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Allogenic chimeric antigen receptor T (CAR-T) cells have advantages compared

to autologous T cell therapies such as availability cells for production, a suitable

HLA-matched donor (if graft-vs-host-disease and rejection effects are to be

avoided and also lower risks associated with transduction methods in process of

autologous CAR-T cells). In recent years, the additional editing and non-editing

technologies are helping to make allogenic CAR-T therapies a hopeful future

treatment. Universal off-the-shelf CAR-T cells can be solved key issues include

preventing graft-versus-host disease (GVHD) and time consumption and other

challenges faced to allogenic CAR-T cells. Here, we have highlighted the

improvement in CAR-T development, particularly in engineering allogenic

CAR-T, clinical practices related to these, pre-clinical and clinical studies and

their successes which investigated in recent 10 years related to treatment of

hematological malignancies and cancers by allogenic CAR-T cells.
KEYWORDS

allogeneic CAR T cells, editing technology, non-editing technology, off-the-shelf CART
cell, graft-versus-host disease
1 Introduction

Recent advancements in molecular and cellular biology, coupled with an enhanced

understanding of the function and nature of tumors, have led to several innovative

strategies in targeted immunotherapy. Key therapeutic approaches in this domain now

encompass monoclonal and bi-specific antibodies, antibody-drug conjugates, checkpoint

inhibitors, and the latest advancements in adoptive cell therapy (ACT). Over the past

decade, CAR-T immunotherapy has emerged as a pioneering approach to ACT. CAR-T cell

therapy is not only used for cancer treatment but is also being investigated for various

diseases, broadening the potential applications and impacts in the medical field.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1557157/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1557157/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1557157/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1557157&domain=pdf&date_stamp=2025-06-12
mailto:mahmadvand@sina.tums.ac.ir
mailto:Mahshidakhavan69@yahoo.com
https://doi.org/10.3389/fimmu.2025.1557157
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1557157
https://www.frontiersin.org/journals/immunology


Shokati et al. 10.3389/fimmu.2025.1557157
This innovative form of immunotherapy has demonstrated

exceptional efficacy in treating hematopoietic cancers and shows

considerable promise for addressing the challenges associated with

solid tumors (1, 2). A CAR is a synthetic construct that comprises

an extracellular, a spacer or hinge region, a transmembrane domain,

and one or more intracellular signaling domains, expressed on the T

cell surface and other immune cells through non-viral or viral

transduction recognizing and interacting with tumor-associated

antigens (3). In addition, to overcome the limitation of lentiviral

transduction in primary T cells, scientists use high multiplicities of

infection (MOI) of the virus by standard protocols. As shown in

Figure 1, MOI represents the ratio of infectious agents, typically

viral particles, to target cells in a defined system, such as a cell

culture. The use of high MOI can affect the success of process

through increasing both the time and cost of producing CAR-T

cells (4).

According to different purposes, the design of CAR-T cells varies

significantly, requiring careful consideration and optimization of

multiple factors to achieve optimal therapeutic outcomes. Once the

CAR genes are successfully incorporated into the T-cell genome, the

modified T cells are expanded to achieve the desired therapeutic

dosage. The expanded CAR-T cells are administered to the patient,

leverage the patient’s own, and employ genetically engineered T cells to

direct potent therapeutic responses to target and eradicate cancer cells

specifically (5). To date, most FDA-approved CAR-T cell products are

derived from autologous immune cells including Tisagenlecleucel

(Kymriah, Novartis) highly effective in treating patients with relapsed

or refractory CD19-positive hematological malignancies, Axicabtagene

ciloleucel (Yescarta, Kite Pharmaceuticals)Approved for the treatment

of large B-cell lymphoma, Brexucabtagene autoleucel (Tecartus, Kite

Pharmaceuticals) Targets B-cell acute lymphoblastic leukemia (ALL)

and mantle cell lymphoma (MCL), Idecabtagene vicleucel (Abecma)

and Carvykti® (ciltacabtagene autoleucel) used for the treatment of
Frontiers in Immunology 02
relapsed or refractory multiple myeloma, Breyanzi® (lisocabtagene

maraleucel) for second-line treatment of large B-cell lymphoma (6).

