
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Lisardo Bosca,
Autonomous University of Madrid, Spain

REVIEWED BY

Ivana Kawikova,
National Institute of Mental Health, Czechia
Haitao Zhu,
Northwest Women’s and Children’s Hospital,
China
Adrián Povo Retana,
Spanish National Research Council (CSIC),
Spain

*CORRESPONDENCE

Koichi Yuki

koichi.yuki@childrens.harvard.edu

†These authors have contributed equally to
this work

RECEIVED 07 January 2025

ACCEPTED 12 February 2025
PUBLISHED 04 March 2025

CITATION

Hou L, Koutsogiannaki S and Yuki K (2025)
Multifaceted, unique role of CD11c in
leukocyte biology.
Front. Immunol. 16:1556992.
doi: 10.3389/fimmu.2025.1556992

COPYRIGHT

© 2025 Hou, Koutsogiannaki and Yuki. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 04 March 2025

DOI 10.3389/fimmu.2025.1556992
Multifaceted, unique role of
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CD11c is widely known as a dendritic cell surfacemarker but its non-dendritic cell

expression profiles as well as its functional role have been gradually delineated.

As a member of leukocyte-specific b2 integrin family, CD11c forms a

heterodimer with CD18. CD11c/CD18 takes different conformations, which

dictate its ligand binding. Here we reviewed CD11c current state of art, in

comparison to its sister proteins CD11a, CD11b, and CD11d, illustrating its

unique feature in leukocyte biology.
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Introduction

CD11c is largely known as a dendritic cell surface marker in immunology field (1). In

fact, mice strains such as CD11c-Cre mice (2) and CD11c-diphtheria toxin receptor (DTR)

transgenic mice (3, 4) have been widely used to study the function of DCs.

Over years, significant knowledge on CD11c has been accumulated, often investigated

under different nomenclatures. Biologically, CD11c forms a heterodimeric adhesion

molecule (CD11c/CD18) by coupling with CD18 (b2 subunit). CD11c/CD18 is named

aXb2 in the integrin field and belongs to leukocyte adhesion molecule b2 integrin family

(5). It is also called complement receptor 4 (CR4) in the complement field as it binds to

complement component iC3b (6). Furthermore, it has been increasingly recognized that

CD11c is expressed beyond dendritic cells and plays a functional role rather than just a

‘surface marker’. For example, the presence of abundant CD11c-expressing blood

neutrophils was recently considered as a potential biomarker for sepsis (7); CD11c-

expressing B lymphocytes were considered to pivotally contribute to lupus pathology

(8, 9). Thus, here we will review CD11c current state of the art.
Protein structures and signaling pathways

Integrins are heterodimeric adhesion molecules consisting of non-covalently associated

a- and b-subunits and mediate cell-to-cell and cell-to-matrix interactions. 18 a- and 8

b-subunits have been identified so far, forming at least 24 distinct a/b heterodimers. CD11c

(aX) was cloned by an integrin expert Dr. Springer’s group in 1990 (10). CD11c/CD18
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(aXb2) belongs to leukocyte-specific b2 integrin family, which

consists of the four members; CD11a/CD18 (aLb2), CD11b/
CD18 (aMb2, CR3), CD11c/CD18 (aXb2, CR4) and CD11d/

CD18 (aDb2) (4). The conformational changes of integrin have

been widely recognized by electron microscopy (EM), small angle

X-ray scattering (SAXS), and X-ray crystallography studies (11–16).

It largely takes three distinct conformations; 1) bent-closed (low

affinity) where the extracellular domains of both a and b subunits

are bent in the middle with the ligand binding domain being

pointing toward the cell membrane, 2) extended-closed

(intermediate affinity) where the extracellular domains of both a
and b subunits are extended, but the ligand binding domain is not

fully exposed, and 3) extended-open (high affinity) where the

extracellular domains of both a and b subunits are extended, and

the ligand binding domain is fully exposed to its ligands (17, 18)

