
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Srinivasa Reddy Bonam,
Indian Institute of Chemical Technology
(CSIR), India

REVIEWED BY

Axel T. Lehrer,
University of Hawaii at Manoa, United States
Yanmin Wan,
Fudan University, China
Mathieu Surénaud,
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Introduction: Generally, individuals assigned female at birth (AFAB) develop

greater immunogenicity to various vaccines than individuals assigned male at

birth (AMAB). Little is known about sex-disaggregated immunogenicity to HIV-1

vaccines. We disaggregated immune responses to an experimental HIV

vaccine regimen.

Methods: We retrospectively analyzed data from HVTN 100, a clinical trial

conducted in South Africa during which 143 adults AMAB and 109 AFAB aged

18–40 years without HIV received ALVAC-HIV vCP2438 plus bivalent subtype C

gp120/MF59 or placebo at 0, 1, 3, 6, and 12 months. Eligible data were from per-

protocol vaccine recipients at month 6.5. We measured IgG binding antibodies,

neutralizing antibodies, antibody-dependent cell-mediated cytotoxicity (ADCC),

antibody-dependent cellular phagocytosis (ADCP), and CD4+ IFNg and/or II-2

responses. We compared sex-based differences in response rates using Barnard’s

test and response magnitudes using Wilcoxon Rank Sum test. P-values were

Holm-adjusted for multiple comparisons.

Results: Of 185 vaccine recipients, 73 were AFAB and 112 were AMAB. Vaccine

recipients AFAB had greater ADCC response rate (57.5% versus 29.5%; padj =

0.0003) and greater ADCC magnitude (area under the net % granzyme B activity
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vs log10 curve (AUC), 16.1 versus 11.2; padj = 0.05) to vaccine-matched antigen

TV1.C gp120 compared to AMAB. Vaccine recipients AMAB had higher CD4+ T

cell response rates to 2/3 vaccine-matched antigens at month 6.5 (ZM96.C

gp120, [54.1% versus 36.8%; padj = 0.04]; 1086.C gp120, [44.1% versus 29.4%; padj
= 0.05]) than AFAB. CD4+ T cell response magnitudes were similar by sex. IgG

binding antibody response rate to B.CaseA V1V2 antigen (associated with

reduced HIV acquisition risk in the RV144 trial) was 56.8% among AMAB

vaccine recipients versus 38.9% among AFAB (padj = 0.08). There were no sex-

based differences in neutralizing antibody or ADCP responses.

Discussion: We identified sex-based differences in immune responses to an HIV

vaccine regimen, but they varied by immunologic assay. While vaccine recipients

AFAB demonstrated higher ADCC responses, AMAB exhibited higher CD4+ T cell

response rates. Future analyses should investigate whether vaccine factors such

as platform, dosing and adjuvants contribute to sex-based differences in

immunogenicity of experimental HIV vaccines.
KEYWORDS
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Introduction

Vaccine-induced immunogenicity, which may be used to

inform vaccine design and as a proxy estimate of efficacy, may

differ by sex assigned at birth (1). For many vaccines, individuals

assigned female at birth (AFAB) develop higher antibody responses

than those assigned male at birth (AMAB), including higher virus-

specific antibody responses to measles, mumps, rubella, influenza,

hepatitis A and B, herpes simplex virus type 2, rabies, smallpox, and

dengue viruses after vaccination (1–3).

Sex difference in immune responses is attributed to multiple

factors, including the influence of genes, hormones, and the

microbiome on immune regulation (4). Sex is determined by X

and Y chromosome composition. The X chromosome plays a

crucial role in modulating immune responses and encoding

proteins that function in the recognition of foreign antigens (Toll-

like receptor [TLR] 7, TLR8) (5),cytokine receptor production

(IL2RG, IL13RA2), and cell differentiation (FOXP3) (6). In

individuals AFAB, one X chromosome is typically silenced yet 15-

20% of genes on this chromosome escape inactivation. This results

in differential expression of X-linked genes between sexes and

contributes to sex differences in immune function (4).

Furthermore, although some immunologic sex differences are

lifelong, others appear in the reproductive years, which supports

the influence of sex hormones on immune response (7). Sex

hormones attach to nuclear receptors which influence

transcriptional activity of the cell (8, 9).Estrogen has been shown

to enhance antibody production (10), while testosterone may

suppress certain immune responses (11). Moreover, there are sex

differences from birth in the diversity and quantity of different gut
02
microbiome species, known to modulate immune function and

vaccine-induced immune responses, including those to influenza

and COVID-19 vaccines (3).

Understanding sex-based disparities in immunogenicity may

help inform vaccine development, particularly for diseases with sex-

disproportionate morbidity and mortality (4). Sex differences in

HIV acquisition are well documented (12). While both sexes are

affected, more individuals AFAB are affected – particularly in sub-

Saharan Africa (13). Therefore, understanding sex differences in

immune responses is relevant to HIV vaccine development.