These therapies have demonstrated significant efficacy in their

respective indications, providing new treatment options for patients

with limited therapeutic choices. Although the success of currently

approved autologous CAR-T cell products can cure up to 35-40% of

patients (7) and have a lower risk of immunologic incompatibility

between donor and recipient, their widespread application faces

significant clinical and economic challenges. The complex

manufacturing process for these therapies begins with collecting

peripheral blood mononuclear cells (PBMCs) from each patient

through leukapheresis. T cells are genetically engineered to produce

CAR-T cells with enhanced antitumor functions, subsequently

reinfused into the patient. Treatment preparation is a time-

consuming process that typically takes about three weeks, which can

be particularly problematic for patients with rapidly advancing

conditions, such as acute leukemia. Additionally, patients often

undergo lymphodepletion through chemotherapy and radiotherapy,

making it challenging to collect T cells that meet the required standards

for both quantity and quality and can result in a manufacturing failure

rate of 2% to 10%. Also, the effectiveness of CAR-T cells can be

diminished by T cell exhaustion, a common T cell dysfunction

observed in cancer patients (8–10). On the other hand, the

heterogeneity in tumor antigen expression and the immune evasion

strategies employed by tumor cells, necessitate the use of CAR-T cell

products that can target multiple antigen specificities. Finally,

autologous cell therapy is designed for individual patients, incurring

significant costs and restricting its broader application allogenic CAR

T-cell therapy, sourced from healthy donors who are human leukocyte

antigen (HLA)-matched or gene-edited cells modified for use in non-

HLA-matched patients, offers several advantages over autologous

approaches (11). Healthy donors provide a high yield of cells from a

single individual, and their PBMCs are in optimal condition, having
FIGURE 1

Multiplicity of infection (MOI) represents the ratio of infectious agents, typically viral particles, to target cells in a defined system, such as a cell
culture. For instance, adding 10 million viruses to 1 million cells results in a MOI of 10, indicating an average of 10 viral particles per cell.
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not been subjected to chemotherapy or radiotherapy. The immediate

availability of cryopreserved batches and the potential for standardizing

CAR-T cell products allowmultiple modifications and combinations to

target various tumor antigens, leading to more predictable outcomes.

This “off-the-shelf” immunotherapeutic approach enables a single

manufacturing run to produce doses for multiple patients or

multiple doses for a single patient. By scaling up production and

establishing a bank of CAR immune cells from healthy donors, the cost

per patient can be reduced, and access to the therapy can be broadened,

simplifying supply chain logistics and eliminating the need for bridging

therapies (12, 13). Figure 2 compares two steps in autologous and

allogeneic CAR-T cell therapy, including cell sourcing and

genetic modification.

Autologous CAR-T therapy uses a patient’s T cells, genetically

modified to express a CAR, minimizing immune rejection but

facing challenges like high cost, time delays, and variable T cell

quality. Allogeneic CAR-T therapy, sourced from healthy donors or

iPSCs, offers scalable, off-the-shelf treatment with faster delivery but

risks complications like GvHD and immune rejection. Genetic

modifications, including TCR disruption, HLA ablation, and NK

cell inhibitory ligand overexpression, aim to reduce these risks and

improve persistence and efficacy.

Allogenic CAR-T cell therapy faces significant challenges. One

major issue arises when the T-cell receptor (TCR) on the surface of

allogenic CAR-T cells recognizes and attacks the patient’s healthy

tissues, leading to GvHD risk. Additionally, host-versus-graft (HvG)

reactions can occur, in which the patient’s immune system identifies

the CAR-T cells as foreign and eliminates them. To address these

issues, researchers can choose T-cell sources with lower TCR

signaling capacity to minimize them. Furthermore, CAR-T cells

genetically edited (using ZFN, TALEN, CRISPR/Cas9) are being

developed to reduce the risk of immune rejection and improve

their effectiveness. However, these technologies come with

significant challenges and limitations, such as Double-Strand

Breaks (DSBs) in DNA leading to unintended mutations, genomic

instability, potential safety risks, and lack of modulation resulting in
Frontiers in Immunology 03
off-target effects and unpredictable outcomes (14–16). Also, CAR T-

cell therapy can have several side effects. Immediate effects include

cytokine release syndrome (CRS) and immune effector cell-associated

neurotoxicity syndrome (ICANS) and long-term side effects can

involve hypogammaglobulinemia and cytopenias (17). Despite

these obstacles, continuous research and progress in gene-editing

technologies show promise for enhancing the safety and efficacy of

allogenic CAR T-cell therapies. In this review, we aim to provide a

thorough overview of the latest advancements and challenges in

CAR-T cell therapy, its clinical applications, and recent innovations

in gene editing technologies. We will also discuss the challenges and

side effects associated with CAR-T cell therapy, along with strategies

to mitigate these effects. Our focus is to highlight the remarkable

potential of CAR-T cell therapy to transform cancer treatment and

significantly improve patient outcomes.
2 Source of allogeneic cells

Given the rising demand for CAR therapy, exploring novel

immunotherapy strategies is crucial. Both autologous and

allogeneic T cells face limitations, including restricted expansion

and exhaustion. Allogeneic CAR-T cells also pose a risk of GvHD.

While PBMCs are the primary source for allo-CAR-Ts, iPSCs, and

umbilical cord blood offer a scalable, antigen-specific T-cell supply

with optimized therapeutic features, addressing these challenges.
2.1 Peripheral blood mononuclear cells

PBMCs are typically obtained from the blood of healthy donors,

presenting an opportunity to create a cell bank that includes various

subtypes of the HLA complex. It allows for selecting batches that

match the HLA types to produce multiple vials from a single

apheresis product, facilitating a rapid and standardized

manufacturing protocol (18).
FIGURE 2

Autologous vs. Allogeneic CAR-T cell therapy comparison.
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2.2 Umbilical cord blood cells

While there are challenges, such as the limited availability of

UCB cells, their benefits are substantial. UCB cells are a valuable

source of hematopoietic stem cells (HSCs) with distinct advantages

over adult T cells. UCB cells are particularly “antigen-naïve,” which

reduces their alloreactivity and allows for greater flexibility in

HLA matching (19). Additionally, reduced NFAT signaling and

lower NF-kB activation lead to decreased production of pro-

inflammatory cytokines, which helps reduce the frequency and

severity of GvHD (20). Furthermore, UCB cells exhibit much

lower exhaustion markers like PD-1, TIM-3, and LAG-3 than

peripheral blood T cells, enhancing their long-term persistence

and effectiveness (21).
2.3 Induced pluripotent stem cells

iPSCs can proliferate indefinitely while retaining pluripotency,

enabling the generation of diverse, genetically modified CAR-T cells

with superior proliferation capacity and longer telomeres than

mature T cells. This feature allows for the feasible generation of a

diverse range of genetically modified CAR-T cells, which enhances

antitumor effectiveness, significantly reduces immunogenicity,

improves compatibility, and effectively mitigates the risk of

allorejection (22).

