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Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often

associated with significant pain and disability. It is characterized by the

deterioration of cartilage and the extracellular matrix (ECM), synovial

inflammation, and subchondral bone remodeling. Recent studies have

highlighted pyroptosis—a form of programmed cell death triggered by the

inflammasome—as a key factor in sustaining chronic inflammation. Central to

this process are the inflammatory cytokines interleukin-1b (IL-1b) and

interleukin-18 (IL-18), which play crucial roles mediating intra-articular

pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome.

This paper investigates the role of the pyroptosis pathway in perpetuating

chronic inflammatory diseases and its linkage with OA. Furthermore, it explores

the mechanisms of pyroptosis, mediated by nuclear factor kB (NF-kB), the
purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine

monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible

factor-1a (HIF-1a). Additionally, it examines the interactions among various

cellular components in the context of OA. These insights indicate that

targeting the regulation of pyroptosis presents a promising therapeutic

approach for the prevention and treatment of OA, offering valuable theoretical

perspectives for its effective management.
KEYWORDS
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1 Introduction

Osteoarthritis (OA) is a widely prevalent degenerative disease characterized by the

deterioration of intra-articular tissues and cells, frequently accompanied by inflammation.

Epidemiological data indicate that approximately 240 million individuals globally suffer

from OA (1). The incidence of OA escalates with age, and women are particularly more
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susceptible, experiencing higher rates and earlier onset compared to

men, which imposes a significant economic burden on individuals

and society (2, 3). OA manifests symptoms such as joint pain,

swelling, stiffness, and restricted movement (4). Over time, the

expansion of local inflammatory processes within the joint leads to

structural changes in the articular cartilage, synovial tissues, and

subchondral bone (5). Significantly affecting patients’ lives of

through pain, OA is a primary cause of reduced mobility and

diminished quality of life among the elderly, highlighting the need

for more effective prevention and treatment strategies (6). Current

treatments primarily focus on symptom relief rather than disease

prevent ion . Conservat ive t rea tment opt ions inc lude

pharmacotherapy and non-drug interventions such as education,

self-management, exercise, and weight management (7). However,

while pharmacotherapy may temporarily alleviate pain, it can also

lead to adverse reactions such as gastrointestinal bleeding, edema,

hypertension, and heart failure, potentially hastening the need for

joint replacement surgery (8, 9). Moreover, there is a lack of

medications that effectively prevent joint synovial inflammation,

which can promote cell death in joint tissues and contribute to the

progression of OA. Therefore, understanding the underlying

mechanisms of OA and developing effective treatment strategies

are urgently needed.

The pathogenesis of OA is multifaceted, characterized by

irreversible cartilage destruction and uncontrolled chronic

inflammation. Current research focuses intensely on deciphering

the complex mechanisms behind inflammation-mediated cell death

in OA joint tissue, aiming to develop targeted and effective

therapeutic interventions that curb this pathogenic process (10).

However, the specific mechanisms and therapeutic targets related to

inflammation and histocyte dysfunction remain elusive, with a

notable deficiency in targeted therapies to halt OA progression.

Recent studies have highlighted that the overactivation of

pyroptosis, a type of programmed cell death mediated by

inflammasomes, plays a significant role in chronic aseptic

inflammation associated with OA (11–13). Additionally,

mounting evidence suggests that pyroptosis frequently triggers

excessive inflammation and secondary damage to essential tissues,

leading severe infections and exacerbating the progression of

various diseases, including neuroinflammatory, cardiovascular,

and inflammatory diseases affecting vital organs (14–16).

Consequently, anti-inflammation interventions that effectively

modulate the pyroptosis pathway have shown considerable

promise as a strategic approach to treating treatment of

inflammatory diseases, notably in the case of OA.

This review synthesizes the fundamental molecular

mechanisms controlling pyroptosis, examining the intricate

signaling cascades that initiate this process. Special attention is

given to pyroptosis in the context of OA, detailing current research

advancements related to the primary intra-articular tissues such as

the synovium, cartilage, and subchondral bone. We also investigate

the impact of these signaling pathways on OA progression, with the

ultimate goal of improving therapeutic and management strategies

for the disease.
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2 Pyroptosis

2.1 Research process of pyroptosis

Pyroptosis was initially identified in macrophages of mice

infected with Salmonella typhi, which was initially mistaken for

apoptosis (17). Subsequent research by Hilbi et al. (18)

demonstrated that mice lacking cysteine-aspartic acid protease-1

(Caspase-1) and infected with Shigella flexneri did not exhibit

apoptosis in their macrophages. This discovery prompted a

reevaluation of the distinctions between apoptosis and pyroptosis.

Further investigations by Bergsbaken et al. (19) revealed that

Salmonella could induce rapid macrophage death, attributed to

Caspase-1-mediated cytotoxicity, thus defining this process as

pyroptosis. Additional studies have established a significant link

between the Caspase family and pyroptosis, with findings by

Matikainen et al. (20) indicating that Caspase-4/5/11 are also

involved in this cell death process. Notably, Caspase-11 indirectly

influences interleukin-1b (IL-1b) through the Caspase-1 pathway

(21), suggesting a regulatory interplay among Caspases

in pyroptosis.

Pyroptosis is a distinct form of programmed cell death,

differentiated from apoptosis and necrosis. It is characterized by

inflammasome activation and the release of pro-inflammatory

cytokines such as IL-1b and interleukin-18 (IL-18). In contrast,

apoptosis is driven by apoptotic proteins such as Caspase-3, and

necrosis typically results from external insults such as ischemia or

toxins (22–24). Pyroptosis leads to cell swelling, lysis, and

membrane rupture, which release cellular contents that provoke

inflammation. Although apoptosis and pyroptosis share certain

features, pyroptosis is uniquely inflammatory and regulated.

Apoptosis, on the other hand, involves cell shrinkage, nuclear

condensation, DNA fragmentation, and apoptotic body

formation, all while maintaining membrane integrity (25–27).

Pyroptosis plays a crucial role in combating infections and

managing immune responses; apoptosis helps maintain tissue

homeostasis by removing damaged or unnecessary cells; and

necrosis is an uncontrolled response to cell injury (28). Since its

discovery, this uniquely programmed Caspase activity-dependent

pro-inflammatory process has attracted significant attention,

particularly following the identification of pyroptosis in innate

immune cells, highlighting its critical biological significance (29).

Moreover, recent evidence suggests that pyroptosis also occurs in

non-immune cells. As a key component of innate immunity,

pyroptosis is essential in defending against infections and

alarmins. It is widely implicated in the development and

progression of tumors (30), infectious diseases (31), and

degenerative inflammatory disorders (32).

Notably, pyroptosis appears to function as a double-edged sword

within histocytes. During the inflammatory phase, moderate pyroptosis

inhibits intracellular pathogen replication, removes damaged cells, and

induces a controlled inflammatory response to counteract danger

signals (33). However, excessive pyroptosis can lead to widespread

cellular destruction, ultimately exacerbating the progression of multiple
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diseases (34). Consequently, increasing attention has been directed

toward the role of pyroptosis, with growing expectations that its

regulation may serve as a pivotal therapeutic strategy in managing

inflammatory diseases.
2.2 Pathways involved in pyroptosis

Pyroptosis is a programmed inflammatory form of cell death

initiated by the inflammasome and executed by the gasdermin

family (22). The inflammasome is a cytoplasmic multiprotein

complex composed of pattern recognition receptors (PRRs),

apoptosis-associated speck-like protein containing a Caspase

recruitment domain (CARD) (ASC), and Caspase-1. It plays a

crucial role in detecting and responding to both exogenous

pathogens and endogenous danger signals (35). ASCs serves as an

adaptor protein, bridging sensor proteins with effector components

(36). Gasdermins (GSDMs), including GSDM (A–E) and Pejvakin,

constitute a family of membrane pore-forming proteins (37). Among

these, gasdermin D (GSDMD) is the primary executor, possessing the

ability to initiate pore formation, disrupt cell membranes, and release

inflammatory cytokines, while Caspases are crucial components (38,

39). Based on the type of Caspase involved, pyroptosis is classified into

classical, non-classical, and other alternative pathways (40) (Figure 1).