In this study, we disaggregated immunogenicity by sex to the

subtype C ALVAC-HIV and bivalent subtype C gp120/MF59 HIV-

1 vaccine regimen among vaccine recipients at the primary

immunogenicity timepoint, 2 weeks after the fourth vaccination

(month 6.5). Additionally, we determined if there were sex-based

differences in vaccine and placebo recipients in T cell responses to

cytomegalovirus (CMV) phosphoprotein (pp65) and to

Staphylococcal Enterotoxin B (SEB), commonly used as positive

control antigens in T cell intracellular cytokine staining

(ICS) assays.
Materials and methods

Summary of HVTN 100 clinical trial

The HVTN 100 trial was a phase 1–2 randomized, placebo-

controlled, double-blind trial conducted at 6 community sites in

South Africa. Healthy participants aged 18–40 years, not living with

HIV, and deemed low vulnerability to HIV acquisition, were
frontiersin.org
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enrolled between February and May 2015 and were randomized to

receive vaccine or placebo in a 5:1 ratio as previously described (14).

Placebo recipients received injections at months 0, 1, 3, 6, and 12

(Figure 1). Vaccinees received ALVAC-HIV (vCP2438) at months 0

and 1 followed by ALVAC-HIV (vCP2438) plus bivalent subtype C

envelope gp120 and MF59 adjuvant at months 3, 6 and 12.
Participant data

Data which were eligible for analysis included all available

immunogenicity data that met assay-specific quality control

criteria. We evaluated immunogenicity data from per-protocol

AMAB and AFAB participants from the month 6.5 timepoint, i.e.

2 weeks after the fourth dose of the vaccine regimen. The primary

variables included Env-binding IgG and IgG3 antibodies, HIV-1

neutralizing antibodies, antibody-dependent cellular cytotoxicity

(ADCC), antibody-dependent cellular phagocytosis (ADCP), and

Env-specific CD4+ T cell responses.
Immunogenicity assays

HIV-1 Env-specific IgG and IgG3 binding
antibody responses

HVTN 100 serum HIV-1-specific immunoglobulin G (IgG)

binding antibody responses were measured in a Good Clinical

Laboratory Practice (GCLP) Laboratory using a custom HIV-1

antibody multiplex assay on a Bio-Plex instrument (Bio-Rad)

with positive control tracking using Levey-Jennings charts (15).

The samples from month 6.5 were measured at dilutions of 1:100

(IgG to V1V2 antigens), 1:200 (IgG to gp120 antigens) or 1:40

(IgG3 to all antigens). Assay readout was background (assay and

sample-specific) subtracted mean fluorescence intensity (MFI).

Negative controls included HIV-1 seronegative human serum.

Samples were excluded from the analysis if the blood draw

occurred outside of the allowable visit window or if the blank

bead negative control exceeded 5,000 MFI on two subsequent assay
Frontiers in Immunology 03
runs. Positive responses were determined if three conditions were

met: (1) the MFI minus Blank values were ≥ antigen-specific cutoff

at the 1:50 dilution level (based on the 95th percentile of the baseline

visit serum samples and at least 100 MFI), (2) the MFI minus Blank

values were greater than 3 times the baseline (day 0) MFI minus

Blank values, and (3) the MFI values were greater than 3 times the

baseline MFI values. IgG and IgG3 binding antibody response

magnitudes are summarized as netMFI. Antigens were chosen to

represent vaccine-matched sequences, to represent antigens

identified as correlates of HIV acquisition risk in the RV144 trial

(B.CaseA V1V2), or consensus sequences (Con 6 gp120/B) (16).

Magnitude-breadth IgG and IgG3 scores were performed in this

study. This score is a summary measure that describes the

magnitude and breadth across a panel of antigens and represents

the area under the magnitude-breadth curve for an individual

vaccine recipient, as previously described (17).

Neutralizing antibody responses
Neutralization titers at 50% inhibitory dilution (ID50) were

measured as a function of reductions in Tat-regulated luciferase

(Luc) reporter gene expression in TZM-bl cells. For this analysis,

neutralization titers against two heterologous Env-pseudotyped

Tier 1a viruses were assessed, MW965.26 (non-vaccine-matched)

and TV1c8.2 (vaccine-matched). For the assay, a titer is defined as

the serum dilution that reduces relative luminescence units (RLUs)

by 50% relative to the RLUs in virus control wells (cells incubated

with virus) after subtraction of the background RLU (cells only). In

this neutralization assay utilizing TZM-bl cells, response to a virus

was considered positive if the neutralization titer was above the pre-

specified cutoff of 10. Response magnitude plots characterize the

neutralization titer (ID50) of each individual serum sample and

results are stratified based on sex assigned at birth.