(Figure 1). Integrin in the extended-open confirmation is

considered functionally active, binding to its ligands. The

structure of CD11c/CD18 in both closed and open conformations

was solved by X-ray crystallographic study (19, 20), supporting this

scheme. A subset of integrin a subunits contains a sequence

homologous to von Willebrand a domain, called the Inserted

domain (I domain), which serves as a ligand binding domain

(21). Thus, integrins are divided into the I domain integrin and

the I-less integrin based on the sequencing of the top domain of a
subunit. As b2 integrin belongs to the I domain integrin (i.e. a
subunit has the I domain), ligands for CD11c/CD18 were sought

mainly by using the aX I domain protein. Various molecules are

reported to bind to the aX I domain including iC3b (5),

intercellular adhesion molecule-1 (ICAM-1) (22), fibrinogen (23),

and heparin (24) in vitro. Its binding to complement component

iC3b is a reason to be named as CR4. The interaction of CD11c/

CD18 with these ligands in vivo needs verification. Among the four

b2 integrin members, CD11b shows the most similar characteristic

as CD11b also binds to iC3b, ICAM-1, and fibrinogen (25).

However, CD11b is inclined to bind more to positively charged

species, while CD11c binds to strongly negatively charged species
Frontiers in Immunology 02
(6), suggesting that CD11b and CD11c bind to the same ligand, but

at different site (26).

Integrins are in an inactive conformation at baseline. The

activation of receptors such as G protein-coupled receptors

(GPCRs) and chemokine receptors induces a cascade events,

inducing the structural changes (Figure 1) and allowing the

integrin to bind to its ligand (Inside-out signaling) (27). When

integrin binds to its ligand, it undergoes cytoskeletal changes via

focal adhesion molecules, leading to cell proliferation, survival,

differentiation and migration. Regarding b2 signaling pathway, it

was most studied in CD11a/CD18 (aLb2) (28). In case of CD11c,

phosphoinositide 3-kinase (PI3K)/Akt pathway is involved (29), but

detailed molecular interactions need future investigation.
The role of CD11c in various
leukocyte types

Neutrophils

The expression of CD11c in neutrophils has been sporadically

reported in the literature. Rorvig et al. performed proteome

profiling of human neutrophil granule subsets and showed that

CD11c was detected in gelatinase granules (30). We also

demonstrated that both murine and human neutrophils had

significantly high intracellular CD11c expression, while they had

limited CD11c expression on the cell surface by flow cytometry and

fluorescence microscopy studies (29). We further performed

granule separation (31) and confirmed that CD11c was highly

expressed in the compartment corresponding to gelatinase

granules, along with secretory granules (32).

Unexpectedly we found that CD11c knockout (KO) mice had

more immature neutrophils in the bone marrow (BM) compared to

their wild-type (WT) counterpart (Figure 2) (29). In line with this

finding, CD11c KO BM neutrophils showed less effector functions

(phagocytosis, chemotaxis, reactive oxygen species (ROS)
FIGURE 1

Conformational change of the I domain containing integrin. Red indicates the aI domain. Yellow indicates a ligand. (A) Closed conformation
(inactive, resting status), (B) Closed-head conformation (Intermediate state), (C) Open-head conformation (active state). The ligand binds to integrin
at open-head conformation. TM, transmembrane.
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formation, neutrophil extracellular traps (NETs) formation) than

WT BM neutrophils. While peripheral blood neutrophil counts

were not different between WT and CD11c KO mice, neutrophils in

the peripheral blood were less mature in CD11c KO mice compared

to ones in WT mice (29). Although conventional DCs play a

regulatory role in releasing neutrophils from the BM into their

peripheral blood and their survival (33), mixed chimera (WT/

CD11c KO) mice demonstrated less maturation of CD11c KO

BM-derived neutrophils, supporting the idea that CD11c

intrinsically regulates neutrophil maturation. This was further

supported in vitro as CD11c deficient HL60 cells showed less

neutrophil maturation/differentiation. The reduced maturation of

CD11c KO BM neutrophils was driven by their exaggerated

proliferation and apoptosis involving PI3K/Akt signaling

pathway. We also created CD11c constitutive active knock-in

mice (CD11c I334G mice) by locking the I domain in CD11c

(aX) in the open (active) conformation (29). The mice showed

significantly more mature neutrophils in the BM compared to WT

mice, further demonstrating the critical role of CD11c in neutrophil

maturation. So far, the functionality of integrins has been

predominantly demonstrated when they are on the cell surface.

The functionality of CD11c in the intracellular space is a novel

finding. As the aI domain serves as a ligand binding domain, we

examined a potential CD11c ligand in this process using

proteomics. IQGAP1 (IQ motif containing GTPase activating
Frontiers in Immunology 03
protein 1) was considered as a potential ligand (29). IQGAP1

deleted HL60 cells also demonstrated less neutrophil maturation,

consistent with the result of CD11c deleted HL60 cells. IQGAP1 KO

mice also showed less mature BM neutrophils, consistent with the

phenotype of CD11c KO mice (32).