2.2.1 The classical pathway of pyroptosis
In the classical activation pathway, the activation of NOD-like

receptor thermal protein domain- associated protein-3 (NLRP3) is

regulated by pathogen-associated molecular patterns (PAMPs) or

damage-associated molecular patterns (DAMPs) (41). The activation

process of NLRP3 occurs in two distinct phases: “activation” and

“assembly”. Although the precise mechanisms underlying NLRP3-

induced pyroptosis remains unclear, it is widely hypothesized that the

formation of inflammasome vesicles plays a central role in the

activation process, ultimately leading to Caspase-1 (42). NLRP3

activation is triggered by the exposure to various activators,

including microparticles, toxins, adenosine triphosphate (ATP),

pathogens, crystals, and protein aggregates, which induce the

accumulation of mitochondrial reactive oxygen species (ROS) (43).

The activation process of NLRP3 involves two steps: “activation” and

“assembly”. The activation phase begins when PAMPs bind to Toll-

like receptors (TLRs), activating the nuclear factor-kB (NF-kB)
pathway (44). This process is further modulated by regulatory non-

coding RNAs, including circular RNAs (circRNAs) and microRNAs

(miRNAs). Specifically, miR-665 has been identified as a key

regulator of circRNF121 and myeloid differentiation primary

response protein 88 (MyD88) (44, 45). Through the circRNF121/

MyD88/NF-kB signaling pathway, miR-665 promotes the

transcription of downstream genes, including NLRP3, Caspase

family proteins, interleukin-1b precursor (pro-IL-1b), and

interleukin-18 precursor (pro-IL-18), leading to the production of

these inflammatory mediators (45, 46). During the execution phase,

the assembly of NLRP3 depends on mitochondrial DNA (mtDNA),

as an increase in advanced oxidation protein products (AOPP) leads

to a decline in mitochondrial membrane potential, thereby elevating
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mitochondrial reactive oxygen species (mtROS). This increase in

mtROS oxidizes, releasing oxidized mitochondrial DNA (Ox-

mtDNA), which binds to cytosolic NLRP3, ultimately triggering

inflammasome assembly (47–49). Cytidine/uridine monophosphate

kinase-2 (CMPK2) is an enzyme that promotes mtDNA synthesis,

resulting in the formation of Ox-mtDNA fragments, and its activity is

regulated in an interferon regulatory factor-1 (IRF1)-dependent

manner (50, 51). Once the inflammasome is assembled, NLRP3

oligomerization occurs through interactions among its homologous

Nacht domains, forming a high-molecular-weight complex that

induces Caspase-1 autoactivation (35). Caspase-1 activation

subsequently cleaves its precursor, leading to the release and

activation of Caspase-1. This enzyme then converts the pro-IL-1b
and pro-IL-18 precursors into their mature cytokine forms, IL-1b and
IL-18, through proteolysis (52). Concurrently, GSDMD remains

inhibited, with its N-terminal and C-terminal domains directly

linked (53). During the process of pyroptosis, the Caspase-1-

mediated cleavage at ASP275 initiate the proteolysis of GSDMD,

producing a 31 kDa GSDMD-NT fragment and a 22 kDa GSDMD-

CT fragment (54). The GSDMD-NT protein binds to acidic

phospholipids on the cell membrane, forming a pore composed of

16 identical proteins. This pore formation disrupts the ion

concentration balance across the cell membrane, causing water

influx, cell swelling, and the leakage of cellular contents (39).

Ultimately, cell lysis occurs, releasing inflammatory mediators such

as IL-1b, IL-18, and high mobility group box 1 (HMGB1), which

stimulate the inflammatory response and contribute to

pyroptosis (55).

2.2.2 Non-classical pyroptosis pathway
The non-canonical pathway pyroptosis primarily involves human

Caspase-4/5 and their murine counterparts, Caspase-11 (39).

Lipopolysaccharides (LPS), either intracellular or from Gram-

negative bacteria, binds to the CARD domain of Caspase-4/5/11,

thereby activating these Caspases (56). This activation leads to the

cleavage of GSDMD at Asp276, generating GSDMD-NT, which

oligomerizes and moves to the plasma membrane to form pores,

ultimately inducing pyroptosis. This process can be inhibited by the

chemotherapeutic drug oxidized 1-Palmitoyl-2-Arachidonoyl-sn-

Glycero-3-Phosphocholine (oxPAPC) (57, 58). This distinctive

mechanism may promote the selective recognition and interaction of

Caspase with GSDMD, subsequently triggering its activation process

(59). It is noteworthy that, unlike the direct effect of Caspase-1, the

activation of Caspase-4/5/11 does not directly lead to the maturation of

IL-1b and IL-18. However, the NLRP3 inflammasome can be activated

by Caspase-11, promoting the maturation and release of IL-1b and IL-

18 (60). This non-canonical pathway, by bypassing the inflammasome

and not relying on its activation stimuli, provides an alternative

regulatory mechanism for the inflammatory response. Additionally,

Caspase-11 activation can trigger the canonical pyroptosis pathway by

cleaving andmodifying Pannexin-1, which crucially affects intracellular

K+ efflux and ATP release. When ATP binds to the purinergic receptor

P2X ligand-gated ion channel 7 (P2X7R), it opens the channel for Ca2+

and Na+ influx, causing rapid depolarization and subsequently

triggering cellular pyroptosis (61, 62).
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2.2.3 Other pathways involved in pyroptosis
In their in-depth study of the mechanisms underlying

pyroptosis, researchers identified granzymes as a class of serine

proteases located in the cytosolic granules of cytotoxic T

lymphocytes (CTLs) and natural killer cells (NK) cclls (63).

Unlike the classical and non-classical pathways, Caspase-3,

activated by granzyme B secreted by chimeric antigen receptor T

cells and chemotherapy drugs, cleaves the GSDME protein, causing

N-GSDME to migrate to the cell membrane and form pores,

thereby initiating pyroptosis (64–66). Additionally, TAK1-

activated Caspase-8 cleaves GSDMD, and granzyme A, released

by lymphocytes, cleaves GSDMB within cancer cells; both processes

culminate in pyroptosis (67, 68).
3 Pyroptosis and OA

OA is a chronic, aseptic inflammatory condition marked by

degenerative alterations in cartilage and subsequent osteophyte

formation. This disease clinically presents as joint pain, stiffness,

swelling, and restricted mobility (69). Emerging research links the
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etiology and progression of OA to various components of the

pyroptosis pathway, including inflammasomes, cytokines, and the

Caspase family. This linkage suggests that inflammation and

fibrosis, induced by pyroptosis in chondrocytes (70), are

significant contributors to the disease mechanism. Further,

current studies provide evidence of pyroptosis in both chronic

aseptic inflammation and tissue fibrosis, highlighted by instances

such as microglial pyroptosis inducing neuroinflammation and

fibrosis (71) and renal macrophage pyroptosis leading to renal

inflammation and fibrosis (72). The cytokines IL-1b and IL-18,

produced during synoviocyte pyroptosis, exacerbate synovial

inflammation and extracellular matrix (ECM) degradation.