Antibody-dependent cellular cytotoxicity
responses

Participant sera were incubated with effector cells and vaccine-

matched gp120 coated target cells (ZM96 gp120, 1086.C gp120, and

TV1.C gp120). ADCC-mediated antibody responses were
FIGURE 1

HVTN 100 study schema. Per-protocol participants are defined as having received the first 4 scheduled vaccinations. HVTN, HIV Vaccine
Trials Network.
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quantified as net percent granzyme B activity (18). Net percent

granzyme B activity was measured by the difference between the

percent of target cells positive for GranToxiLux (GTL), an indicator

of granzyme B uptake, and the percent of target cells positive for

GTL when incubated with effector cells and no sera. Flow cytometry

was used to quantify the frequency of granzyme B positive cells in

the assay. For each participant, percent granzyme B activity was

measured at 6 dilution levels (50, 250, 1250, 6250, 31,250 and

156,250) for each antigen. ADCC magnitude was measured as area

under the net percent granzyme B activity versus log10 dilution

curve (AUC) and calculated using the trapezoidal rule. A positive

response was defined as peak granzyme B activity greater than or

equal to 10%.

Antibody-dependent cellular phagocytosis
responses

Neutravidin fluorescent beads coated with 1086gp140 were first

incubated with diluted sera and control monoclonal antibodies

(positive control CH58 and negative control CH65). THP-1 cells

and human monocytic effector cells (pre-treated with anti-human

CD4 to reduce CD4-Env mediated virus internalization) were

incubated with the antibody/HIV-1 protein conjugated

microsphere complexes, and then paraformaldehyde-fixed prior

to analysis by flow cytometry. The phagocytic scores were

determined based on the ratio of experimental sample to a

control sample with no antibody. Positive responses were

determined if both of the following criteria were met: (1) Mean

phagocytosis score at follow-up ≥ positivity threshold and (2) Mean

phagocytosis score at follow-up ≥ 3 x mean phagocytosis score

at baseline.

Intracellular cytokine staining
The homologous peptide pools evaluated and included in this

study were comprised of 15-mer peptides overlapping by 11 amino

acids across 1086 gp120, TV1 gp120, and ZM96 gp120. The

magnitude of CD4+ and CD8+ T cell responses were measured

by intracellular cytokine staining (ICS) assessing expression levels

of IFN-g and/or IL-2. Cryopreserved peripheral blood

mononuclear cells (PBMCs) determined to have a viability of

≥66% were stimulated ex vivo with vaccine-matched synthetic

pooled peptides. For these analyses, the mean PBMC viability

was 92% with a standard deviation of 3.83. Unstimulated cells

were utilized as negative controls. For positive controls, cells were

stimulated with cytomegalovirus pp65 (CMV) and staphylococcal

enterotoxin B (SEB). Samples with fewer than 5000 CD4+ or CD8+

T cells were excluded from the ICS analysis. A positive response of

a peptide pool within a T cell subset was determined by one-sided

Fisher’s exact test applied to the peptide pool response versus the

negative control response with discrete Bonferroni-Holm

adjustment for multiple comparisons. If the adjusted p-value ≤

0.00001, the response to the peptide pool for the corresponding T-

cell subset was considered positive. The background-adjusted

percentage of CD4+ and CD8+ T cells expressing IFN-g and/or
Frontiers in Immunology 04
IL-2 was analyzed, where this net percent was calculated as % of

antigen-stimulated cells minus % of unstimulated, negative

control cells.

Functionality and polyfunctionality scores for antigen-specific

T cell subsets were analyzed by COMPASS (Combinatorial

Polyfunctionality Analysis of Antigen-Specific T-cell Subsets). The

functionality score is determined by the estimated proportion of

subsets most likely to have antigen-specific responses among all

possible subsets, and the polyfunctionality score is similar but

weighs the different subsets by their degree of functionality (19).

COMPASS probabilities were reported for all observed CD4+ T cell

subsets (interferon-gamma, interleukin-2, tumor necrosis factor

alpha, CD40 ligand, interleukin-4, and granzyme B).
Statistical methods

Immunogenicity data from per-protocol participants were

included in our analyses. All immune assays were conducted in

HVTN laboratories by staff blinded to participant study

product assignment.

Response rates are the proportion of participants with positive

immune assay response among the total participants within the sex-

based cohort. Response rate data is displayed using bar graphs and

the 95% Wilson confidence intervals (CI) are provided in

Supplementary Tables S1 and S2. Response magnitudes for each

immune assay among AFAB and AMAB participants are displayed

using boxplots where the box edges reflect the 25th and 75th

percentiles or interquartile range (IQR), the midline denotes the

median, and the whiskers extend to the minimum and maximum

data points. Response rates between groups (AFAB versus AMAB)

were compared using Barnard’s exact test. Response magnitudes

were compared between groups using the Wilcoxon rank sum test.

A p value of <0.05 was used to determine statistical significance.

