potential

roles in activation and differentiation rather than dysfunction (48)

but could also be linked to gd T cell activation and differentiation.

Furthermore, PD-1+ Vd1+ T cells maintain effector responses

to TCR signaling and gd T cells do not respond to PD-1 blockade

therapies in certain cancers (49). For instance, in acute dengue

infection, impaired IFN-g production by Vd2+ T cells has

been attributed to TIM-3 expression, rather than PD-1, alongside

elevated activation markers (CD38, HLA-DR) (50). In vitro, PD-1+

gd T cells isolated from MMR-deficient colon cancers showed

increased reactivity to HLA class I-deficient cancer cell lines

compared to those with functional antigen presentation (51).

Thus, PD-1 may serve as an activation marker rather than a

definitive indicator of gd T cell exhaustion in specific contexts.

Exhaustion has also been shown to involve distinct subsets. In CD8

+ T cells, progressive exhaustion leads to 3 stages ranging from

progenitor to terminally exhausted cells (52). Early stages involve

metabolic alterations and a loss of IL-2 production, proliferation, and

cytotoxicity, while terminally exhausted cells lose TNF-a secretion and,

in severe cases, are unable to produce IFN-g, perforin, or granzyme

(52). Progenitor exhausted T cells (Tex) retain self-renewal capabilities

and the potential to revert to effector states, unlike terminally exhausted

cells (53). Although some markers and transcription factors (e.g., TCF-

1) can distinguish Tex subpopulations (54), no consensus has emerged

regarding a clear definition of these subsets. This heterogeneity likely

reflects the interplay of transcriptional, surface protein, transcriptomic,

and epigenetic factors.

Similar heterogeneity has been observed in exhausted gd T cells.

Subsets such as CD160+, CD160+TIGIT+, and CD160+TIGIT+PD-1+

have been identified in HIV+ patients, suggesting that inhibitory

receptor profiles can define exhaustion stages (55). Recent ex vivo

studies in colorectal cancer revealed distinct subpopulations of tumor-

infiltrating gdT cells, including progenitor, intermediate, and terminally

exhausted cells, identified via single-cell RNA sequencing and

flow cytometry based on PD-1 and TIM-3 expression. These

subpopulations were distinguished by differential expression of key

exhaustion markers such as PD-1, TIM-3, and LAG-3, as well as

markers of activation like CD69 and CD25. Progenitor cells exhibited
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a less exhausted phenotype with low PD-1 and TIM-3 expression, while

intermediate cells displayed a combination of activation and exhaustion

markers, and terminally exhausted cells were characterized by high

PD-1, TIM-3, and LAG-3 expression, indicating a progressive loss of

effector functions (56). However, a comprehensive understanding of

these subsets and a standardized classification system remain elusive.

Checkpoint inhibitors and effector dysfunction are not the only

hallmarks of exhaustion—transcription factors also play a

significant role. For instance, NR4A limits CAR T cell efficacy in

solid tumors by promoting exhaustion (57), while BATF suppresses

T cell functions in HIV-specific CD8+ T cells (58). Although studies

on transcription factors linked to exhaustion in gd T cells exist, this

area is still relatively under-explored compared to the extensive

research on ab T cells. Some studies have suggested that

transcription factors like T-bet and Eomes may play a role in gd
T cell exhaustion in chronic conditions such as cancer and

infections (59). However, most research on the transcriptomic

regulation of exhaustion has relied on murine models, with

limited insights derived from ex vivo gd T cells.
3 In vivo models for studying Vg9Vd2
T cell exhaustion

While exhausted T cells were initially identified from human

samples of cancer and chronic infections, these methods did not

yield sufficient cells for in-depth characterization. To address this

limitation, murine models have been developed, providing larger

numbers of exhausted cells for detailed analyses of their phenotypic,

metabolic, and transcriptomic properties.

Chronic viral infectionmodels inmice have been extensively used

to study T cell exhaustion. For example, experiments using adoptive

transfer of expanded CD8+ T cells in Listeria-infected mice

demonstrated that the transcription factor NFAT, when unable to

bind AP-1, drives exhaustion-enhancing transcriptional programs

(60). Studies using Lymphocytic choriomeningitis virus (LCMV)

clone 13 and LCMV-D-infected mice models, with persistent

infection, have revealed key insights into exhaustion mechanisms

(61) (28) (62–65). These studies showed that IRF4 promotes CD8+ T

cell exhaustion by limiting memory cell development (62), while T-

bet represses PD-1 expression and supports effector functions during

chronic infection (63). Such experiments often involve analyzing

antigen-specific T cells from spleens, lymph nodes, or tissues at

various stages of infection Murine models remain the most

commonly used approach for studying T cell exhaustion due to

their flexibility, but translating findings from mice to humans

presents challenges, particularly for gd T cells (66).