Conversely, inhibiting pyroptosis can mitigate synovitis and

fibrosis in OA (73), revealing the pivotal role of chondrocyte and

synoviocyte pyroptosis in the onse and progression of the disease.
3.1 Synovium and pyroptosis in OA

The synovium of OA exhibits a complex environment rich in

various metabolites and soluble factors, which significantly
FIGURE 1

Mechanisms of classical, non-classical, and other pathways involved in pyroptosis. In the classical pathway, PRRs detect intracellular and extracellular
signals, initiating the NF-kB/NLRP3 signaling cascade and activating the inflammasome. This activation leads to the cleavage of Caspase-1, which
cleaved GSDMD. GSDMD then aggregates and inserts into the plasma membrane to form a membrane pore. Subsequently, Caspase-1 facilitates the
release of inflammatory factors such as IL-1b and IL-18, promoting ion flow, water influx, cell swelling, and eventual cell rupture through the GSDMD
pore, leading to pyroptosis. In the atypical pathway, LPS activates Pro Caspase-4/5/11, promoting the production of IL-1b and IL-18, production and
inducing pyroptosis. Furthermore, Caspase-11 activation leads to intracellular K+ efflux and ATP release through the cleavage and modification of
Pannexin-1. When ATP binds to P2X7R, it opens Ca2+ and Na+ influx channels, leading to rapid depolarization and pyroptosis. Additionally, in other
pathways, TKA1 enhances Caspase-8 activation, initiating the GSDMD pore formation. Similarly, CTLs, NK cells, and the chemotherapeutic agent
Caspase-3 activate the GSDME pore. These processes promote the production of inflammatory factors that ultimately contribute to pyroptosis.
(Created with BioGDP.com).
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contribute to the inflammatory responses and cartilage damage

characteristic of OA (74). The intricate interaction between synovial

tissue inflammation and pyroptosis mechanisms reveals that

synovial tissue comprises fibroblast-like synoviocytes (FLS) and

macrophages, exhibiting which substantial biological activity (75).

These cells not only regulate the trafficking of small molecules but

also play a pivotal role in mediating pyroptosis and

inflammatory responses.

3.1.1 FLS in the OA synovium
Within the joint space, synovial fluid is primarily produced by

synovial tissue and secreted by FLS and macrophage. This fluid

contains inflammatory mediators and cytokines, serving as a

medium for intercellular material exchange (76). The synovial

fluid facilitates interactions among released pro-inflammatory

factors and proteases with various cellular components, triggering

pyroptosis and contributing to progression changes in joint

inflammation (73, 77). Notably, FLS are identified as the primary

effector cells in synovial fibrosis. Further research indicates that

multiple calcium salt crystals in the synovial fluid of OA patients

may alter synovial permeability and decrease hyaluronic acid

concentration. This alteration prompts FLS to secrete pro-

inflammatory cytokines, thereby intensifying joint inflammation

and damage (76, 78, 79).

During the development of synovitis, an extensive array of pro-

inflammatory cytokines is released and transported into the

synovial cavity. These cytokines serve not only as signaling

molecules affecting the activities of various cells within the joint

but also induce excessive and sustained inflammatory responses,

which are primary contributors to OA and cartilage degeneration

(70). HMGB1 is highly expressed in various inflammatory and

autoimmune diseases, such as including sepsis (80), rheumatoid

arthritis (RA) (81), and systemic lupus erythematosus (SLE) (82),

acting as a DAMP to trigger inflammatory responses and

exacerbatee disease progression. Research by Xiao et al. (83)

demonstrates that in a rat model of knee osteoarthritis (KOA),

significant increases in HMGB1 and fibrosis markers within the

synovial tissue are due to pyroptosis in FLS, which in turn

stimulates further production of these markers. Intriguingly,

HMGB1 not only arises from pyroptosis but also feedbacks on

FLS, enhancing the aggregation of pro-inflammatory factors and

thereby exacerbating synovitis symptoms (84). The NLRP3

inflammasome plays a critical role in the synovial fluid of OA

patients by facilitating the secretion of inflammatory cytokines that

induce FLS pyroptosis (85). Under the combined influence of LPS

and ATP, the expression of NLRP3-related proteins in FLS is

significantly increased. In the KOA model, effectively inhibiting

the NLRP3 signaling pathway reduces the expression of IL-1b, IL-
18, and Caspase-1 (86). Activated IL-1b initiates pyroptosis in FLS

and chondrocytes (CC), and stimulates the secretion of matrix-

degrading enzymes crucial for the degradation of articular cartilage

and cartilage damage (87). Zhang et al. (73) found that the number

of NLRP3 inflammasomes increased in the synovial cells of OA rats.

Knockout of Caspase-1 or the use of the Caspase-1 inhibitor Ac-

YVAD-cmk could inhibit LPS-induced pyroptosis, as well as the
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expression of inflammatory markers and fibrosis. The NLRP3

inhibitor also reduces the expression of IL-1b, GSDMD, and

Caspase-1 in synovial cells, indicating that both inhibitors

significantly affect pyroptosis-related factors (88). Additionally,

extracellular vesicles similar to exosomes play a crucial role in

intercellular communication within joint tissues, impacting both

the metabolism of the ECM and inflammatory processes (89).

Wang et al. (90) discovered that miR-25-3p within fibroblast-like

synoviocytes-extracellular vesicles (FLS-EVs), by binding to the

cytoplasmic polyadenylation element-binding protein 1 (CPEB1),

inhibits CPEB1 transcription. This inhibition leads to decreased

expression of NLRP3, Caspase-1, GSDMD-NT, IL-1b, IL-18, and
matrix metalloproteinases (MMPs), reducing CC pyroptosis and

inflammation in mouse knee joints.

In summary, genetic engineering targeting or knocking out

specific miRNAs in FLS-EVs, combined with the use of NLRP3 and

Caspase-1 inhibitors to block interactions between inflammatory

mediators such as HMGB1, IL-1b, IL-18, and matrix-degrading

enzymes in synovial fluid, holds promise as a therapeutic approach

for OA. This strategy is likely to become a focal point in future

clinical research.

3.1.2 Macrophage in the OA synovium
The macrophages possess phagocytic and immunomodulatory

capabilities, which are responsible for producing chemotactic

factors and cytokines that regulate inflammatory responses and

promote tissue repair (91, 92). Synovial inflammation mediated by

activated macrophages plays a significant role in the progression of

OA. Upon the onset of OA, macrophages are exposed to

stimulatory factors and exhibit distinct inflammatory properties.

Pro-inflammatory macrophages exacerbate OA progression by

infiltrating synovium and releasing excessive pro-inflammatory

cytokines, which activate synovial fibrosis and further promote

cartilage degradation (75). Thus, macrophages are pivotal in

mediating intra-articular inflammation and maintaining tissue

homeostasis, significantly influencing the pathogenesis of OA.

The functional plasticity of macrophages spans a polarization

spectrum from pro-inflammatory M1 to anti-inflammatory M2

phenotypes, crucial for shaping the synovial inflammatory

environment in OA (93–95). M1 macrophages promote

inflammatory tissue damage by secretion of pro-inflammatory

mediators such as IL-1b and TNF-a . Conversely, M2

macrophages mitigate immune hyperactivation and facilitate the

resolution of inflammation through anti-inflammatory cytokines

such as IL-10 and TGF-b, thus managing the balance between

destructive and reparative phases in inflammatory diseases (96, 97).

Research by Wang et al. (98) suggests that the elevated miR-146a

levels in synovial exosomes of OA rates, compared to healthy

counterparts, likely modulate the tumor necrosis factor receptor

associated factor 6 (TRAF6)/NF-kB signaling pathway, thereby

reducing CC degradation and affecting phenotypic transformation

in synovial macrophage polarization. Additionally, macrophage

supernatants stimulated by pentraxin 3 (PTX3) induces an OA

phenotype in cartilage, demonstrating PTX3’s anti-chondrogenic

effects mediated by macrophages. In the absence of miR-224-5p,
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increased PTX3 levels activate the p65/NF-kB pathway and

promote M1 macrophage polarization. PTX3 also activates CD32

on macrophages, releasing pro-inflammatory mediators and further

joint cartilage damage (99). The paracrine interactions between

macrophages and chondrocytes create a feedback loop that

exacerbates synovitis and cartilage damage. Therefore, modulating

the polarization from M1 to M2 may represent a viable

therapeutic strategy.