The generation of iPSC-derived CAR-T cells from adult somatic

cells generally involves two key steps:(a) Reprogramming somatic

cells into iPSCs via the introduction of transcription factors such as

Oct4, Sox2, Nanog, Lin28, Klf4, and c-Myc (23), and TCR

modification to generate hypoimmunogenic iPSC lines;(b) Genetic

engineering, where CAR transgenes are introduced into iPSC-derived

T cells to direct tumor-specific targeting (Figure 3) (24).

A significant advantage of iPSCs is that CAR-T cells can be

derived from a single clone, allowing for uniform clonal expansion

and stable genetic modifications for reliable and effective treatment.

In this regard, Jing et al. successfully generated mature T cells from

human iPSCs using G9a/GLP inhibition and exhibited

characteristics similar to mature alpha-beta T cells from

peripheral blood, including effector and memory-like

subpopulations (25). Kinoshita et al. introduced GD2-CARrejTs,
Frontiers in Immunology 04
a new iPSC-derived CAR-T cell therapy for small cell lung cancer

(SCLC). These rejuvenated T cells showed more potent cytotoxic

effects than conventional GD2-CARTs (26). In the realm of clinical

applications, fate therapeutics is a leading company developing off-

the-shelf iCAR-T products for various therapies, and its products,

including FT819 (anti-CD19) and FT825/ONO-8250 (anti-HER2),

are currently in Phase I clinical trials (27, 28). While stem cell-based

approaches hold great promise, their successful clinical application

will depend on ongoing innovation and rigorous evaluation.

Peripheral blood T cells, retaining their rearranged TCR gene,

can be reprogrammed into iPSCs. These T-iPSCs can be engineered

with CAR for enhanced tumor specificity in adoptive cell therapy or

derived from antigen-specific T cell clones to produce targeted

T cells.
3 Mechanisms of action: how
allogenic CAR-T cells work

When human T cells are equipped with a CAR, they can

effectively eradicate tumor cells in a MHC- and Fas-independent

manner, making them versatile and powerful in targeting cancer

cells (29). CAR-T cells engage with target cells by creating a unique

immunological synapse. Once the immunological synapse is

established, the CAR-T cells can induce tumor cell lysis through

various pathways (30).

CAR-T cells primarily achieve tumor lysis through direct

interactions with tumor cells. CAR-T cell initial activation was

strongly dependent on the expression level of ICAM1 Cytokine

production by activated CAR-T cells,enhances their anti-tumoral

capabilities and is crucial in mediating tumor lysis via secondary

mechanisms (31). CAR-T cells exhibit a disorganized lymphocyte-

specific protein tyrosine kinase (Lck) arrangement and recruit lytic

granules more quickly than TCRs, leading to a more rapid killing of

tumor target cells and faster detachment from dying tumor cells by

CAR-T cells (32). The perforin pathway and FasL (Fas Ligand)

pathway can collaborate to kill target cells. This synergy is essential

for achieving complete and durable tumor control by CAR-T cells

(shown in Figure 4) (33).

CAR-T cell therapies exhibit greater sensitivity to target

antigens than antibody or antibody-drug conjugate therapies.
FIGURE 3

Generation of iPSC-derived T cells from peripheral blood T Cells.
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They can detect and respond to lower levels of antigens present in

tumor cells (34). In dealing with a tumor that changes over time,

multifunctional CAR-T cells, which can be bispecific, switchable, or

capable of delivering other therapeutic agents directly, can perform

multiple actions simultaneously and be effective (35, 36).
4 Food and drug administration
approval of CARTs

Since 2017, the FDA has authorized six CAR-T cells in the USA

and other nations, and the National Medical Products

Administration of China has approved two CAR-T products.

These products target patients suffering from acute lymphoblastic

leukemia (ALL), multiple myeloma (MM), or advanced/resistant

large B-cell lymphoma (LBCL), in which significant results are

acquired with total response rates that may reach as high as 100%

measurable response rates in a number of cases (37, 38).

It was for the first time that the FDA approved CAR-T cells

therapy on Aug 30th, 2017, to treat acute lymphoblastic leukemia in

young adults and children. Later, the FDA approved three additional
Frontiers in Immunology 05
CD19-specific CAR-T cells for the purpose of treating various B cell

malignancies, i.e., Breyanzi, Tecartus, and Yescarta. Even though the

CAR expressed in Tecartus is the same as that in Yescarta, they have

different manufacturing processes because while Yescarta does not

involve the enrichment of T cells, Tecartus necessitates such an

enrichment. Furthermore, february 2022 and april 2021 were the

dates on which two BCMA-specific CAR-T cell therapies could

successfully get approval for the treatment of a number of

myelomas, i.e., ciltacabtagene autoleucel (Carvykti) and

idecabtagene vicleucel (Abecma) (37). Table 1 offers detailed

information regarding all FDA-approved CAR-T cells therapies (51).
5 Advances in CAR-T development:
focus on off-the-shelf allogenic
CAR-T