Within each immune assay type, p values were adjusted for multiple

comparisons using Holm-Bonferroni correction. For data plotted

using a log10 scale, zero and negative values were converted to a

standard minimum value. Statistical analyses were performed using

R (Version 4.3.2). Figures were prepared using GraphPad

Prism 10.4.1.
Results

Trial cohorts

Of the 252 participants enrolled in the HVTN 100 trial, 222

were included in the per-protocol cohort, which consisted of

participants who received the first four vaccine doses and did not

acquire HIV by month 6.5. In the per-protocol cohort

(disaggregated by sex in Table 1), 185 (83%) participants received

vaccine, 37 (17%) received placebo, while 131 (59%) were AMAB

and 91 (41%) were AFAB.
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Few sex-based differences in IgG and IgG3
binding antibody response rates or
magnitudes among vaccine recipients

Using sera from per-protocol vaccine recipients, we measured

IgG and IgG3 binding antibody responses to 3 gp120 vaccine-

matched antigens (ZM96.C, 1086.C, and TV1.C), 3 V1V2 vaccine-

matched antigens (ZM96.C, 1086.C, and TV1.C), and 2 non-

vaccine-matched antigens (Con 6 gp120/B and B.CaseA V1V2).

We compared vaccine-elicited IgG and IgG3 binding antibody

response rates and magnitudes by sex assigned at birth. In our

analysis of IgG binding antibody responses, 73 AFAB (100% [95%

CI 95.0-100%]) and 112 AMAB (100% [95% CI 96.7-100%])

vaccine recipients developed positive IgG binding antibody

responses to all three vaccine-matched subtype C gp120 antigens

at month 6.5 (Figure 2A, Supplementary Table S1). There were no

differences by sex in the magnitude of IgG binding antibody

responses to ZM96.C or TV1.C gp120 antigens. The median

netMFIs for AFAB and AMAB vaccine recipients to 1086.C

gp120 exceeded the upper limit of the linear range of the assay

(>22,000) at the dilution tested, so statistical comparison by sex was

not performed.

Response rates to the 3 vaccine-matched V1V2 antigens were

lower than responses to vaccine-matched gp120 antigens

(Figure 2B, Supplementary Table 1). There were no sex-based

differences in IgG binding antibody response rates or magnitudes

to the vaccine-matched V1V2 antigens. (Supplementary Table S1).

We also evaluated vaccine recipients for IgG binding antibody

responses to Con 6 gp120/B and B.CaseA V1V2 as non-vaccine-

matched antigen comparators (Figure 2C, Supplementary Table

S1). In the RV144 trial, B.CaseA V1V2 had been identified as an

immune correlate of protection from HIV-1 acquisition (20). At

month 6.5, AMAB participants had an IgG binding antibody

response rate of 56.8% (95% CI 47.5-65.6%) versus AFAB 38.9%

([95% CI 28.5-50.4%]; p = 0.01, padj = 0.08). Despite fewer positive

AFAB responders, netMFIs were greater among AFAB compared to

AMAB positive responders (731 [IQR 425.6-2047.2] versus 484

[IQR 258.2-1109.8]), but this comparison did not remain

statistically significant after adjustment for multiple comparisons

(p = 0.04, padj = 0.26). For Con 6 gp120/B, there was a similar

pattern as seen for the vaccine-matched gp120 antigens, specifically

a high response rate for AFAB and AMAB vaccine recipients. AFAB

vaccine recipients demonstrated higher netMFIs among positive
Frontiers in Immunology 05
responders compared to AMAB (16293 [IQR 9923.1-24008.4]

versus 13792 [IQR 6680.1-21726.1]; p = 0.02, padj =0.15), but this

difference was not significant after multiplicity adjustment.

In our assessment of IgG3 binding antibody responses, there

were no sex-specific differences in IgG3 response rates or response

magnitudes (Supplementary Figure S1, Supplementary Table S1).

Additionally, we evaluated the magnitude-breadth of IgG and IgG3

binding antibody responses utilizing pre-specified antigen panels

(gp120, gp140, and V1V2) to examine global vaccine coverage (21).

There were no differences in the breadth of IgG or IgG3 responses

based on sex (Supplementary Table S1).
No sex-based differences in neutralizing
antibody responses among vaccine
recipients

We evaluated sex-based differences in response rates and

neutralization titers (ID50) against two heterologous Env-

pseudotyped Tier 1a viruses, one non-vaccine-matched

(MW965.26) and the other a vaccine-matched clade C strain

(TV1c8.2). Response rates greater than 98% to MW965.26 and

TV1c8.2 were observed among AFAB and AMAB participants

(Figure 3A; Supplementary Table S1). We did not find any

differences in neutralization titers among positive responders by

sex assigned at birth for the two Tier 1a viruses (Figure 3B,

Supplementary Table S1).
Higher ADCC response rate and magnitude
to TV1.C gp120 among AFAB vaccine
recipients