Unlike CD8+ and CD4+ T cells, gd T cells exhibit substantial

differences between humans and mice. Human gd T cells differ in

their g and d TCR chain recombination, as well as the stoichiometry

of the CD3 complex associated with the TCR (67, 68). Additionally,

the human Vg9Vd2 T cell subset, which is uniquely capable of

detecting phosphoantigens via butyrophilin molecules, has no

counterpart in mice. These differences complicate the use of

murine models for studying Vg9Vd2 T cell exhaustion. To date,
Frontiers in Immunology 04
the only in vivo study describing exhausted Vg9Vd2 T cells utilized

a non-human primate model (Cynomolgus monkey) that received

repeated injections of the synthetic phosphoantigen 3-

(bromomethyl)-3-butanol-1-yl-diphosphate (BrHPP) (69). This

study demonstrated that repeated infusions of BrHPP and IL-2

are increasingly less efficient for inducing peripheral Vg9Vd2 T cell

expansion, a phenomenon referred to as tachyphylaxis, suggesting a

gradual exhaustion upon repeated injections.

To overcome these challenges, there is a growing need to develop

humanized mouse models that can sustain the presence of human

Vg9Vd2 T cells for sufficient durations to study their exhaustion

features. Humanized mouse models—immunodeficient mice

engrafted with human tumors and immune cells—are increasingly

used in immuno-oncology research due to their translational potential

(70). However, these models face limitations, including the lack of HLA

molecules, restricted development of mature innate immune cells, and

limited capacity to generate antigen-specific antibody responses. Efforts

are underway to create advanced humanized models that more

accurately mimic human innate and adaptive immunity while

supporting the long-term survival of human gd T cells.

Similar to NK cells, gd T cell survival and proliferation in in vivo

experiments might be dependent on cytokines supplementation

(IL-2, IL-15, IL-21) (71, 72). For instance, injecting IL-15-IL-15Ra/
Fc complexes into CD34+ hematopoietic stem and progenitor cell

(HSPC)-engrafted BRG mice promotes the transient development

of functional human NK cells (73) and may also support gd T cells.

Transgenic expression of IL-15 has enabled functional NK cell

development in BRGS (74), CD34+ HSPC-engrafted NSG (75) or

NOG mice (76), which could similarly benefit Vg9Vd2 T cell

studies. These models could potentially facilitate the generation of

functional Vg9Vd2 T cells in vivo for further research.

The humanized bone marrow-liver-thymus (BLT) mouse

model contains a nearly fully functional human immune system.

The model provided insights into the dynamics of gd T cell

responses during HIV infection, highlighting their role in both

immune surveillance and potential exhaustion in the context of

chronic infection. Indeed, researchers found that HIV infection in

BLT humanized mice impaired the ex vivo expansion of Vd2 T cells,

like in HIV-positive individuals (77). This model could be adapted

to induce exhaustion in Vg9Vd2 T cells in vivo.

However, the complexity and time-consuming nature of

engrafting human immune components into immunodeficient

mice (70) make these models less ideal for routine study of

Vg9Vd2 T cell exhaustion. Consequently, in vitro models are

crucial and should be developed alongside advancements in

humanized mouse systems. These complementary approaches can

collectively enhance our understanding of Vg9Vd2 T cell

exhaustion and accelerate the evaluation of therapeutic strategies.
4 Novel in vitro models for generating
exhausted Vg9Vd2 T cells

Advancements in ex vivo expansion techniques have made it

easier to generate large numbers of Vg9Vd2 T cells from human
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peripheral blood mononuclear cells (PBMCs). Using natural

phosphoantigens like HMBPP, synthetic alternatives such as

BrHPP, or aminobisphosphonates like zoledronate, researchers

can produce sufficient cell quantities for in vitro studies of

immunotherapies targeting these cells (78–80). In vitro models

of exhausted T cells (Tex) are highly customizable and allow for

the rapid generation of large cellular yields, making them ideal for

high-throughput experiments. These models aim to create

conditions that mimic the exhaustion phenotype observed in ex

vivo cells as closely as possible by incorporating specific

environmental and stimulatory factors into the culture medium.