CAR-T therapy is an innovative treatment for certain cancers,

especially hematologic malignancies, but traditional autologous

CAR-T therapy has several limitations. Autologous CAR-T

involves extracting and engineering T-cells from individual
FIGURE 4

(A) Structure of CAR T-cells. The structure of Chimeric Antigen Receptors (CARs) in CAR T-cells comprises several essential components: a single chain
variable fragment (scFv), a hinge region along with a transmembrane (TM) region, costimulatory domains (such as 4-1BB, ICOS, CD28, and OX40), and a
signaling domain (CD3z). First-generation CARs included only CD3z as the intracellular domain. In contrast, second- and third-generation CARs feature one
or two costimulatory domains connected to CD3z, respectively. Fourth-generation CARs, referred to as “TRUCK” CARs, are structurally similar to second-
generation CARs but incorporate an inducible cytokine expression (such as IL-12) via an NFAT-responsive promoter. Fifth-generation CAR-T cells include a
JAK/STAT activation domain derived from IL-2RB, positioned between CD28 and CD247. This addition promotes cells proliferation, prevents terminal
differentiation, and enhances persistence. (B) The mechanism of action of CAR T-cells involves the binding of CARs to specific antigens present on the
surface of tumor cells through the scFv recognition domain. This interaction triggers anticancer effects by promoting the inflammatory cytokines’ secretion,
such as IFN-g, and facilitates cytolytic effector function via granzyme and perforin in an ICAM-1-dependent manner.
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patients, making it time-consuming and expensive, with potential

functional impairments in the engineered T-cells. Additionally, the

process can take weeks, delaying treatment (52, 53). This main

challenge has led to interest in off-the-shelf allogenic CAR-T cells

(alloCAR-T), which use T-cells from a single healthy donor, offering

faster availability, broader applicability, and cost-effectiveness.

However, challenges remain, such as avoiding GVHD and host-

mediated graft rejection (53, 54). Advances in genome-editing

techniques and non-gene-editing technologies are helping to

address these challenges, making alloCAR-T therapies a promising

future treatment. Here, we have highlighted the progress in CAR-T

development, particularly in engineering alloCAR-T cells.
Frontiers in Immunology 06
5.1 Methods to engineer off-the-shelf
allogenic CAR-T

As mentioned above, creating a universal off-the-shelf allo-

CAR-T product requires overcoming key issues include preventing

HvG, avoiding GvHD, preventing fratricide (where CAR-T cells

attack each other), and enhancing the persistence of the infused

allo-CAR-T cells. These challenges can be addressed through gene

editing technologies and non-gene editing approaches.

Additionally, supporting the expansion and persistence of CAR-T

cells can be achieved by producing proinflammatory cytokines, such

as IL-15 or IL-18, through transgenic methods (55, 56).
TABLE 1 Summary of FDA-approved CAR-Ts therapies.

Generic
name

Tisagenlecleucel Ciloleucel Autoleucel Maraleucel Vicleucel Autoleucel

Brand name Kymriah Axicabtagene Brexucabtagene Lisocabtagene Idecabtagene Ciltacabtagene

Company name Novartis Kite
Yescarta

Kite
Tecartus

Juno
Breyanzi

Bluebird
Abecma

J&J and Legend
Carvykti

Approval’s date 1 2017 2017 2020 2021 2021 2022

2 2018 2021 2021 2022 . .

3 2022 2022 . . . .

Target antigen/
Antibody

CD19/
Mouse FMC63

CD19/
Mouse FMC63

CD19/
Mouse FMC63

CD19/
Mouse FMC63

BCMA/
Mouse
BB2121

BCMA/
dual camel single-
domain antibodies

Hinge/
transmembrane

CD8a/CD8a CD8a/CD8a CD28/CD28 IgG4/CD28 CD8a/CD8a CD8a/CD8a

Costimulatory
domains

4-1BB & CD3z CD28 & CD3z CD28 & CD3z 4-1BB& CD3z 4-1BB& CD3z 4-1BB & CD3z

Disease
Approval

R/R CAYA B-ALL R/R LBCL R/R MCL R/R LBCL R/R MM R/R MM

Vector/
promoter

Lentiviral/
EF1a

Gammaretroviral/
LTR

Gammaretroviral/
LTR

Lentiviral/
EF1a

Lentiviral/
MND

Lentiviral/
EF1a

Pivotal
clinical trial

NCT02435849
ELIANA trial (39)

NCT02348216
ZUMA-1 (40)

NCT02601313
ZUMA-2 (41)

NCT02631044
Transcend
NHL001 (42)

NCT03361748
KarMMa (43)

NCT03548207
CARTITUDE-1 (44)

NCT02445248 JULIET trial (45) NCT03105336
ZUMA-5 trial (46)

NCT02614066
ZUMA-3
trial (47)

NCT03575351
TRANSFORM
trial (48)

. .

NCT03568461 ELARA trial (49) NCT03391466 ZUMA-7
(50) trial

. . . .

Outcomes 81% ORR 58% CR 67% CR 53% CR 33% CR 67% CR

40% 74% 59% . . .

71% 65% . . . .

No. of Patients 75 111 74 269 128 97

93 153 . . . .