In addition to neutrophil maturation, CD11c also

independently affected reactive oxygen species (ROS) formation.

Mature CD11c KO BM neutrophils showed significantly less ROS

formation compared to mature WT BM neutrophils upon phorbol

12-myristate 13-acetate (PMA) stimulation (29). Similarly, mature

CDI334G KI BM neutrophils showed significantly more ROS

formation than mature WT BM neutrophils. While PMA induces

ROS formation by activating protein kinase C and nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase, how CD11c

affects this mechanism remains to be determined. In contrast to

ROS formation, phagocytosis was not different between mature WT

and CD11c KO BM neutrophils, suggesting that CD11c specifically

regulates ROS formation among neutrophil effector functions.

CD11c is expressed on the cell surface of neutrophils, though its

expression is significantly less than in the intracellular space (29).

CD11c cell surface expression is upregulated on aged neutrophils (34,

35). Aged neutrophils have more active effector functions in acute

infection associated with more b2 integrin activation, probed by

ICAM-1 binding (36). However, the involvement of CD11c in the

augmented effector function of aged neutrophils has not been
FIGURE 2

Neutrophil maturation and differentiation. In the figure, band neutrophils are considered immature neutrophils and segmented neutrophils are
mature neutrophils. Neutrophils prior to band neutrophils are called pre-neutrophils. Mature neutrophils are primarily released into the peripheral
blood. However, under stress and/or infection, immature neutrophils are also released into the circulation.
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clarified yet. In addition, the abundance of CD11c expressing

neutrophils has been correlated with the sepsis severity in the

patient (7). All of these experimental findings above and patient

data suggest that CD11c might serve as a target to regulate the

neutrophil maturation in various disease conditions including sepsis.
Monocytes/macrophages

CD11c is also expressed on monocytes. CD11c is highly

expressed on intermediate and non-classical monocytes, while its

expression on classical monocytes is limited in humans. Compared

to CD11b expression level, CD11c expression is approximately 1/7

on monocytes as a whole (37). CD11c+ monocytes are considered as

activated monocytes, associated with an increase in endocytic

activity (38). Sandor et al. found in vitro that CD11b was

predominantly involved in iC3b-mediated phagocytosis (39),

while CD11c was more adhesive to fibrinogen over CD11b (37).

A subset of macrophages also expresses CD11c. Alveolar

macrophages express CD11c, while interstitial macrophages show

its limited expression (40). In the study on salivary gland

macrophages, CD11c- macrophages are derived from embryonic

progenitors, while CD11c+ macrophages are from the bone marrow

derived progenitors (41). Whether or not CD11c has a functional

role in macrophages is yet to be determined.
Dendritic cells

CD11c is widely used as a definingmarker for DCs for a long time

(42), but its functional role has been less explored. CD47 is a cell

surface protein abundantly expressed on most cell types and known

as a “marker of self”. CD47 engagement to the Signal regulatory

protein alpha (SIRPa) receptor transmits a “don’t eat me” signal to

DCs and macrophages to prevents their engulfment (43). When

CD47 is missing from erythrocytes in circulation, they are rapidly

cleared by macrophages (44). Splenic CD4+ DCs also express SIRPa
and directly interact with circulating erythrocytes in the marginal

zone. This causes strong CD4+ DCs activation, accompanied by the

migration and accumulation of these DCs to the T cell zones of the

splenic white pup, where they activate CD4+ T cells (45). Using

CD11c KOmice, Wu et al. showed that CD11c was critically involved

in the binding to and uptake of CD47-deficient cells by DCs (42)

(Figure 3). Although they explored the possible involvement of several

reported CD11c ligands including iC3b in this biological event, the

ligand remains to be determined as of now. Of note, CD11c deficiency

did not affect the number of conventional DC1 (cDC1, MHC-

II+XCR1+CD8a+), cDC2 (MHC-II+XCR1-CD8a-SIRP1+CD11b+),

and plasmacytoid DC (pDC, PDCA+CD11b-Ly6C+) subsets

(42, 46). DCs serve as antigen presenting cells (APCs). DCs in

CD18 KO mice, which lacks all functional b2 integrins, have no

defect in antigen presentation (47). Thus, it is unlikely that active

CD11c is functionally required for DC’s antigen presentation.