Emerging evidence emphasizes pyroptosis as critical

mechanism in the functional transformation of macrophages,

closely linked to intra-articular inflammation and the progression

of OA. A study confirms that Caspase-1 siRNA transfected

macrophages show decreased cell death in an LPS+ATP-induced

pyroptosis model and co-culture with GSDMD siRNA transfected

macrophages results in a significant reduction in FLS fibrosis

marker levels (73). Additionally, research has pointed out that

elevated chondrocyte inflammation in OA leads to cartilage

degradation, with free cartilage fragments and released

inflammatory mediators acting as DAMPs to trigger synovial

macrophage pyroptosis, further exacerbating the inflammatory

microenvironment and creating a vicious cycle (100). Moreover, a

study by Xie et al. (101) demonstrated that Degrasyn, used in

treating synovitis, reduces OA by inhibiting macrophage pyroptosis

by suppressing the NLRP3/GSDMD signaling pathway.

In conclusion, M2 macrophages support chondrocytes in OA,

revealing their therapeutic value (102). Future treatments may

leverage exosomes or miRNA regulation to mitigate OA-related

pyroptosis. These interventions aim to suppress the NLRP3

inflammasome and Caspase-1 activation in macrophages,

inhibiting pyroptosis and M1 polarization while promoting M2

polarization. This strategy is anticipated to reduce IL-1b/IL-18
production, ultimately alleviating the progression OA.
3.2 Cartilage and pyroptosis in OA

Cartilage is a vital connective tissue in the human body,

composed primarily of chondrocytes and the ECM. Encased within

the ECM they themselves produce, CC are the sole cells capable of

synthesizing and secreting both matrix and fibers, making them

indispensable for sustaining a steady cycle of collagen metabolism

(103). The ECM’s solid components predominantly include type II

collagen (COL-II), proteoglycans, and minor amounts of other

collagens and non-collagenous proteins (104). These elements are

intricately woven to form a robust network, providing resistance to

external mechanical pressures.

OA is primarily linked to chondrocyte necrosis, driven by various

factors that disrupt the metabolic imbalance within chondrocytes and

hinder the damaged cartilage’s self-repair capabilities. Several risk

factors for OA, such as obesity (105), unhealthy lifestyles (106),

lipopolysaccharides (107), hydroxyapatite crystals (108), and oxidized

low-density lipoprotein (109), can initiate PAMPs or DAMPs. These,

in turn, activate the NLRP3 inflammasome, leading to the release of

proteolytic enzymes and inflammatory cytokines, including MMPs, a

disintegrin and metalloproteinase with thrombospondin motifs
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(ADAMTS), IL-1b, IL-18, and tumor necrosis factor-a (TNF-a)
(110). MMP13 and ADAMTS4/5 are recognized as key factors in

ECM degradation, partially due to their upregulation by IL-1b (111).

The activation and assembly of the NLRP3 inflammasome also

depend on a second signal, where ROS play a crucial role (112, 113).

Studies have demonstrated that the activation of peroxisome

proliferator-activated receptor gamma (PPAR-g), primarily via the

use of pioglitazone as an activator, markedly alleviates cellular

oxidative damage induced by ROS, thus providing significant

protection against chondrocyte damage and pyroptosis in OA

(114, 115). Bai et al. have shown that activation of the adenosine

A3 receptor (A3AR) with its agonist (CF101) effectively inhibits

Caspase-1, offering protection to CC stimulated by hydrogen

peroxide (H2O2). This protective effect is primarily achieved by

blocking the ROS-induced activation of the NLRP3 inflammasome,

highlighting the involvement of the NLRP3/Caspase-1 axis OA

pathogenesis (116). Additionally, Zhang et al. (117) noted that the

downregulation of miR-17 in OA chondrocytes of OA exacerbates

pyroptosis progression. Conversely, supplementing exogenous

miR-17 or inducing its endogenous expression through growth

differentiation factor 5 can protect against OA by effectively

inhibiting the activity of catabolic factors, including MMP3/13,

ADAMTS5, and nitric oxide synthase 2 (NOS2). Similarly, the

downregulation of miR-155 inhibits KOA in mice by targeting

Smad2 and suppressing the NLRP3/Caspase-1 pathway, thus

reducing pyroptosis in mouse KOA chongrocytes (118). Another

study showed that exosomes from bone marrow mesenchymal stem

cells (BMSC-Exos) specifically target histone deacetylase 3

(HDAC3) and the signal transducer and activator of transcription

1 (STAT1)/NF-kB pathway to inhibit pyroptosis in chondrocytes

and cartilage tissue, while they also delivering miR-326 to

chondrocytes, thus promoting the amelioration of OA (119).

Therefore, exploring the potential to inhibit chondrocyte

pyroptosis presents a promising therapeutic strategy for halting

ECM degradation and mitigating inflammatory responses in OA.

This section summarizes the various inflammatory mediators

released within the joint cavity during OA progression.
3.3 Subchondral bone and pyroptosis in OA

Subchondral bone, consisting of both bone matrix and bone

cells, incorporates organic components such as collagen fibers and

an amorphous matrix synthesized by osteoblasts. It also includes

inorganic components, predominantly hydroxyapatite crystals,

which provid hardness and toughness to the bone structure (120).

Studies on OA models have demonstrated that changes in

subchondral bone are dynamic and often precede cartilage

degeneration. These changes involve thickening the subchondral

bone plate and trabecular bone remodeling, likely as an adaptation

to altered joint loading (121). In mouse and rat OA models, early

bone alterations such as trabecular reduction and osteosclerosis

have been linked to the pyroptosis of articular chondrocytes (121,

122). Microstructural modifications in the subchondral bone
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influences its structure and integrity chondrocyte behavior,

impacting biomechanical properties at various stages of OA.

Microcomputed tomography (mCT) has revealed significant

differences in the mechanical properties of subchondral bone

between OA patients and healthy individuals, potentially

exacerbating joint dysfunction (123). Initially, Chen et al. (124)

observed reduced subchondral bone mass, increased trabecular

separation, more osteoclasts, and decreased osteoprotegerin

(OPG), indicating bone structure deterioration. Sun et al. (125)

discovered that in a unilateral anterior crossbite mouse model,

overexpression of miR-29b specifically in BMSCs, significantly

alleviated cartilage degradation cartilage subchondral bone loss

while reducing osteoclast overactivity. OPG plays a vital role in

bone metabolism by inhibiting osteoclasts through binding to the

NF-kB activating factor ligand (RANKL), and low levels OPG can

disrupt bone balance, leading to increased resorption (126).

Dihydroartemisinin (DHA), a derivative of artemisinin, effectively

reduces osteoclast activity by targeting the NF-kB/MAPK/RANKL

signaling pathway, thereby alleviating subchondral bone

remodeling and associated cartilage degeneration in OA (127).

Zheng et al. (128) conducted an experimental study on mice with

destabilized medial meniscus (DMM) to demonstrate that

paroxetine can inhibit pyroptosis and reduce osteoclast formation

by suppressing the NF-kB/RANKL signaling pathway, suggesting

its potential as a key therapeutic pathway in treating OA. The

interplay between pyroptosis and osteoclast activity reveals the

intricate mechanisms underlying OA pathology, where

inflammatory cytokines released during pyroptosis may intensify

bone degradation and contribute to the disease’s overall

progression (100).
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Indeed, a rigorous exploration of the interactions between

macrophages, FLS, CC, and pyroptosis is vital for advancing our

comprehension of the pathophysiological mechanisms underlying

OA. Such studies are poised to inform the creation of innovative

therapeutic strategies and methodologies. The interactions among

macrophages, FLS, and CC, closely tied to pyroptosis, are likely

crucial drivers of OA progression at various disease stages—

whether early, intermediate, or late—and may impact the disease

trajectory collectively or independently. The role of the NLRP3

inflammasome and its downstream factors in disrupting the

microenvironments of different tissue cells during the OA

progression has garnered increasing attention (Figure 2).