AFAB vaccine recipients (57.5% [95% CI 46.1-68.2%], n = 42

responders) demonstrated a greater ADCC response rate, based on

peak granzyme B activity, to TV1.C gp120 compared to AMAB

(29.5% [95% CI 21.8-38.5%], n = 33 responders) at month 6.5 (p =

8.44e-05, padj = 0.0003; Figure 4A, Supplementary Table S1). There

was also a higher ADCC AUC response magnitude among AFAB

vaccine recipients to TV1.C (16.1 [IQR 9.2-21.9] versus 11.2 [IQR

5.4-16.2]; p = 0.009, padj = 0.03) and a trend toward a greater ADCC

AUC response magnitude to 1086.C gp120 (5.8 [IQR 1.4-10.5]

versus 3.5 [IQR 0.7-10.9]; p = 0.05, padj = 0.10) compared to AMAB

vaccine recipients. All AFAB and AMAB vaccine recipients showed

positive ADCP responses (Figure 4B, Supplementary Table S1),

with no sex-based differences in the magnitude of average

phagocytosis scores.
Trend toward higher CD4+ T cell response
rates among AMAB vaccine recipients, but
similar response magnitudes among
positive responders by sex

Next, we compared vaccine-induced CD4+ T cell ICS

responses among AFAB and AMAB vaccine recipients. We
TABLE 1 Characteristics of the per-protocol cohort (n = 222), stratified
by sex.

Characteristic AFAB
(n = 91)

AMAB
(n = 131)

Total
(n = 222)

Study product assignment, n (%)

Vaccine

Placebo

73 (80.2) 112 (85.5) 185 (100%)

18 (19.8) 19 (14.5) 37 (100%)

Age, median (IQR) 23 (20-27) 23 (21-26)
AFAB, Assigned female at birth; AMAB, Assigned male at birth; IQR, Inter-quartile range.
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found that AMAB vaccine recipients had a higher response rate

to ZM96.C gp120 (54.1% [95% CI 44.8-63.0%] versus 36.8%

[95% CI 26.3-48.6%]; p = 0.01, padj = 0.04) and a trend toward a

greater response rate to 1086.C gp120 (44.1% [95% CI 35.3-

53.4%] versus 29.4% [95% CI 19.9-41.1%]; p = 0.03, padj = 0.05)

compared to AFAB vacc ine re c ip i en t s (F i gure 5A ,

Supplementary Table S1). There were no significant sex-based

differences in CD4+ ICS response magnitudes among positive

responders to the 3 vaccine-matched antigens (Figure 5B,

Supplementary Table S1). Because CD8+ T cell response rates

were <5% among vaccine recipients, these responses were not

analyzed. In a comparison of functionality and polyfunctionality

scores for CD4+ T cell responses, there were no sex-specific
Frontiers in Immunology 06
differences in scores for any vaccine-matched antigens

(Supplementary Table S1).
Similar CD4+ and CD8+ T cell ICS
responses to CMV and SEB among AFAB
and AMAB vaccine and placebo recipients

CD4+ and CD8+ T cell response data to ICS assay control

antigens (i.e., CMV pp65 and SEB) from both per-protocol vaccine

and placebo recipients were assessed for baseline differences in T

cell responses based on sex assigned at birth and unrelated to

vaccine exposure. There were no meaningful sex-based differences
FIGURE 2

IgG binding Ab response rates and magnitudes among AFAB and AMAB vaccine recipients. No significant sex-based differences in binding IgG
response rates or magnitudes to (A) vaccine-matched gp120 antigens or (B) vaccine-matched V1V2 antigens were observed. Among the (C) non-
vaccine matched antigens, there was a trend toward a higher response rate to B.CaseA V1V2 antigen, a protein associated with reduced vulnerability
to HIV acquisition in the RV144 trial, among AMAB vaccine recipients compared to AFAB. Response rates are shown using bar graphs. Boxplots of
positive responders show magnitude as MFI-Blank responses. P values compare response rates and magnitudes among positive responders – AFAB
positive responders (shown in red circles), AMAB positive responders (shown in dark green circles); negative responders are shown as gray triangles.
Adjusted p-values reported. The asterisk symbol (*) indicates that statistical comparisons based on sex were not performed as the median netMFIs
for AFAB and AMAB vaccine recipients exceeded the upper limit of the linear range of the assay (>22,000). AFAB, assigned female at birth; AMAB,
assigned male at birth; gp120, glycoprotein 120; IgG, immunoglobulin G; V1V2, Variable loops 1 and 2.
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in CD4+ or CD8+ T cell response rates or magnitudes to CMV

pp65 or SEB (Figures 6A–D, Supplementary Table S2).
Discussion

We found some sex-based differences in vaccine-induced

immunogenicity to the subtype C ALVAC-HIV and bivalent

subtype C gp120/MF59 experimental HIV-1 vaccine regimen, but

they varied by immunologic assay. AFAB vaccine recipients had a

greater ADCC response rate and magnitude to one of the vaccine-

matched antigens compared to AMAB. In contrast, AMAB vaccine

recipients demonstrated higher CD4+ T cell response rates to 2 of
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the 3 vaccine-matched antigens, although response magnitudes

were similar among AFAB and AMAB positive responders. While

there were minimal sex-based differences in IgG and IgG3 binding

Ab response rates or magnitudes, AMAB did have a higher

proportion of positive responders to B.CaseA V1V2 antigen,

previously associated with reduced vulnerability to HIV

acquisition in the RV144 clinical trial (20). Additionally, we

found no sex-based differences in neutralizing antibody or ADCP

responses and no differences in T cell responses among AMAB and

AFAB vaccine and placebo recipients to CMV pp65 or SEB, positive

control antigens used in T cell ICS assays.