Depletion of CD11c+ cells in the CD11c-DTR model drives the

expansion of unique CD64+ Ly6C monocyte population in the blood,

which upregulates TLR signaling apparatus and is more poised to
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produce proinflammatory cytokines (48). These monocytes have

been reported in tissues (49). Because monocytosis was also

reported in zinc finger and BTB domain containing 46 (Btbd4,

zDC) mediated DC deletion mice (50), the effect of CD11c-DTR

model on monocytes is likely driven by DCs, not CD11c.
NK cells

A subset of NK cells also express CD11c on their cell surface.

The study by Aranami et al. showed that 20-80% of NK cells from

healthy subjects were CD11c positive (51). Furthermore, IL-15

induced CD11c expression on the cell surface of NK cells in vitro.

Similar to monocytes/macrophages, the functional role of CD11c in

NK cells is limitedly studied, waiting for future insight.
T cells

Although not frequent, CD11c expression has been reported on

the cell surface of a subset of CD8 T cells (52). CD11c+ CD8 T cells

suppress autoreactive CD4 T cells (53). CD11c+ CD8 T cells also

show cytotoxicity, stronger than CD11c- CD8 T cells (54). As anti-

CD11c antibody inhibits cytotoxicity, CD11c on the cell surface

may facilitate conjugation (55). In addition, a subset of gdT cells

expresses CD11c. CD11c+ gdT cells secrete more interferon gamma

(IFN-g) secretion upon activation than CD11c- gdT cells, suggesting

that they have a more robust effector function (56).

While the majority of T cells does not express CD11c, peripheral

CD4 and CD8 T cell counts are significantly lower in CD11c KO mice

than in WT mice in a steady state, suggesting that CD11c can regulate

T cells (46). The thymus is the primary lymphoid organ that supports T

cell development via three major stages: Double negative (DN), double

positive (DP), and single positive (SP). During these stages, developing

lymphocytes undergo a dynamic relocation and give rise to naïve T

cells, which are released to the periphery (57, 58). CD11c KO mice

showed smaller-sized thymus with the loss of cellularity, which was

accompanied by a significantly less number of DP, CD4 SP, and CD8

SP cells. However, no difference in the number of DN cells between

WT and CD11c KO mice was observed (46). The analysis of CD4 and

CD8 SP population showed that they were skewed toward more

mature population, indicating that immature CD4 and CD8 SP

population was more affected in the thymus of CD11c KO mice.

During the development of T cells in the thymus, thymic

epithelial cells (TECs) and DCs are involved in selection. Cortical

TECs (cTECs) are involved in thymocyte positive selection, and

medullary TECs (mTECs) and DCs are involved in negative

selection (59, 60) (Figure 3). While TECs and developing T cells

did not show any CD11c expression, DCs showed robust CD11c

expression. The chimera of irradiated CD11c KO mice transplanted

with WT donor BM cells (WT/CD11c KO chimera) had thymocyte

number comparable to those of WT/WT chimera. Thus, it is

possible that the effect of CD11c on T cell developing in the

thymus is via DCs. Whether CD11c on DCs affects the phenotype

of developing T cells via direct interaction or indirectly regulates by

affecting surrounding milieu needs to be determined.
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B cells

CD11c expression is also reported in a subset of B cells in both

mice and humans. The presence of CD11c+ B cells is well described in

autoimmune diseases including rheumatoid arthritis (61), Sjogren’s

syndrome (62), multiple sclerosis (63), and systemic lupus

erythematosus (64). In addition, CD11c+ B cells are also reported in

healthy individuals in an increasing frequency together with age (65).

While CD11c expression is not seen in the cell surface of B cells in

younger mice (66), CD11c+ B cells also accumulate with age in mice,

which was initially named “age-associated B cells (ABC) (61). Golinski

et al. studied the presence of CD11c+ B cells in transitional

(CD19+CD24+CD38+), naïve (CD19+IgD+CD27-), memory B cells

(CD19+CD27+) and plasmablasts (CD19+CD24-CD38+), most

frequently seen in memory cells (65). They also found that CD11c-

B cells induced CD11c expression upon B cell receptor (BCR)