Unfortunately, comprehensive studies investigating the specific

roles of pyroptosis at different stages of OA are lacking. Current

research primarily utilizes imaging technologies and histological

techniques to detail histopathological changes and inflammasome-

related molecular features in end-stage OA. These studies do not

capture the dynamic changes throughout the disease course and fail

to offer definitive conclusions regarding the controll of cell

pyroptosis at various stages. Consequently, it is critically

important to thoroughly understand the specific roles and

intricate mechanisms of pyroptosis in the interactions among

different cell types at various OA stages. Such knowledge could

accelerate the development of more targeted interventions, aiming

to halt or even reverse the pathological processes of OA from onset.

Furthermore, miRNAs play a crucial role not only in regulating

the pyroptosis of macrophages, FLS, and CC, but also in influencing

the pyroptosis of subchondral bone cells during the progression of

OA (129, 130). Recent evidence suggests that inappropriate

macrophage polarization responses are pivotal in the damage to
FIGURE 2

Mechanism of pyroptosis in OA pathogenesis. The progression of OA is closely associated with NLRP3 inflammasome-mediated pyroptosis.
Activation of the TLR/NF-kB signaling pathway promotes the assembly of the NLRP3 inflammasome and activates Caspase-1, which cleaves GSDMD
to generate the pore-forming GSDMD-NT, releasing inflammatory cytokines such as IL-1b, IL-18, and HMGB1. The accumulation of inflammatory
mediators in the joint cavity—including IL-1b, IL-18, and HMGB1—promote FLS pyroptosis, macrophage pyroptosis, chondrocyte pyroptosis and
osteoclast formation. Consequently, in a persistent chronic inflammatory environment, it can cause synovial inflammation, osteophyte formation,
cartilage degradation, leading to OA. (Created with BioGDP.com).
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bone and joint tissues. Given this, miRNAs are increasingly

recognized as important upstream regulators of pyroptosis, and

numerous new studies have confirmed that miRNAs can modulate

the polarization between macrophages phenotypes in such contexts.

Additionally, the balance between pyroptosis of non-immune cells

and the inflammatory microenvironment in joints results from

regulation by miRNAs. This understanding has led to the strategy of

using miRNAs within vesicles secreted by intra-articular tissue cells

to precisely regulate the activation pathways of NLRP3

inflammasomes, regarded as a promising therapeutic approach

for treating osteoarthritic diseases. These miRNA regulatory

pathways in the pyroptosis mechanism are summarized in Table 1.
4 The treatment of OA pyroptosis

4.1 Targeting NLRP3 for the treatment of
pyroptosis

The inflammasome, a complex structure integral to the immune

response, consists of core proteins such as NLRP1, NLRP3, NLRC4,

AIM2, pyrin, and IFI16 (131), with NLRP3 being particularly

significant due to its involvement in numerous pathophysiological

responses. The NLRP3 inflammasome can be activated through

various stimuli, including LPS, ROS, ATP, Ca2+ inflow, K+ outflow,

inflammatory factors, lysosomal instability, mitochondrial

dysfunction, and diverse pathogens (46, 132, 133). Research has

highlighted an increased activation of NLRP3-related proteins in

OA patients, and LPS-induced pyroptosis is alleviated by NLRP3

siRNA (134).

In cases of temporomandibular joint osteoarthritis (TMJOA),

the use of Caspase-1 inhibitor Ac-YVAD-cmk and the NLRP3

inhibitor MCC950 has shown effectiveness in inhibiting LPS-

induced pyroptosis and reducing inflammation and fibrosis (88).

Moreover, the ubiquitination of thioredoxin-interacting protein

(TXNIP) by the USP family leads to ROS accumulation,

activating the NLRP3 inflammasome, increasing IL-1b and IL-18

production, and promoting GSDMD-N-dependent pyroptosis and

ECM remodeling (135). The role of guanylate binding protein 5

(GBP5), a member of the Interferon-gamma-induced guanosine
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triphosphatase family, is also noteworthy. In TNF-a-induced
models, GBP5 expression is upregulated, inhibiting the synthesis

of ECM and COL-II and promoting the expression of NLRP3,

Caspase-1, GSDMD, and MMP13. Additionally, IRF1 is found to

bind to the promoter region of GBP5, thereby enhancing its

expression (136). The involvement of O-GlcNAc transferase

(OGT)- induced O- l inked N-ace t y l g lu co samine (O-

GlcNAcylation) in many human diseases has been documented,

though its specific role in OA remains unclear. Research by He et al.

(137) indicates that the silencing or knockout of OGT increases the

phosphorylation of (Never in Mitosis Gene A)-related kinase 7

(NEK7), particularly at the S260 residue. This phosphorylation

impedes the interaction between NEK7 and NLRP3, effectively

suppressing LPS-induced chondrocyte pyroptosis. Furthermore,

pharmacological agents such as the NLRP3 inhibitor CY-09 (138),

icariin (139) and Sipeimine (Sip) (140) have demonstrated efficacy

in decreasing NLRP3 inflammasome expression, inhibiting

chondrocyte pyroptosis, reducing catabolic and inflammatory

responses, and ameliorating cartilage damage.

Therefore, inhibition of NLRP3 activity or blockade of its

upstream signaling pathway may reduce the joint inflammatory

response, protect chondrocytes, and delay the progression of OA.

Further investigation into the mechanism of NLRP3 in OA is

expected to provide novel targets and approaches for OA

treatment (Table 2).
4.2 Targeting NF-kB for the treatment of
pyroptosis

Nuclear factor kappa-B (NF-kB) is an essential family of

nuclear transcription factors that includes RelA, RelB, c-Rel, p52/

p100, and p50/p105. These factors are vital for processes such as

inflammation, immune response, and cell proliferation (141). They

regulate gene expression by forming dimers with dynamic

compositions. Notably, the RelA-p52 heterodimer plays a crucial

role in late NF-kB activation, bridging classical and non-classical

pathways (142).

The activation of the NF-kB signaling pathway generally

depends on a diverse array of intracellular stimuli in articular
TABLE 1 Summary the targeting miRNAs to regulate mediated pyroptosis in OA.

Target gene Possible signaling Pathway Biological function Reference

miR-665 CircRNF121/MYD88/NF-kB Inhibit cartilage matrix degradation and oxidative stress (45)

miR-25-3p miR-25-3p/CPEB1 Alleviate the pyroptosis of cartilage (90)

miR-146a Toll4/TRAF6/NF-kB Regulates cartilage degradation and macrophage polarization (98)

miR-224-5p p65/NF-kB
Regulates macrophage reprogramming and
exacerbates synovitis

(99)

miR-326 HDAC3 and STAT1/NF-kB/NLRP3 Inhibit CC pyroptosis (119)

miR-155 Smad2/NLRP3/Caspase-1 Inhibit inflammation and pyroptosis (118)

miR-17 miR-17/HIF-1a maintaining cartilage homeostasis and protection against OA (117)

miR-29b miR-29b/Wnt5a Promotes subchondral bone loss (125)
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tissues, such as cytokines, oxidative stress, I-kB phosphorylation,

and motor stimulation, which typically leads to pyroptosis (143).