98 180 . . . .
CAYA R/R B-ALL, Children and young adults with Relapsed/Refractory Bcells-precursor Acute Lymphoblastic Leukemia; LBCL, Large B-Cell Lymphoma; MCL, Mantle Cells Lymphoma; MM,
Multiple Myeloma; ORR, overall remission rate; CR, complete response.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1557157
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shokati et al. 10.3389/fimmu.2025.1557157
5.1.1 Gene editing technology
Gene editing technologies have become crucial for modifying

allogenic CAR-T cells to reduce immune rejection, enhance

functionality, and improve safety. Methods like homing

endonucleases (also called meganucleases) (57), transcription

activator-like (TAL) effector nucleases (TALENs) (52, 58–60),

zinc-finger nucleases (ZFNs) (61), and CRISPR-Cas9 (62), are

used to create precise genetic changes. However, multiple

modifications can increase the risk of off-target mutations and

chromosomal translocations, with CRISPR-Cas9, TALENs, and

ZFNs posing higher risks than newer techniques like base editing

and prime editing (52, 63, 64). Additionally, making several edits to

CAR-T cells could lead to other unwanted effects, such as reduced

in vivo persistency (64). Homing endonucleases, while highly

specific, are challenging to engineer, limiting their use (65).

MegaTALs, which combine homing endonucleases with TAL

effector arrays, offer enhanced specificity and editing efficiency

(66). However, both homing endonucleases and MegaTALs

require custom engineering for specific targeting, which limited

their large-scale adoption of these gene-editing platforms (67).

TALENs and ZFNs induce double-strand breaks (DSBs) to

disrupt target genes, but are costly and time-consuming (68–73).

Despite these challenges, TALEN-edited CAR-T cells have been

used in clinical trials to knock out abTCR and CD52 (52, 58, 59).

CRISPR-Cas9, using guide RNAs, is more flexible, cost-effective,

and precise, and is widely used in clinical trials for modifying CAR-

T cells (68, 74–77). Newer techniques like base editing and prime

editing, which do not induce DSBs, offer fewer off-target effects and

are being tested in clinical trials for CAR-T therapies. These

advancements hold promise for safer, more effective off-the-shelf

allo-CAR-T treatments (64, 78, 79) (Table 2). Genome-edited

allogeneic CAR-T cells offer therapeutic potential but pose risks

like chromosomal abnormalities and secondary malignancies,

requiring long-term monitoring. CRISPR/Cas9 and other editing

techniques may cause unintended genetic changes, emphasizing the

need for vigilant safety assessments (53).

5.1.2 Non-gene editing approaches
Non-gene editing approaches to reduce GvHD in CAR-T therapy

focus on inhibiting TCR signaling, using virus-specific T cells (VSTs),

memory T cells, and gd T cells. Truncated CD3 can inhibit TCR

signaling to minimize GvHD while preserving CAR activity, though

solid tumors present challenges due to antigen heterogeneity and
Frontiers in Immunology 07
immunosuppressive environments. VSTs, particularly those from

HLA-matched donor libraries, have shown low GvHD risk, with

CAR-transduced VSTs demonstrating anti-tumor effects. Another

strategy is using emory T cells that being less alloreactive than naïve T

cells, although their role in allogeneic CAR-T therapy remains

underexplored. gd T cells, which function independently of MHC

complexes, provide a unique advantage by reducing GvHD and

tumor escape risks. Overall, these non-gene editing strategies

present safer, promising alternatives for improving CAR-T therapy

efficacy while minimizing GvHD (80).

Although gene editing technologies have many advantages, their

main challenge is safely removingmultiple genes (multiplexing) while

minimizing risks. As an alternative, non-gene-editing technologies

provide an interesting approach to support the development of

allogenic CAR-Ts in the future. Nowadays, three strategies have

been developed as non-gene-edited approaches: 1) A TCR inhibitory

molecule (TIM) that, when incorporated into T-cell DNA, competes

with TCR elements, rendering the TCR unresponsive. This method

was tested with an NKG2D-based CAR in metastatic colorectal

cancer (81). 2) A miRNA scaffold targeting CD3z, which

completely eliminates TCR expression, was assessed in a phase I

clinical trial with a BCMA-targeting CAR-T for relapse/refractory

multiple myeloma (82). 3) Third strategy involves retaining TCR/

HLA-I in the endoplasmic reticulum (ER) to prevent GvHD and

host-versus-graft (HvG) reactions. This is achieved by using a peptide

like KDEL, combined with an scFv targeting the TCR, to retain all

TCRs in the ER (83).

Removing the TCR from T-cells is beneficial, but factors

influencing cellular persistence in an allogenic setting are still

unclear. While HLA-I/II proteins play a role in HvG reactions,

other factors like metabolic regulation may also affect persistence.

Non-gene-editing approaches, such as combining miRNA or siRNA

sequences to target multiple genes at once, make it easier to address

these complexities (84–86). A new multiplex shRNA platform

allows the targeting of up to four genes simultaneously, including

those involved in GvHD (CD3z), HLA-I/HvG (B2M, CIITA),

apoptosis (CD95), immune checkpoints (LAG-3), and co-

stimulation, reduction/persistence (CD28) (87).