However, the methods used for expansion may introduce bias in the

overall condition of the cells.

Various protocols have been developed to induce exhaustion in

CD8+ and CD4+ T cells. The most common method involves

persistent stimulation with anti-CD3/CD28 beads or bead-coated

plates, which has been shown to increase exhaustion marker

expression (e.g., PD-1, LAG-3, TIM-3), reduce cytokine production,

and impair cytotoxic capabilities (81). Subsequent studies have

analyzed the transcriptomic and metabolic profiles of these cells and

compared them to in vivo exhausted T cells (82). However, these

comparisons revealed discrepancies, suggesting that in vitromodels do

not entirely replicate the characteristics of in vivo Tex cells (66).

To address these limitations, recent refinements in exhaustion

protocols have included a two-phase stimulation process: two days

of anti-CD3/CD28 bead stimulation with IL-2, followed by eight

days of anti-CD3 antibody-coated beads with IL-2 (81).

Other approaches have incorporated hypoxic conditions (1.5%
Frontiers in Immunology 05
oxygen) during stimulation to better mimic the tumor

microenvironment (83). Both strategies have resulted in cells that

exhibit a more pronounced exhaustion phenotype, with

transcriptional profiles more closely resembling those of

terminally exhausted T cells observed in a B16 melanoma in vivo

model (84).

Despite these advances, these models have primarily been

developed for conventional T cells, and few have been optimized

for Vg9Vd2 T cells. Notably, Vg9Vd2 T cells appear to have a higher

sensitivity to persistent stimulation in vitro and may not tolerate

existing protocols designed for ab T cells. This highlights the need

for tailored methods specific to Vg9Vd2 T cells, such as

phosphoantigen-induced persistent stimulation, which mirrors

conditions observed in patients treated with zoledronate and low-

dose IL-2 (17, 18).

The absence of murine models and detailed transcriptomic

characterization of in vivo exhausted Vg9Vd2 T cells further

complicates efforts to accurately replicate their “real” exhaustion

phenotype in vitro. Developing specific protocols that account for

these unique challenges is essential for advancing the study of

Vg9Vd2 T cell exhaustion and evaluating new immunotherapies.
5 Discussion

Each model used to investigate Vg9Vd2 T cell exhaustion

exhibits distinct characteristics and presents both benefits and

drawbacks that are summarized in Table 1. These models provide
TABLE 1 Summary of the different types of exhaustion models, along with their key characteristics, advantages and limitations.

Model Type Key Characteristics Advantages Limitations References

Ex vivo Models - Exhausted cells collected directly from
patient samples
- Provide insights into actual
tumor microenvironment

- Reflect “real” exhaustion
characteristics
- Closely mimic physiological
conditions
- Allow direct study of human cells

- Limited availability of patient samples
- Limited variability in the types and
grades of accessible tumors
- Low yield of exhausted cells
- Heterogeneous cell population

(34–36)

Murine Models - Use of chronic viral or cancer models to
induce T cell exhaustion in mice
- Allow exploration of mechanisms
and therapies

- Flexible and well-established
systems
- Facilitate transcriptomic and
metabolic studies
- No reliance on human samples

- Vg9Vd2 T cells are absent in mice
- Differences in TCR recombination and
immune responses compared to humans
- Absence of human
tumor microenvironment

(60–64)

Non-Human
Primate Models

- Use of primates to induce exhaustion (e.g.,
repeated phosphoantigen injections)
- Closest in vivo approximation of human
immune responses

- Closely resemble human immune
system
- Enable in vivo study of Vg9Vd2
T cell exhaustion

- Expensive and complex to implement
- Few robust and relevant tumor models
in primates
- Ethical considerations
- Not scalable for routine studies

(69)

Humanized
Mouse Models

- Immunodeficient mice engrafted with human
tumors and immune cells
- Allow partial reconstitution of human
immune systems

- Enable study of human Vg9Vd2
T cells
- Potential for clinical translation
- Can support sustained immune
responses with IL-15

- Limited cell survival without cytokine
supplementation
- Incomplete representation of human
immunity
- Expensive and labor-intensive

(73–77)

In vitro Models - Exhaustion induced in T cells expanded from
PBMCs using sustained stimulation, hypoxia,
or nutrient deprivation

- High yield of cells (up to 108)
- Highly customizable
- Suitable for high-throughput
screening of therapies

- May not fully replicate tumor
microenvironment
- Lack of interactions with other immune
subtypes
- Limited data for Vg9Vd2-specific
exhaustion protocols

(81–83)
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valuable insights into the mechanisms underlying exhaustion, each

with its own set of strengths and limitations, which should be

carefully considered when planning future research.