These stimuli activate the inhibitor of the kappa B kinase (IKK)

complex, resulting in IkB degradation and enabling NF-kB to enter

the nucleus, bind DNA, and regulate gene transcription. NF-kB also

collaborates with other transcription factors to refine its regulatory

role, and it activates NLRP3, which promotes inflammasome

assembly, inflammation, and pyroptosis (144). Numerous studies

(145–148) have demonstrated that specific small molecule drugs,

including Ursolic acid, GYY4137, Loganin, and a-Solanine, can
reduce Caspase-1 and MMP protein levels and enhance COL-II

expression by decreasing IkBa phosphorylation and blocking p65

nuclear translocation. Furthermore, inhibiting Caspase-1 and

GSDMD activity, along with preventing ECM degradation and

pyroptosis, effectively alleviates LPS-induced OA symptoms.

Additionally, compounds such as Resolvin D1, derived from

omega-3 fatty acids, and spermidine (SPD), exhibit anti-

inflammatory effects in chondrocytes by inhibiting the NLRP3/

Caspase-1/GSDMD pathway (149, 150). This restoration of COL-II

expression, reduction in MMP13 and ADAMTS5 levels,

improvement in chondrocyte viability, and decrease in pyroptosis

contribute significantly to therapeutic outcomes.

In bone metabolism research, NF-kB plays a dual role by

influencing both osteoclast formation and osteoblast function.

The MEK inhibitor PD0325901 has demonstrated significant

effectiveness in inhibiting the increase in NF-kB and NLRP3

levels that result from subchondral destruction (151). Moreover,

small mechanical stress can inhibit pyroptosis by activating

transforming growth factor-b (TGF-b) and Smad2/3 while

concurrently suppressing the NF-kB/NLRP3 pathway. This dual

action reduce inflammation and osteoclas activity, thereby aiding in

the reconstruction of subchondral bone. Similarly, the knockdown

of miR-155 achieves comparable effects through the Smad2/NF-kB/
NLRP3 pathway (118, 143, 152).

In summary, the NF-kB/NLRP3 signaling pathway is central to
numerous biological processes and pathologies. An enhanced

understanding of its mechanisms could provide novel insights

and strategies for treating OA, as outlined in Table 3.
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4.3 Targeting P2X7R for the treatment of
pyroptosis

P2X7R is an ATP-sensitive ion channel characterized by an

intracellular amino terminus, a carboxyl terminus, and two

hydrophobic transmembrane segments separated by glycosylated

extracellular ATP-binding domains (153). In the pathological

context of OA, P2X7R also mediates the influx of Na+ and Ca2+

and the efflux of K+, contributing to various inflammatory

responses and playing a significant role in different mechanisms

of cell death (61, 154).

Due to cell damage and inflammatory responses in OA, the

release of ATP is crucial in activating P2X7R. This activation

enhances NLRP3 inflammasome activity, fostering inflammatory

responses and potentially inducing pyroptosis (155, 156). P2X7R

acts as a key regulator of inflammation by modulating the ionic

environment within and outside the cell, promoting the assembly

and activation of the NLRP3 inflammasome. This activation results

in the release of pro-inflammatory cytokines such as IL-1b and IL-

18, thereby intensifying joint inflammation and damage (156–158).

Research indicates that the activation of the NLRP3 inflammasome

is closely linked to the modulation of the adenylate-activated

protein kinase (AMPK)/mechanistic target of the rapamycin

(mTOR) signaling pathway. Decreased AMPK activity as a

cellular energy sensor may lead to NLRP3 overactivation.

Conversely, linear ubiquitinated LKB1 can activate the AMPK

pathway, reversing the NLRP3 inflammasome response and

potentially halting the progression of pyroptosis (159, 160).

Additionally, Liang et al. found that piperine, a pharmacologically

active phytochemical found in black pepper with anti-inflammatory

properties, can significantly inhibit ATP-induced AMPK activation,

thereby markedly suppressing pyroptosis and reducing IL-1b levels

(161). Activation of AMPK inhibits the mTOR signaling pathway,

which plays a critical role in regulating cell growth, promoting

autophagy, eliminating excess or damaged cellular components, and

maintaining cellular health (162). Experimental evidence indicates

that high expression of mTOR suppresses autophagy in articular

CC, accelerating cartilage degeneration. Conversely, inhibition of
TABLE 2 Summarize the regulatory factors involved in NLPR3-mediated pyroptosis in OA.

Regulatory element Signaling Pathway Biological function Animal models Reference

Degrasyn NLRP3/GSDMD Inhibits synovial macrophagic pyroptosis Mice (101)

CF101 ROS/NLRP3/GSDMD Inhibits OA progression and relieves pain perception Rats (116)

Ac-YVAD-cmk or MCC950 NLRP3/Caspase-1 Inhibit pyrodeath, inflammation and fibrosis Rats (88)

USP25 TXNIP/ROS/NLRP3 Promotes cartilage cell damage Rats (135)

OGT NEK7/NLRP3 Inhibits cartilage degradation Mice (136)

IRF1/GBP5 IRF1/GBP5/NLRP3 Accelerate cartilage degradation Mice (137)

CY-09 NLRP3 Inhibits cartilage degradation Rats (138)

Icariin NLRP3/Caspase-1 Inhibits inflammation and pyroptosis Rats (139)

Sip PI3K/AKT/NF-kB/NLRP3
Alleviate the subchondral remodeling, synovitis as well as
ECM degradation

Mice (140)
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mTOR activity can trigger autophagy, reducing pyroptosis and

cartilage loss (163). Research has demonstrated that mTOR

inhibitors, such as rapamycin and the traditional Chinese

medicine Gu yan xiao tincture, as well as the P2X7R inhibitor

A740003, effectively inhibit mTOR, induce autophagy, and

reduce pyroptosis and cartilage loss. On the other hand, injection

of mTOR agonists, such as MHY1485, or P2X7R agonists, such as

Bz-ATP, promotes pyroptosis and ECM degradation (163–166).

Additionally, during moderate-intensity exercise, P2X7R activation

facilitates ion flux, which activates the AMPK/mTOR signaling

pathway. This promotes autolysosomal targeting and degradation

of the inflammasome component NLRP3, thereby inhibiting

autophagy and alleviating pyroptosis (167).

Consequently, the P2X7R functions as a pivotal ion channel,

modifying the ionic milieu upon ATP stimulation and facilitating

the production of NLRP3. The P2X7R can initiate both autophagy

and pyroptosis. Engaging in early and appropriate physical activity

can stimulate autophagy through the P2X7R, potentially slowing

the progression of OA, though as the condition evolve, it may

towards pyroptosis (167). The extent of P2X7R activation closely

correlated with cellular destiny, and suggesting that judicious

activation may hold the key to effective OA treatment, as outlined

in Table 4.
4.4 Targeting HIF-1a and Nrf2/HO-1 for
the treatment of pyroptosis

HO-1 is critical for heme catabolism, providing both

antioxidant and anti-inflammatory protection. Nrf2 is a key

transcription factor that upregulates the expression of HO-1,

enhancing Nrf2 activity and creating a positive feedback loop.

During hypoxia, the activation of HIF-1a promotes the

expression of HO-1, thereby strengthening the cellular

antioxidant capacity and forming a robust feedback mechanism

under hypoxia and oxidative stress (168, 169). The role of HIF-1a
in the tumor and inflammatory microenvironments is intricately

linked to the Nrf2/HO-1 pathway, exerting a complex influence on
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cell proliferation and survival (170). Research has shown that

compounds such as PD184352 and Myrislignan activate the Nrf2/

HO-1 signaling pathway, promoting the expression of antioxidant

proteins, reducing the accumulation of ROS, and ultimately

inhibiting the production of IL-1b-induced nitric oxide (NO),

inducible nitric oxide synthase (iNOS), and Prostaglandin E2

(PGE2), while also attenuating pyroptosis (171, 172).