stimulation. ABC was later named atypical B cells as they were

considered part of an alternative lineage of B cells involved in

responses to vaccination and infection (67). In fact, CD11c

expression was considered a marker of atypical B cells based on

single cell RNA sequencing (scRNA seq) analysis data and flow

cytometry data (67, 68). While overall CD11c+ B cells seem to be

associated with B cell activation, the functional role of cell surface

CD11c in B cells remains to be determined. Interestingly, CD11c-DTR

system depleted activated B cells including germinal center B cells

(69). Thus, this system can be used to study atypical B cells. At the

level of transcriptional regulation, ABC could also be characterized by

the expression of the transcription factor T-bet. Indeed, T bet defines

this B cell subset, which also expresses several other characteristic cell

surface markers including CD11c, CD11b, and CD73 (70). Thus, it’s
Frontiers in Immunology 05
reasonable to hypothesize that CD11c expression on the B cell could

be regulated by transcription factor T-bet.

CD11c cell surface expression is absent on circulating B cells in

younger mice. However, B cell count is significantly lower in CD11c

KO mice compared to WT mice (66). Particularly the number of

CD11c KO recirculating and mature B cells is significantly lower

compared to that of WT. Furthermore, CD11c KO B cells are

associated with exaggerated proliferation and apoptosis. The

analysis of mixed chimera mice showed that the regulation of B

cell proliferation and apoptosis was non-intrinsically driven. CD11c

KO DCs produced less macrophage migration inhibitory factor

(MIF). CD74 is a receptor for MIF (71). The binding of MIF to

CD74 on B cells activates PI3K/Akt pathway, regulating B cell

proliferation and survival (72, 73) (Figure 3). DCs potentially

regulate B cell number via CD11c. This needs further

experimental clarification.

Overall, CD11c seems to affect B cells directly or indirectly.

However, it is still elusive about the definite role of CD11c in the

generation, accumulation, and effector functions of B cells. More

experiments are needed in this regard.
Bone marrow leukocytes

In addition to its expression on peripheral leukocytes, CD11c is

also expressed on the short-term hematopoietic stem cells (ST-

HSCs) and multipotent progenitor cells (MPPs). The lack of CD11c

expression on these cells is associated with a significant increase in

their proliferation and apoptosis under stress such as sepsis and

bone marrow transplantation (74). CD11c KO mice show a
FIGURE 3

The role of CD11c on DCs in DC functions, T cell development in the thymus, and B cell proliferation and survival. (A) CD11c is involved in the
uptake of CD47- cells by DCs, (B) Progenitor cells will be mobilized from the bone marrow to the thymus then T cells are developed in the thymus.
DCs are involved in negative selection. (C) Macrophage inhibitory factor (MIF) is produced by DCs. MIF binds to B cells and induce their
proliferation/survival.
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significant loss of HSPCs under stress, indicating the critical role of

CD11c in HSPCs in disease process (74).

In this section, we reviewed the involvement of CD11c in

various leukocytes. The summary of CD11c expression profiles

per each cell type is summarized in Table 1.
The comparison with other b2
integrin members

CD11a (aL), CD11b (aM), CD11c (aX), and CD11d (aD) are
sister proteins and on chromosome 8. Evolutionally, CD11a and

CD11b exist first. CD11b and CD11c are predicted to arise from

gene duplication event (75). Then, CD11d appears last (76). From

homology standpoint, the identity of the ligand binding domain

and the b propeller domain between CD11b and CD11c is the

highest (~77%) (42). Each b2 integrin member is expected to play a

unique role. It is also important to understand if there is a

significant redundancy in each member’s function.
CD11a

CD11a is ubiquitously expressed on peripheral leukocytes and

plays a major role in leukocyte functions, ranging from leukocyte

adhesion to immunological synapse formation (77, 78). The major

ligand for CD11a/CD18 is ICAM-1 (79, 80).

CD11a is not required for neutrophil differentiation and maturation

(29), but CD11a significantly affects neutrophil extravasation (81).

CD11a deficiency is also associated with neutrophilia (82, 83). This is

likely a secondary phenotype due to a reduced egress of neutrophils from
Frontiers in Immunology 06
the peripheral blood to other compartments in CD11a KO mice, which

induces higher circulating IL-23, IL-17, and granulocyte colony-

stimulating factor (G-CSF) levels (84).

In DCs, CD11a activity state is kept in a low affinity state by re-

localizing cytohesin-1, which is a molecule to interact with CD11a/

CD18 from the plasma membrane to the cytosol (85). The

activation of CD11a on DCs causes a prolonged contact between

DCs and naïve T cells, which inversely correlates with T cell

activation and antigen-specific T cell proliferation (86).