As highlighted in this review, current knowledge on Vg9Vd2 T

cell exhaustion primarily comes from studies on chronic infections,

cancers, and immunotherapy trials, with ex vivo analyses providing

valuable insights into their behavior in the tumor microenvironment.

However, limitations in tissue availability and cell numbers hinder

downstream applications and the development of in vivo and in vitro

models. Murine models, while useful for studying general T cell

exhaustion, lack Vg9Vd2 T cells, and non-human primates, though

suitable, are costly and complex. Humanized mice offer a partial

solution but may require further optimization such as cytokine

supplementation in order to improve gd T cell survival, which

could introduce biases. In vitro models show promise for rapid and

scalable research, enabling detailed characterization and testing of

therapies, but they fail to capture the full complexity of the tumor

microenvironment and require further refinement to minimize biases

arising from culture conditions. Developing tailored in vitro protocols

and leveraging complementary in vivo models are critical for

advancing the understanding of Vg9Vd2 T cell exhaustion and

optimizing immunotherapies.

To extensively utilize in vitro models in the early stages of

developing novel immunotherapies, it is essential to create models

that replicate the exact characteristics and exhaustion profiles

observed in patient-derived cells. However, this poses significant

challenges. Each type of cancer induces unique phenotypic and

transcriptomic profiles in exhausted cells, and there is substantial

variability in the stages of exhaustion, each defined by distinct

phenotypes and a high degree of heterogeneity within the exhausted

cell population. These complexities make it nearly impossible to

generate models that perfectly mimic physiological conditions.

One potential solution is to develop a comprehensive catalog of

exhaustion models, standardized and characterized to reflect the

different exhaustion profiles observed across various cancers and

cell types. At present, the focus should be on refining in vitromodels

to generate cells that exhibit most or all of the phenotypic and

transcriptomic features of in vivo exhaustion. Such models could

significantly accelerate research on innovative immunotherapies by

enabling early-stage testing in conditions that closely resemble the

tumor microenvironment.

For therapies targeting Vg9Vd2 T cells, it is imperative to design

robust and consistent in vitro models specifically tailored to this

subpopulation. Additionally, advancements in humanized mouse

models are necessary to sustain Vg9Vd2 T cells and enable further

characterization of their exhaustion properties. These models would

provide valuable comparative data to inform the development of

more precise in vitro protocols.

We firmly believe that in vitro exhaustion models hold the

greatest potential for driving the early-stage development of novel

immunotherapies. By combining these models with complementary

in vivo systems, researchers can build a comprehensive framework

for testing and optimizing therapeutic strategies.

In conclusion, a thorough understanding of Vg9Vd2 T cell

exhaustion is essential for the development of effective
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immunotherapies. However, current models encounter significant

challenges, such as limitations in tissue availability and model

accuracy. In vivo models are critical for studying immune-tumor

interactions and can provide valuable insights into the complexity of

the tumor microenvironment. However, they may have limitations

when it comes to studying human-specific immune populations,

such as Vg9Vd2 T cells, which are absent in mice. This represents a

challenge to fully understand the contribution of these immune cell

effectors in cancer and immune responses in human patients. In

contrast, in vitromodels provide more controlled environments that

enable detailed studies of specific cellular interactions, though they

do not replicate the full complexity of the tumor microenvironment

nor the systemic interactions which are observed in vivo.

To overcome this, refining in vitro protocols specific to Vg9Vd2
T cells is critical for a deeper understanding of exhaustion

dynamics. By standardizing and optimizing these models,

particularly those focused on Vg9Vd2 T cells, researchers can

accelerate the development of innovative therapies. Ultimately,

integrating these models will create a robust framework to

advance immunotherapy strategies and enhance patient outcomes.
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17. Fournié J-J, Sicard H, Poupot M, Bezombes C, Blanc A, Romagné F, et al. What
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