Gene-edited allogeneic CAR-T cells reduce GvHD risk through

TCR knockout but face challenges like immune rejection, reduced

persistence, and complex manufacturing. In contrast, non-edited

CAR-T cells, including virus-specific, memory, and gd T cells, offer

safer alternatives with lower immune rejection and better
TABLE 2 Gene-editing methods for manufacturing allogenic off-the-shelf CAR-Ts.

Gene-Editing
Technology

Recognition Site Modification pattern Target
sequence size

Advantage/
disadvantage

Delivery

ZFN Zinc finger protein Fok1 nuclease 9–18 bp small size Easy

TALEN RVD tandem repeat region
TALE protein

Fok1 nuclease 14–20 bp large size Difficult

CRISPR/Cas9 guideRNA and tracrRNA Cas9 nuclease 20 bp- guide +
PAM sequence

large size of
SpCas9

Moderate
to difficult

Base-Editing Cas sequence + base-
editor mRNA

Four possible transition mutations: C→T;
A→G; T→C; G→A

CRISPR/
Cas dependent

large site and
added complexity

Difficult
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persistence but may still pose some risk of allo-reactivity. While

gene editing provides precise control, it also introduces regulatory

and cost challenges. Non-edited approaches leverage natural T cell

subsets for safety and efficacy, making them promising but

requiring further optimization for tumor targeting (53).
5.2 Clinical experience with off-the-shelf
allogenic CAR-T

5.2.1 Achievements so far
The clinical development of off-the-shelf allogenic CAR-T

therapies is still in its early stages, with no approvals yet. Early-

phase trials show promising results, but challenges remain,

including the risk of GvHD, graft rejection, and infections. Unlike

autologous CAR-T treatments, which are costly and time-

consuming due to patient-specific manufacturing, allogenic

CAR-T therapies aim to offer a more accessible alternative,

especially for patients who cannot afford personalized therapies.

Progress has been slower than expected due to safety concerns and

technical challenges in gene editing, though recent advancements

are improving their potential. The first use of allogenic CAR T cells

in humans was reported in 2017, with UCART19, a TALEN-edited,

abTCR/CD52-knockout product. It was evaluated in two Phase I

studies (PALL and CALM) for relapsed or refractory B-cell acute

lymphoblastic leukemia (R/R B-ALL) in pediatric and adult

populations. The trials showed promising results, especially in

infants, who were successfully bridged to hematopoietic stem cell

transplantation (HSCT) (52, 58, 59). In 2020, combined data from

two Phase I trials of UCART19 in children (7 patients) and adults

(14 patients) with relapsed/refractory B-cell acute lymphoblastic

leukemia (R/R B-ALL) demonstrated a promising complete

response (CR/CRi) rate of 67%, although treatment-related deaths

occurred (58). Updated results from the adult trial in 2022 (25

patients) showed an overall response rate (ORR) of 48%, with a

median response duration of 7.4 months and median overall

survival of 13.4 months. Importantly, GvHD was rare, with only

two patients experiencing mild grade 1 acute skin-related GvHD

(59) (Supplementary Table 3).

In the ALPHA and ALPHA2 studies, an anti-CD19 CAR-T

therapy, a second dose of ALLO-501/ALLO-501A was given

approximately 30 days after the first infusion to enhance the

persistence of CAR-T cells in peripheral blood beyond day 28,

aiming to improve response duration (88, 89). In 2023, a Phase I

trial of ALLO-715, a TALEN-edited CAR-T product targeting

BCMA for relapsed/refractory multiple myeloma (R/R MM),

showed an overall response rate (ORR) of 55.8% among 43

patients. Although no cases of GvHD were reported, 88% of

patients experienced grade ≥3 adverse events, and 53.5% had

infections, with 23.3% experiencing severe infections, including

7% fatal cases (60). Additionally, ALLO-316, an anti-CD70 CAR-

T product, is being tested in the Phase 1 TRAVERSE study for

patients with advanced or metastatic clear cell renal cell carcinoma

(CcRCC) (90). TALEN-edited CAR-T products like UCART123

(anti-CD123) and UCART22 (anti-CD22) are also being tested in
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Phase I trials for R/R B-ALL and AML (BALLI-01 and AMELI-01

studies respectively), with 70.8% of patients showing objective

responses and no cases of GvHD (91, 92). A clinical hold was

imposed on UCART123 in the ABC study following a fatality,

resulting in dose adjustments and a recommendation to restrict the

total cyclophosphamide dose (87, 93).

Supplementary Table 3 summarizes key clinical trials applying

different gene-editing and non-gene editing approaches in the

development of allogeneic CAR-T cells therapies.

GRm13Z40-2 is a CAR-T cell therapy targeting the IL-13

receptor a2 (IL13Ra2) in glioblastoma patients. In its

manufacturing, ZFNs were used to knock out the glucocorticoid

receptor in T cells, enabling patients to receive high-dose

glucocorticoids without compromising CAR T-cell function. The

therapy was administered intracranial in four doses, along with

recombinant IL-2 to enhance T-cell growth and persistence. The

treatment was generally well tolerated, with no signs of GVHD. In

terms of efficacy, 66% of patients showed temporary clinical

responses, including tumor size reductions or necrosis (61).