NK cells express a number of activating and inhibitory receptors

on their cell surfaces to recognize stress ligands as well as MHC class

I (87). CD11a is one of the activating receptors and serves as a major

adhesion molecule on NK cells. For example, the binding to ICAM-

1 on tumor cells can lead to the conjugation between NK cells and

tumor cells, which results in the reorganization of cytoskeletal

structures and lytic granule polarization within NK cells. CD11a

deficiency impairs NK cell-mediated cytolysis (88, 89).

CD11a is also important for immunological synapse formation.

T cell receptor (TCR) aggregates into a central supramolecular

activation clusters (cSMACs) surrounded by a peripheral ring

(pSMACs) of CD11a to form an immunological synapse between

T cells and APCs such as DCs (90, 91). Thus, in contrast to CD11a

on DCs, activated CD11a on T cells helps to stabilize an interaction

between T cells and DCs and acts as a co-stimulator for T cell

activation (92). Instead, B cells can form a functional synapse

without CD11a when the avidity of B cells for the antigen exceeds

a certain threshold (93). However, CD11a (on B cell) -ICAM-1 (on

APC) interaction lowers the threshold of B cell activation by

facilitating B cell activation and synapse formation. In addition,

homotypic aggregation of B cells via CD11a-ICAM-1 regulates IgE

synthesis by modulating C epsilon germ-line transcription (94).

CD11a is also expressed on all of long-term hematopoietic stem

cells (LT-HSCs), ST-HSCs, MPPs, CLPs and CMPs (95). While

CD11a defic i ency enhanced HSPCs ac t i v i t y unde r

lipopolysaccharide (LPS) stimulation, the mixed chimera (WT/

CD11a KO) analysis did not support that this was cell-

intrinsically driven. Instead this may be driven by IL-27 as its

production was attenuated in CD11a KO mice (95). IL-27 is

involved in the promotion of expansion and differentiation of

HSCs in the setting of emergency myelopoiesis (96).

Overall CD11a shows a very different functionality on

leukocytes compared to CD11c.
CD11b

CD11b is mainly expressed on innate immune cells, but also on

a subset of adaptive immune cells, as in the case of CD11c.

CD11b is highly expressed on neutrophils and monocytes and

plays a major role in their recruitment, phagocytosis and cell death

(97). While CD11b has the highest homology to CD11c and share

the same ligands including iC3b, ICAM-1, and fibrinogen, CD11b is

not required for neutrophil maturation and differentiation (29).

DCs also express CD11b. Similar to CD11a, CD11b on DCs is

kept inactive. The presence of active CD11b on DCs inhibits full T

cell activation (47).
TABLE 1 CD11c expression profiles in immune cells.

Intracellular
expression

Cell
surface expression

Neutrophils + +

Monocytes/
Macrophages

ND Activated monocyte and
alveolar macrophage

Dendritic cells + +

NK cells ND A subset of NK cells

T cells – –

B cells – A subset of B cells (aged B cells)

LT-HSCs – –

ST-HSCs – +

MPPs ND +

CLPs – –

CMPs ND +

LSKs ND +
ND, not determined; LT-HSC, long-term hematopoietic stem cell; ST-HSC, short-term
hematopoietic stem cell; MPP, multipotent progenitor cell; CLP, common lymphoid
progenitor cell; CMP, common myeloid progenitor cell; LSK, Lin-Sca1+c-Kit+ population
of the bone marrow.
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A subset of NK cells expresses CD11b. CD11b has been

considered as a marker of NK cell maturation (98–100). However,

it has been reported that CD11b KO NK cells are more activated

and have more cytolytic capability (101). Thus, the role of CD11b in

NK cells needs to be studied more in depth.

CD11b is expressed on a subset of T cells including CD8 T cells

and gdT cells (102). CD11b expression on CD8 T cells have been

associated with acquisition of cytotoxic capacity (103).

CD11b is also expressed on a subset of B cells. CD11b plays a

role in the maintenance of autoreactive B cell tolerance by providing

negative regulation on BCR-mediated signaling (104).

BM cells in CD11b KO mice behave quite differently compared

to CD11c KO mice. Under LPS stimulation, the number of CD11b

KO HSPCs increased similarly to WT, CD11a KO and CD11d KO

HSPCs, while CD11c KO mice showed their significant decrease

(74). Interestingly, CD11b KO BM had higher CMP number

compared to WT and other b2 integrin member KO mice (74).