ADCC plays an important role in antiviral immunity, occurring

when antibody forms a bridge between a target viral-infected cell
FIGURE 3

Neutralizing antibody response rates and magnitudes among AFAB and AMAB vaccine recipients. There were no sex-based differences in
neutralizing antibody (A) response rates or (B) response magnitudes to two Tier 1A viruses between AMAB and AFAB vaccine recipients. Response
rates are shown using bar graphs. Boxplots of positive responders show magnitude as ID50 responses. P values compare response rates and
magnitudes among positive responders – AFAB positive responders (shown in red circles), AMAB positive responders (shown in dark green circles);
negative responders are shown as gray triangles. Adjusted p-values < 0.05 are reported. Ab, antibody; AFAB, assigned female at birth; AMAB,
assigned male at birth; ID50 – 50% inhibitory dilution.
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and a Fc receptor-bearing effector cell resulting in lysis of the target

cell (22). In some non-human primate and human SIV/HIV vaccine

studies, antibody-dependent, cell-mediated virus inhibition

antibody responses were correlated with protection from SIV/

HIV acquisition (23–25).Despite evidence supporting the

importance of ADCC responses in antiviral immunity, there is

little data examining how sex-associated biologic factors, including

sex chromosomal composition and sex hormone milieu, may

influence vaccine-induced immunity. In a pediatric study

conducted in The Gambia, AMAB infants were found to have

greater measles virus-specific ADCC responses following

vaccination with Edmonston-Zagreb measles vaccine compared to

AFAB infants, although this difference was observed only among

infants with no pre-immunization anti-measles antibodies (26).

Notably, sex-based differences in ADCC responses after

immunization were not seen among infants who received a

different type of measles vaccine (Schwarz vaccine), suggesting

that vaccine platforms can have variable effects on the

development of vaccine-induced ADCC immunity. In a study

evaluating ADCC activity after SARS-CoV-2 infection and

vaccination, differences in ADCC responses were observed based

on sex assigned at birth. Specifically, AMAB participants showed
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higher ADCC responses against S and N proteins compared to

AFAB when all assessed samples were pooled (27). In our study, we

found a higher ADCC response rate and magnitude to TV1.C gp120

among AFAB compared to AMAB vaccine recipients. As fewer than

60% of vaccine recipients in each sex-based cohort had positive

ADCC assay responses in this study, the sample size of positive

responders may have limited our ability to detect further differences

between groups. Additional data is needed to better characterize

sex-specific antibody-dependent cell-mediated immune responses

and to evaluate the impact of different types of vaccine platforms on

this aspect of vaccine-induced immunity.

In this study, we observed that AMAB vaccine recipients

demonstrated a higher CD4+ T cell response rate to ZM96.C

gp120 and a trend toward a greater response to 1086.C gp120

compared to AFAB. Also, in our analysis of IgG antibody responses,

AMAB vaccine recipients had a trend toward a greater response rate

to B.Case A V1V2 compared to AFAB vaccine recipients. Yet, the

frequencies of CD4+ T cells expressing IFN-g and/or IL-2 in

response to the 3 vaccine-matched antigens and the IgG/IgG3

response magnitudes did not differ based on sex. Prior

immunization studies have predominantly shown greater vaccine-

induced immune responses among AFAB vaccine recipients, yet
FIGURE 4

ADCC and ADCP response rates and magnitudes among AFAB and AMAB vaccine recipients. (A) AFAB vaccine recipients had higher ADCC response
rate and AUC to TV1.C gp120. (B) No sex-based differences in vaccine-induced ADCP response rates or magnitudes were observed. Response rates
are shown using bar graphs. Boxplots of positive responders are used to demonstrate response magnitudes. P values compare response rates and
magnitudes among positive responders – AFAB positive responders (shown in red circles), AMAB positive responders (shown in dark green circles);
negative responders are shown as gray triangles. Adjusted p-values <0.05 are reported. AFAB, assigned female at birth; AMAB, assigned male at birth;
AUC, area under the curve; gp, glycoprotein.
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there are studies where humoral and cell-mediated immune