The ARCUS genome-editing technology is used in the anti-

CD19 allogenic CAR-T product PBCAR0191, currently being tested

in a Phase I/II study for R/R non-Hodgkin’s lymphoma (R/R NHL)

and B-ALL (NCT03666000). Another allogenic CAR-T product,

PBCAR19B, designed to reduce immune rejection by host T-cells

and NK cells, indicated a 71% ORR and a 43% CR rate in a Phase I

study (NCT04649112) during 2021-2023 years in 13 patients (94).

CRISPR/Cas9 is being utilized in several promising CAR-T

therapies for various cancers. CTX110, targeting CD19, is currently

being evaluated in the Phase 1 CARBON trial for relapsed/

refractory non-Hodgkin’s lymphoma (r/r NHL), demonstrating a

67% overall response rate (ORR) at the highest dose, with no GvHD

despite significant HLA mismatch. A second infusion provided

additional benefit (95, 96). CTX-130 (as an anti-CD70 CAR-T) has

been tested in the COBALT-LYM (T-cell lymphoma) and

COBALT-RCC (advanced clear cell renal cell carcinoma) studies.

In T-cell lymphoma, the ORR was 71% with no GvHD, while in

RCC, the ORR was 8%, though one patient achieved a durable

complete response (97, 98). CB-010 (as an anti-CD19 CAR-T) with

CRISPR-edited TRAC and PD-1 knockouts, demonstrated a 94%

ORR in the ANTLER Phase 1 trial for B-NHL patients, which is

comparable to autologous CAR-T therapies, and showed no GvHD

(99). CRISPR-edited CD7-targeted CAR-T cells for T-ALL

exhibited high efficacy, with complete response rates ranging

from 71% to 91%, and no GvHD or neurotoxicity (62, 77). Early

trials have also shown promising results for NK/T lymphomas and

AML (75, 100).

However, alternative gene-editing methods have also been

explored. P-BCMA-ALLO1, an allogenic CAR-T targeting BCMA

for relapsed/refractory multiple myeloma (RRMM), is manufactured

using the piggyBac® DNA Delivery System and the Cas-CLOVER™

gene editing system, which eliminates TCR expression and reduces

MHC class I expression to prevent GvHD. It showed strong activity

in MM xenografts and is being tested in a Phase I study. P-MUC1C-

ALLO1, targeting MUC1-C for common solid tumors, is also

produced with piggyBac® and Cas-CLOVER™, leading to TCR
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and MHC class I knockout for an enriched T stem cell memory

product (101, 102). Another approach used base-pair editing in a

Phase I trial of CD7 CAR-T cells. Preliminary results showed mixed

outcomes, including one patient achieving leukemic remission,

another undergoing stem cell transplantation, and a third

developing a fatal fungal infection. Adverse events included

cytokine release syndrome and multilineage cytopenia (79).

CAR-T products using non-gene-editing technologies have also

been tested in clinical trials. CYAD-101, an allogenic CAR-T

designed to co-express an NKG2D-based CAR and an inhibitory

peptide to interfere with TCR signaling, was tested in the

alloSHRINK Phase I study for unresectable metastatic colorectal

cancer. After standard chemotherapy, 25 patients received three

infusions of CYAD-101. There were no dose-limiting toxicities

(DLT) or graft-versus-host disease (GvHD), and the overall

response rate (ORR) was 13%, with 60% achieving stable disease

(81, 103). CYAD-211, using a miRNA-based shRNA approach to

silence the CD3z component of the TCR while co-expressing an anti-

BCMA CAR, was tested in the IMMUNICY-1 Phase I trial for

relapsed/refractory multiple myeloma. Early results from 12

patients showed 3 partial responses and 8 stable diseases, with no

DLT, GvHD, or neurotoxicity (104). A CD19-targeting allogenic

CAR-T, using intracellular retention to prevent TCR expression, was

tested in a Phase I study for non-Hodgkin’s lymphoma, showing no

GvHD and a 75% ORR in the first eight patients (83). Lastly, FT819,

an iPSC-derived CD19-targeting CAR-T, was evaluated in a Phase I

study for B-cell malignancies, showing a tolerable safety profile with

no DLT or GvHD in 12 patients (105) (Supplementary Table 3).
6 The major challenges that must be
resolved for the purpose of allogenic
CAR-T therapy

In spite of their many favorable traits, a number of challenges

are also ascribable to allogenic CAR-T cell. In fact, allogenic T cells

may result in severe GVHD, which is predominantly caused by a

TCR-mediated immune response to the life-threatening host

tissues. In turn, the host immune system may also lead to the

induction of allorejection, which can result in impeded anti-tumor

activity and limited effectiveness of the therapy. This is attributable

to the fact that through the detection of nonself- HLA class I and

class II proteins found on the membrane of donor T-cells, the host

immune cells can mainly detect and eliminate allogeneic cells. This

is the primary objective of allogeneic CAR-Ts, which limits their

duration of response and activity (38).

When designing allogeneic CAR-Ts, one of the most commonly

used strategies to prevent GVHD is the creation of TCR-deficient T

cells by employing genome editing tools, including as TALENs

(106, 107), CRISPR/Cas9 (107, 108), and ZFN (3, 4).

A number of allogeneic candidates have attained the same

objective response rates as the ones witnessed in their autologous

counterparts on the clinical scale, and irrespective of two patients

(one adult and one infant) presenting with acute skin GvHD Grade

I, which was controlled easily (59), the preliminary data obtained
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from those investigations totally indicated no evidence of acute

GvHD. As a result, in spite of earlier concerns, the modifications

that were conducted in order to avoid GvHD in allogeneic ‘off-the-

shelf’ CAR-Ts apparently suffice to decrease such a risk drastically.