The bone-cartilage interface, particularly the calcified cartilage,

connects firmly to the subchondral bone, preventing blood vessels

from invading the hyaline cartilage (173, 174). Activation of HIF-1a
upregulates the expression of VEGF, promoting angiogenesis and

infiltration into calcified cartilage areas, which alters the

microenvironment of articular cartilage and leads to tissue

damage (175). Feng et al. (176) conducted a study in which

human synovial fibroblasts were stimulated with HMGB1,

resulting in elevated expression levels of HIF-1a and VEGF. This

finding further substantiates the pivotal role of HIF-1a in the

pathogenesis of OA. Similarly, Zhang et al. (177) observed a

significant increase in HIF-1a activity within the synovial tissue

of OA rat models. Furthermore, silencing HIF-1a reduced the

expression of fibrosis-related markers, including TGF-b, type 1A1

collagen (COL-1A1), and tissue inhibitor of metalloproteinases-1

(TIMP1). Further studies have demonstrated that the natural small

molecule AGN, derived from verbena family extracts, inhibits the

HIF-1a/NLRP3 signaling pathway. This inhibition reduces LPS-

induced levels of NLRP3, IL-1b, and IL-18, contributing to reduced

hypoxia, inflammation, and fibrosis in synovial tissue (178). Zhang

et al. (130) discovered that lymphocyte cytosolic protein 1 (Lcp1)

knockout in ACLT mice inhibited osteoclast activation in

subchondral bone. This inhibition subsequently decreased HIF-1a
levels, reduced subchondral bone remodeling, and slowed cartilage

degeneration, alongside an increase in H-type vessels and oxygen

concentration. Additionally, they also found that Oroxylin A, an

inhibitor of the Lcp1-encoded protein l-plastin (LPL), could

alleviate the progression of OA.

In summary, using HIF-1a-specific inhibitors or gene knockout
can alleviate OA induced by various fibrotic markers, whereas the

Nrf2/HO-1 pathway can also inhibit the inflammatory progression
TABLE 3 Summarize the regulatory factors involved in NF-kB-mediated pyroptosis in OA.

Regulatory element Signaling Pathway Biological function Animal models Reference

Mechanical stress TGF-b/Smad2/3/NF-kB Inhibit chondrocyte pyroptosis Rats (143)

Ursolic acid NF-kB/NLRP3 Inhibits cartilage degradation Rats (145)

GYY4137 NF-kB/NLRP3 Inhibits synovial macrophagic pyroptosis Mice (146)

Loganin NF-kB/Caspase-1 Inhibits cartilage degradation Mice (147)

a-Solanine NF-kB/NLRP3 Reduces osteophyte formation and subchondral sclerosis Mice (148)

Resolvin D1 NF-kB/NLRP3/Caspase-1 Promotes chondrocyte proliferation and repair Rats (149)

SPD NF-kB/NLRP3/Caspase-1 Promote the cartilage integrity and suppress ECM Rats (150)

PD0325901 NF-kB/NLRP3 Inhibits subchondral bone destruction Mice (151)

Less mechanical loading NF-kB/NLRP3
Inhibits cartilage degradation, subchondral
bone remodeling

Rats (152)
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of OA and reduce fibrotic indicators. However, HIF-1a can also

exacerbate OA by promoting the release of fibrotic indicators such

as TGF-b, COL-1A1, and TIMP1, which are activated by VEGF.

Therefore, the dual roles of HIF-1a need to be utilized judiciously,

and more extensive and precise research is required to elucidate the

relationship between these pathways, as outlined in Table 5.
4.5 Cellular therapy

Cellular therapy, a therapeutic strategy utilizing specific cells and

their functions for tissue repair, has shown promising prospects in

treating OA recently. The core mechanisms of this approach include

the inhibition of inflammation, regulation of cell death, and

promotion of tissue regeneration. Recent research has demonstrated

that human adipose-derived mesenchymal stem cells (hAD-MSCs)

can significantly delay in rats and improve joint pathology by

suppressing the expression of NLRP3, Caspase-1, GSDMD, and

TNF-a receptor 1 (TNFR1). Further in vitro experiments have

validated that the abundant soluble TNF-a receptor 1 (sTNFR1)

secreted by hAD-MSCs competes with TNFR1 on the surface of

chondrocytes for TNF-a binding. This competition inhibits

chondrocyte pyroptosis (179), highlighting the therapeutic potential

of hAD-MSCs, particularly in targeting chondrocyte pyroptosis. By

modulating the NLRP3 pyroptosis pathway, cellular therapy effectively

inhibits the release of inflammatory cytokines and cartilage
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destruction, offering a novel perspective for OA treatment and

infusing new vitality into its clinical application.

Future research may explore pretreatment strategies to enhance

the therapeutic potential of seed cells, aiming to achieve efficient

intervention in pyroptosis and rapidly restore the balance of

pyroptosis in OA.
4.6 Exercise and diet therapy

OA is a degenerative joint disorder characterized by the

progressive loss of cartilage, resulting in pain and functional

impairment. Recent research has highlighted the potential of

dietary therapies, such as the ketogenic diet (180), and physical

therapies, including exercise therapy (181) and reducing

mechanical load on the knee joint (152), in influencing the

pathogenic mechanisms of CC pyroptosis in OA. This connection

raises important questions about how interventions such as exercise

and dietary adjustments can affect cellular processes involved in the

management of OA.

Exercise has been shown to play a dual role in OAmanagement.

Moderate physical activity generally benefits joint health by

activating various cell signaling pathways, promoting cartilage

health and reducing inflammation. Conversely, excessive or

inappropriate exercise may increase cell pyroptosis, exacerbating

cartilage degeneration (143, 181, 182). A systematic review and
TABLE 5 Summarize the regulatory factors involved in Nrf2/HO-1 and HIF-1a-mediated pyroptosis in OA.

Regulatory element Signaling Pathway Biological function Animal models Reference

Oroxylin A Lcp1/HIF-1a
Decreased subchondral bone remodeling and slowed
cartilage degeneration

Mice (130)

PD184352 Nrf2/HO-1 Anti-inflammatory and antioxidant effects Mice (171)

Myrislignan Nrf2/HO-1 Inhibits inflammation and oxidative stress Rats (172)

HMGB1 HO-1/VEGF Inhibits synovial angiogenesis Human FLS (176)

Silence HIF-1a HIF-1a/NLRP3 Inhibit pyroptosis of FLS Rats (177)

Agnuside(AGN) HIF-1a/NLRP3 Relieves synovitis and fibrosis in KOA Rats (178)
TABLE 4 Summarize the regulatory factors involved in P2X7R-mediated pyroptosis in OA.

Regulatory element
Possible signaling
Pathway

Biological function Animal models Reference

A740003 P2X7R Inhibiting ATP-induced pyroptosis Mice (62)

ATP P2X7R/Caspase-3/7 Inhibiting cartilage damage Rabbits (155)

Linear Ubiquitination of LKB1 AMPK/NLRP3
Ameliorated inflammasome response and
chondrocyte injury

Rats (160)

Piperine ATP/AMPK/mTOR Inhibition of macrophage pyroptosis Mice (161)

Rapamycin mTOR Inhibit autophagy of articular chondrocytes Mice (163)

Gu yan xiao tincture mTOR Alleviate tissue damage in rabbit models of OA Rabbits (164)

MHY1485 mTOR Promote ECM degradation and cartilage injury Mice (165)

Moderate exercise P2X7/AMPK/mTOR
Promote autophagy in OA to
alleviate pyroptosis

Rats (167)
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meta-analysis have revealed the benefits of therapeutic exercise,

demonstrating significant improvements in pain and physical

function compared to non-exercise controls. The findings from

these studies suggest that the effects of exercise therapy are

particularly beneficial for individuals with shorter symptom

durations, indicating a critical window for intervention (183).