The underlying mechanism has not been delineated yet.
CD11d

The reported ligands for CD11d/CD18 include ICAM-3 (105),

vascular cell adhesion molecule 1 (VCAM-1) (106), and 2-(w-
carboxyethyl)pyrrole (CEP) (107), which are quite different from

other b2 integrin members.

CD11d expression is reported mainly on myeloid cells (108).

CD11d deficient neutrophils show reduced cell death and increased

phagocytosis (109).

CD11d is expressed on foam cells, a type of macrophages filled

with lipids (105). CD11d in foam cells promotes their retention in

vascular lesions and development of atherosclerosis (110).

While CD11d is reported on a subset of NK cells, gdT cells, and

B cells (111). However, CD11d KO BM cells did not show any

significant difference compared to WT BM cells (74).
Sepsis as a model to compare the function
of the four b2 integrin members

As reviewed above, each b2 integrin member demonstrates

redundancy as well as uniqueness. To illustrate the role of each b2
integrin member in vivo, we reviewed the data from the

experimental sepsis as an example. The critical role of b2 integrin

in infection has been well recognized by a genetic disorder leukocyte

adhesion deficiency type I caused by functional defect b2 integrin,

characterized by recurrent infections, impaired pus formation, and

sepsis (112). In line, CD18 (b2) KO mice showed significantly

higher mortality in polymicrobial abdominal sepsis induced by

cecal ligation and puncture surgery compared to WT mice (109).

From the mortality standpoint, CD11a KO, CD11b KO, and CD11c

KO mice showed higher mortality compared to their corresponding

WT mice (74, 82, 113, 114), similar to what was observed in b2 KO
mice. However, the analysis of these three KO mice in the sepsis

model revealed quite different immune cell behaviors despite a

similar outcome. CD11a KO mice showed a significantly reduced
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number of migrated neutrophils to the peritoneal cavity, which was

associated with more bacterial loads (114). However, their

neutrophils had competent phagocytosis. In contrast, CD11b KO

mice had normal migration of neutrophils to the peritoneal cavity,

but showed impaired neutrophil phagocytosis with more bacterial

loads (114). CD11c KO mice showed significantly impaired

neutrophil maturation, which was associated with a reduction in

all the neutrophil effector functions. In contrast, CD11d KO mice

showed better sepsis survival compared to WT mice (109). As

CD11d KO neutrophils showed significantly reduced apoptosis

with more available neutrophils compared to WT mice, they

showed less bacterial loads. However, CD11d expression in

neutrophils is limited compared to CD11a, CD11b and CD11c.
Future research direction

While CD11c has a very unique feature in leukocyte functions

including neutrophil maturation, ROS formation, and DC uptake of

CD47- cells, but the role of cell surface CD11c in a subset of B cells,

NK cells, and T cells, for example, is not well explored. As CD11c

cell surface expression on those cells seem to overlap with CD11b,

and CD11d, a clear understanding of an individual player’s role on

their cell surface is critical. While lots of research need to be done,

CD11c may serve as an exciting target.

Since CD11c is involved in the maturation and/or effector

functions of several myeloid-derived cells including neutrophils,

DCs, and monocytes, manipulating CD11c would serve as a

potential strategy to intervene diseases involving these cells,

which include tumor and autoimmune diseases other than acute

infectious diseases. For example, myeloid-derived suppressor cells

(MDSCs) accumulate in the tumor microenvironment and

contribute to the resistance to cancer therapy. CD11b agonist has

already been reported as a strategy to re-program the MDSCs to

overcome the suppressive tumor microenvironment (115, 116).

Neutrophils play a major role in breast cancer with anti-tumor

(N1) and pro-tumor (N2) neutrophils (117). In this regard, CD11c

activation could be a potential strategy to enhance neutrophil

functions. While limited literature is available regarding the role

of CD11c in tumor, future investigation is needed. Since CD11c

controls the neutrophil ROS generation and NETs formation,

CD11c antagonist should be explored as a potential therapeutic

for treating lupus, where NETs play a major role and the other

nuclear antigens are released during NETs formation (118–120).

Targeting CD11c could also suppress CD11c-positive pathogenic B

cells, which provide an additional rationale to design CD11c-based

therapeutic for lupus.
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