In addition, the strategies used to decrease allorejection are also

analyzed, which test repeated rounds of infusion by employing

chemotherapy-resistant CAR-Ts. This allows for deeper/prolonged

lymphopenia or genetic elimination of the main molecules that

govern the immunogenicity of the CAR-T cells (38).

For instance, the studies on CALM indicated that even though the

expansion of CAR-T cells took place 8 to 14 days after injection, a rapid

decline was experienced by most participants by day 28, which

indicated a limited duration of response (109). Different

lymphodepleting regimens were tested that showed the intensity was

positively correlated with the cellular persistence; however, the risk of

infections was increased, as observed in the UNIVERSAL investigation

with a fifth-grade fungal pneumonia incident (60). In order to address

this issue, the subsequent investigations suggested a second dose of

501A and ALLO-501 in order to maintain the levels of CAR-T (89).

Nonetheless, the safety concerns resulted in dose adjustment

recommendations in investigations such as ABC and incidents of

grade 5 pneumonia associated with conditioning regimens (87).

One of the popular techniques employs genome editing of

MHC class I proteins through the disruption of the b2-
microglobulin (b2M) locus (38). The engineering of the

PBCAR19B cells was targeted to knock-down(human b2M) and

express a HLA-E transgene in order to avoid allorejection (87). The

proof-of-concept provided by the preliminary record results

indicated that such modifications were apparently successful in

delaying the host NK-and T- cells’ recovery. In much the same way,

it has been reported that CTX-130, which is a modified anti-CD70

allo -CAR-T used for the disruption of the CD70 and b2M genes so

as to decrease the fratricide and allorejection, elicits a durable

complete response in an individual suffering from Renal Cell

Carcinoma (RCC) (110), This may indicate that, even in solid

tumors, the technique is actually enhancing the allogeneic CAR-Ts’

activity. Currently, CB-011, which is an anti-BCMA allo-CAR-Ts

engineered with CRISPR/CAS12a to knock out both TRAC and

b2M while co-expressing a b2M-HLA-E fusion peptide, is under

evaluation in the CaMMouflage Phase 1 trial and has presented

encouraging preclinical data, resulting in noticeably enhanced

durability of anti-tumor activity (87).

In addition, the creation of a bank of allogeneic T cells is also an

alternative, which has been predominantly utilized for non-modified

and virus-specific T cells but also for anti-CD123 retrovirally

transduced CAR T for the purpose of treating acute myeloid

leukemia (38, 111).

One of the big concerns is the safety risks associated with the

application of gene-editing technologies. In one patient receiving a

consolidation dose of ALLO-501A, a chromosomal abnormality was

recorded, which resulted in stopping all the investigations with the

same technology for several months (89). The studies found that the

observed chromosomal abnormality was not associated with the

TALEN gene manufacturing or editing process; however, it

questioned the safety consideration of genome-edited cellular therapies.
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In recent years, the FDA has noted a risk of T-cells

malignancies, which is applicable to all currently authorized

therapies using CAR-Ts. Such concerns are raised regarding

autologous CAR T-cells that can persist for a long duration.

Given that allogenic CAR-Ts lack persistence, such a safety

concern does not apply at present. As the technology is enhanced

progressively, the increased persistence of the CAR-T cells may

result in the same safety concerns (37, 87).
7 Conclusions and future perspective

Comprehensive investigations are essential to establish the

efficacy of allogeneic CAR-T therapies compared to approved

autologous CAR-Ts, particularly for treating solid tumors with

limited therapeutic options. Current findings suggest that allogeneic

CAR-Ts have the potential to overcome significant barriers to access

for a broader patient population. This advancement stems from

innovative approaches that disrupt TCRs and mitigate GvHD,

which poses a major toxicity risk in allogeneic T-cells therapies.

Genetic TCRa ablation using targeted genome-editing techniques

has gained popularity, yet challenges remain, including the risk of

DNA double-strand breaks and complexities in manufacturing that

may impact cell yield and fitness. Non-genome-editing tools present a

promising alternative, offering potentially safer and more adaptable

methods for developing next-generation CAR-Ts. Despite the

encouraging prospects of these techniques in reducing GvHD risks,

a critical challenge remains: managing the HvG reaction post-

infusion. Therefore, it is imperative for “off-the-shelf” allogeneic

CAR-Ts to address both GvHD and HvG reactions. This can be

achieved through various modifications, such as the disruption or

downregulation of genes involved in allorejection, including CIITA,

CD52, and B2M.To enhance the development of allogeneic CAR-T

cells, we recommend focusing on the following strategies:
Fron
• Investing in alternative genetic modifications that minimize

GvHD and HvG risks.

• Exploring non-genome-editing approaches to simplify

manufacturing and improve cell viability.

• Conducting preclinical and clinical trials to assess the safety

and efficacy of modified allogeneic CAR-Ts in diverse

patient populations.

• Developing robust monitoring systems to track post-

infusion reactions and optimize patient management.
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In conclusion, continued investment in innovative technologies

is essential for the safe infusion of allogeneic CAR-T cells while

enhancing their efficacy, persistence, and safety profiles.
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