Controlled exercise interventions that normalize joint movement

have been shown to mitigate cartilage degeneration, suggesting that

tailored exercise regimens could enhance the effectiveness of

treatment for OA (184). Similarly, dietary interventions play a

crucial role in managing OA symptoms. Research indicates that

the intake of specific polyunsaturated fatty acids (PUFAs) can

modulate inflammation and improve cartilage health. For

instance, a study found that a diet low in n-6/n-3 PUFA

significantly improved cartilage structure and inhibited articular

cartilage polysaccharide loss in osteoporotic mice, highlighting the

potential of dietary strategies in OA management (185).
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Furthermore, dietary therapy affects CC pyroptosis within the

joint, which is a key mediator of pain and functional limitation in

OA. Jin et al. (186) discovered that dietary fatty acids (FAs) are

intimately linked to CC pyroptosis in obese mouse models of post-

traumatic OA and LPS-stimulated CC, potentially by modulating

the TLR4 signaling pathway to affect the NLRP3/Caspase-1/

GSDMD pathway. Notably, a diet abundant in PUFAs can

alleviate OA and reduce pyroptosis. Therefore, the cell pyroptosis

pathway may be a crucial mechanism underlying the therapeutic

effects of exercise and dietary interventions for OA. This provides a

theoretical foundation for such treatment interventions.

In conclusion, integrating of therapeutic medications targeting

the pyroptosis signaling pathway in OA with exercise and dietary

interventions constitutes a robust foundation for holistic OA

management. It is anticipated that these strategies will undergo

continuous refinement and expansion, ultimately benefiting a

broader spectrum of OA patients (Figure 3).
FIGURE 3

The signaling pathways involved in the pathophysiological development of OA, along with their corresponding targeted therapeutic drugs. During OA
progression, pyroptosis in articular tissue cells is regulated through multiple molecular targets. Exposure to PAMPs or DAMPs initiates TLR-mediated
activation of the NLRP3 inflammasome and Caspase-1. Subsequently, Caspase-1 and Caspase-4/5/11 cleave GSDMD to generate GSDMD-NT that
oligomerize on plasma membranes, forming transmembrane pores. This process facilitates the proteolytic maturation and release of pro-inflammatory
cytokines IL-1b and IL-18, ultimately triggering pyroptosis. The NLRP3 inflammasome activation is potentiated through ROS accumulation mediated by
USP25/TXNIP and miR-665/MyD88 axis, which can be pharmacologically suppressed by pioglitazone and PD184352 via Nrf2/HO-1 signaling. Multiple
regulatory pathways including IRF1/GBP5, NEK/OGT, miR-25-3P/CPEB1, miR-155/Smad2, and LKB1/AMPK converge on NLRP3 to modulate CC
pyroptosis. Additional modulators such as miR-326/HDAC3/STAT1, Metrnl/PI3K/AKT, TGF-b/Smad2/3 signaling, along with pharmacological agents
ursolic acid, loganin, and a-solanine, exert regulatory effects through NF-kB/NLRP3 pathway manipulation. Mechanical and biochemical stimuli
demonstrate protective potential: ATP and moderate intensity exercise activate P2X7R ion channels, witch subsequently activate AMPK/mTOR-mediated
autophagy for NLRP3 inflammasome component degradation. HMGB1 and AGN regulate FLS pyroptosis through HIF-1a/NLRP3 signaling. Macrophage
pyroptosis is modulated by GYY4137 via NF-kB/NLRP3 axis, while pharmacological inhibitors Degrasyn and Ac-YVAD-cmk specifically target NLRP3 and
Caspase-1 respectively to suppress this process. (Created with BioGDP.com).
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5 Summary and outlook

In recent years, an increasing body of research has established a

significant link between pyroptosis, a pro-inflammatory

programmed cell death pathway, and the pathogenesis of OA,

particularly concerning articular cartilage and synovial tissue

lesions. Consequently, this has led to a detailed exploration of

various signaling pathways and targeted therapeutic drugs that may

influence the development of OA. Extensive documentation has

revealed changes in inflammatory mediators during the

pathological progression of OA, including members of the

Caspase family, IL-1b, IL-18, TNF-a, HMGB1, and proteins such

as MMP and ADAMTS. A notable finding is a positive correlation

between the levels of NLRP3-mediated pyroptosis in OA patients’

cartilage and the severity of the disease (187). In vitro and animal

model studies have shown a significant correlation between the

suppression of molecules associated with pyroptosis, and the

subsequent alleviation of OA symptoms. However, despite

the mounting evidence of pyroptosis’s critic role in OA, there is

still a shortage of OA-specific regulatory mechanisms identified,

and more specific drugs targeting pyroptosis are needed. Moreover,

evaluating the mechanisms of the potential adverse effects of these

treatments is essential to avoid osteolytic inflammatory responses

and enhance the therapeutic effectiveness. Specifically, drug

application strategies must balance defensive pyroptosis to

prevent antagonistic interference between different factors.

Research has highlighted the central role of the NLRP3

inflammasome in the pathogenesis of osteoarthritic diseases.

Inhibiting its activation can significantly reduce the inflammatory

response in OA and improve the local pathological condition of the

joint. Given the complex interactions among multiple cell types

within the joint, treating of OA should not be limited to targeting a

single area or cell type. Indeed, adopting a comprehensive treatment

approach and emphasizing the synergistic effects among cells is

crucial. Investigating the interactions between cells and pyroptosis

within joint tissues will enhance our understanding of the

pathophysiological processes of OA. Whether through regulating

CC, macrophages, FLS, cellular therapy, or adopting exercise and

dietary therapies, most current methods likely alleviate or inhibit

pyroptosis in OA by activating or inhibiting various signaling

pathways such as NF-kB, MAPK, P2X7R, Nrf2/HO-1, and HIF-1a,
which are activated by the NLRP3 inflammasome. Notably, while

numerous studies indicate that the occurrence of pyroptosis

accelerates the progression of OA, a few studies have expressed

skepticism about the positive effects of inhibiting pyroptosis in the

synovium, highlighting the need for further research to clarify these

potential discrepancies and develop more targeted and effective

treatments (188). More extensive research is needed to elucidate

the upstream or downstream pathways and key targets of the NLRP3

inflammasome, further enhancing our understanding of its precise

regulation and deeper pathological significance, which will contribute

to providing more options for the prevention and treatment of

human OA. On the other hand, as elaborated in previous sections,

the spatiotemporal regulation of pyroptosis across various OA stages

may present a promising therapeutic potential. By integrating single-
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cell spatial transcriptomics to map pyroptosis-associated gene

networks within joint microenvironments, this approach could

identify stage-specific biomarkers, enabling precision therapies that

are dynamically aligned with OA progression. Such strategies may

address current limitations in temporally adaptive interventions,

shifting the paradigm from broad inflammasome inhibition to

context-dependent regulation of pyroptosis.

In summary, current research on OA primarily focuses on

cellular and animal models, with relatively few studies involving

clinical patients. The inherent limitations of these models in

replicating the complex human microenvironment reduce the

persuasiveness of these studies. Before progressing to the clinical

trial phase, a thorough assessment of the treatment’s safety and

potential risks must be conducted to ensure that patient health and

safety are not compromised. Alternatively, there is growing interest in

the emergence of targeted molecular biomaterials in the therapeutic

landscape of OA, which have shown exceptionally promising

prospects for clinical translation and application. These materials,

including extracellular vesicles, hydrogels, and scaffolds, highlight the

significant potential in advancing OA treatment strategies (189).

Looking forward, it is crucial to further explore the molecular

mechanisms of pyroptosis and its role in OA, seeking effective

therapeutic strategies and potential targets. The combination of

pyroptosis-targeting drugs with targeted biomaterials aims to

achieve precision treatment and ultimately cure patients, marking

an exciting direction in the field of OA treatment.
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