responses have prevailed among AMAB vaccinees (28). In an

assessment of sex-based differences in immune responses at the

week 26 timepoint for RV144 study participants, male vaccine

recipients were found to have increased frequencies of CD16-

CD56dim natural killer cells, myeloid dendritic cells, and

plasmacytoid dendritic cells compared to females (29). As we did

not evaluate innate immune cell subset frequencies in our study, we

were unable to directly compare our results with those from the

RV144 trial. Consistent with our findings, there were minimal

differences in humoral immune responses to the RV144 ALVAC-

HIV (vCP1521) prime and AIDSVAX B/E boost vaccine regimen

based on sex assigned at birth (29). In a participant-level meta-

analysis of IMVAMUNE clinical trials assessing responses to a live

attenuated smallpox vaccine, males were found to generate nearly a

25% higher peak geometric mean antibody titer at 14 days post-

vaccination compared to females (30). Another study evaluating

smallpox vaccine-induced cellular immune responses between men

and women demonstrated significantly higher IFN-g ELISPOT
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responses and greater secretion of the pro-inflammatory cytokine

IL-1b from stimulated PBMCs among male vaccine recipients

compared to females (31). Among a cohort of adolescents who

received two doses of MMR-II vaccine, female vaccine recipients

were noted to have higher neutralizing antibody titers compared to

males, yet the mumps-virus stimulated PBMCs from male

participants secreted higher levels of multiple cytokines and

chemokines (MIP-1a, MIP-1b, TNF-a, IL-6, IFN-g, and IL-1b)
compared to PBMCs obtained from females (32). As sex-based

vaccine-induced immune responses are rarely an outcome of

interest in vaccine clinical trials, there remains limited data on

how various viral vaccines induce immune responses among AFAB

and AMAB participants. This paucity of data makes it exceedingly

difficult to establish clinically relevant sex-based differences in

vaccine-induced immunity and inhibits our ability to further

analyze the underlying mechanisms that may be contributing to

these differences, including sex hormone concentrations (i.e., b-
estradiol, progesterone, or testosterone) or possibly the effects of sex

chromosome composition.
FIGURE 5

CD4+ T cell response rates and magnitudes among AFAB and AMAB vaccine recipients. (A) AMAB vaccine recipients had higher response rates to ZM96
and 1086C gp120 antigens compared to AFAB vaccine recipients. (B) There were no significant differences in CD4+ T cell response magnitudes based
on sex assigned at birth. Response rates are shown using bar graphs. Boxplots show magnitude as % CD4+ T cells producing IFN-g and/or IL-2. P values
compare response rates and magnitudes among positive responders – AFAB positive responders (shown in red circles), AMAB positive responders
(shown in dark green circles); negative responders are shown as gray triangles. Adjusted p-values reported. AFAB, assigned female at birth; AMAB,
assigned male at birth; gp120, glycoprotein 120; IFN-g, interferon gamma; IL-2, interleukin-2.
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In this study, we found variable sex-based differences in

vaccine-induced immune responses to the HVTN 100 vaccine

regimen depending on the immunologic assay. Additionally, we

found there were no differences based on sex in T cell responses to

CMV or SEB, highly immunogenic antigens used as positive

controls in the ICS assays, among vaccine and placebo recipients.

These findings suggest that utilization of repeat prime vaccine

doses, vaccine boosts, and/or robust adjuvants, as well as the

immunogenic potential of an antigen, may be able to overcome

variability in some sex-specific immune response phenotypes. Yet,

it remains highly useful to consider how vaccine components and

dosing regimens may alter immune responses based on sex. In a

review of 97 studies evaluating 14 different vaccine products, sex-

specific differences in vaccine-induced humoral immunity were

observed among a variety of vaccine types (i.e., live vs inactivated

vaccines) and platforms, including viral vector, protein-based,

toxoid vaccines, etc. (33) While the drivers of differential humoral

responses to these various vaccines remained unclear, there was a

strong recommendation to evaluate for sex-based differences in

vaccine clinical trials given the potential clinical implications. Along

with vaccine type, sex-specific humoral responses may impact

dosing strategy as well. For example, in a study comparing

hemagglutination inhibition (HAI) titers following receipt of half-

vs full-dose intramuscular trivalent inactivated influenza vaccine,

geometric mean antibody titers in females to half-dose were

comparable to male full-dose vaccine responses (34). Females

were also found to have higher geometric mean antibody titers
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following receipt of the quadrivalent human papilloma virus (HPV)

vaccine (35). Recent data suggests that a single dose of nonavalent

or bivalent HPV vaccine among females was highly effective in

preventing incident persistent oncogenic HPV infection (36), yet it

is less clear whether this dosing strategy would be effective in males

due to differential humoral responses to the vaccine. Therefore, sex-

specific effects could impact the dosing strategy for a vaccine

product and influence economic considerations like the cost-

effectiveness of providing half vs full dose or fewer doses of a

vaccine regimen based on sex.

Adjuvants are another vaccine component that play an

important role in influencing the magnitude and persistence of

the humoral response following vaccination (37), yet little is known

about how adjuvant performance may vary based on sex assigned at

birth. In a mouse model exploring the effect of adjuvant use on

sexual dimorphic antibody responses to an inactivated foot-and-

mouth disease virus vaccine, use of an oil-in-water adjuvant

enhanced IgM antibody responses in female mice but the same

effect was not observed among male mice (38). Toll-like receptors

(TLRs) have garnered interest as potential vaccine adjuvants that

could enhance vaccine efficacy given their role in regulating innate

immune responses that further stimulate adaptive immunity (39),

and TLR-7 and TLR-8 agonists have been developed for this

purpose. Notably, the TLR-7 and TLR-8 genes are encoded on

the X chromosome, and 15-20% of human X chromosomal genes

have been shown to escape inactivation in AFAB individuals (40). X

chromosome inactivation escape results in increased expression of
FIGURE 6

CD4+ and CD8+ T cell responses among AMAB and AFAB vaccine and placebo recipients to CMV and SEB. There were no significant sex-based
differences in CD4+ or CD8+ response rates (A, B) or magnitudes (C, D) to CMV or SEB control antigens. Response rates are shown using bar
graphs. Boxplots of positive responders show magnitude as CD4+ or CD8+ T cells producing IFN-g and/or IL-2. P values compare response rates
and magnitudes among positive responders – AFAB positive responders (shown in red circles), AMAB positive responders (shown in dark green
circles); negative responders are shown as gray triangles. Adjusted p-values < 0.05 are reported. AFAB, assigned female at birth; AMAB, assigned
male at birth; CMV, cytomegalovirus; gp120, glycoprotein 120; IFN-g, interferon gamma; IL-2, interleukin-2; SEB, staphylococcal endotoxin B.
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TLR-7 in various immune cells, including B cells, which has been

associated with higher antibody production among female mice in

response to influenza A vaccination and infection using a murine

model (5). TLR-7 agonists have also been shown to induce greater

IFN-a secretion among females compared to males (41).

Combinations of TLR agonists have been studied in the context

of heightening antibody responses to HIV-1 envelope protein, and

the combination of TLR7/8 and TLR9 agonists utilized as a vaccine

adjuvant stimulated higher levels of ADCC and tier 1 neutralizing

antibodies compared to other combinations among non-human

primates, although possible differential responses based on sex to

this adjuvant combination were not explored (42). Further

evaluation is warranted to better understand how sex-specific

immunity may impact responses to vaccine regimens depending

on the vaccine platform, the dosing schedule, and based on use of

certain vaccine adjuvants. With this knowledge, it may be possible

to tailor the design of vaccine products to individuals AMAB or

AFAB to enhance vaccine efficacy by capitalizing on known sex-

specific immune response mechanisms (43).

As this study is a secondary analysis of data from the HVTN

100 clinical trial and sex-based differences were not the primary

outcome of interest, AFAB and AMAB sample sizes for some

immune assays may be inadequate to reliably determine whether

there are sex-based differences in vaccine-induced immune

responses. Furthermore, lower response rates to the vaccine

regimen, as seen for some immunologic assays (i.e., ADCC and

CD8+ T cell responses), limited sex disaggregation. Additionally, in

this study, we focus on differences in vaccine-induced immunity

based on sex, but we are unable to draw conclusions about whether

these variable immune responses could impact vaccine efficacy for a

candidate HIV-1 vaccine regimen.

Overall, we found that there were some sex-based differences in

immune responses to the subtype C ALVAC-HIV vaccine regimen.

Our results support the rationale to disaggregate vaccine-induced

immunogenicity by sex. Designing future HIV vaccine trials with a

focus on sex-based immune responses as an outcome of interest not

only provides insight regarding immune responses to a particular

vaccine regimen, but it also greatly contributes to our overall

understanding of the underlying mechanisms that drive sex-based

immune responses. Considering that HVTN trials are being

conducted in multiple countries and among sexual and gender

diverse populations, evaluating sex- and gender-based differences in

safety, immunogenicity, and efficacy to HIV vaccine regimens will

be critical to ensure that those most vulnerable to HIV acquisition

will receive the intended benefit.
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SUPPLEMENTARY FIGURE 1

IgG3 binding Ab response rates and magnitudes among AFAB and AMAB
vaccine recipients. (A–C) There were no sex-based differences in response

rates or response magnitudes. Response rates are shown using bar graphs.
Boxplots of positive responders show magnitude as MFI-Blank responses.

P values compare response rates andmagnitudes among positive responders

– AFAB positive responders (shown in red circles), AMAB positive responders
(shown in dark green circles); negative responders are shown as gray

triangles. Adjusted p-values < 0.05 are reported. AFAB, assigned female at
birth; AMAB, assigned male at birth; gp120, glycoprotein 120; IgG,

immunoglobulin G; V1V2, Variable loops 1 and 2.
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