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and Weihong Cong1,2*

1Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical
Sciences, Beijing, China, 2National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan
Hospital of Chinese Academy of Chinese Medical Sciences, Beijing, China
Background: Atherosclerosis (AS) is a chronic disease whose risk increases with

age. Identifying reliable biomarkers and understanding the interactions between

immune senescence and AS may provide important therapeutic opportunities

for AS.

Methods: The RNA sequencing and the single-cell RNA sequencing (scRNA-seq)

dataset were downloaded from the Gene Expression Omnibus datasets, with all

data derived from human tissues. Subsequently, differential expression analysis,

weighted gene co-expression network analysis, accompanied by 3 machine

learning algorithms, LASSO, SVM and RF, were performed to identify diagnostic

genes. A nomogram and receiver operating characteristic analysis were used to

assess diagnostic value. The immune cell infiltration and biological functions of

the diagnostic genes were assessed by CIBERSORT and single-sample gene set

enrichment analysis (ssGSEA). Next, we constructed a cellular map of AS plaques

using scRNA-seq data. Senescence signatures in cell populations were quantified

using the AUCell scoring algorithm. Intercellular crosstalk was explored using

CellChat. Monocle2 was applied to elucidate macrophage developmental

trajectories, exploring the relationship between biomarkers and immune cells.

Finally, the expression of biomarkers and macrophage infiltration in aortic

plaques of ApoE−/− AS mice were evaluated using immunofluorescence.

Results: A comprehensive screening identified 89 key senescence-related

genes. Among these, PDLIM1, PARP14 and SEL1L3 were identified as

biomarkers and showed high accuracy (AUC>0.7) in AS diagnosis. Based on

ssGSEA, CIBERSORT and Pearson analyses, these biomarkers were found to

correlate significantly with multiple immune cells, suggesting their potential

involvement in immune infiltration processes. Pseudotime trajectory analysis

revealed that PDLIM1, PARP14, and SEL1L3 exhibited stage-specific expression

patterns during macrophage differentiation. Analyses based on CellChat

indicated that senescent vascular cells predominantly communicate with

macrophages, with differential expression of these biomarkers observed across

distinct macrophage populations. Finally, PDLIM1 expression was downregulated

and PARP14 and SEL1L3 expression was upregulated in the aortic root of ASmice.

Macrophages showed significant accumulation in the aortic root of AS mice with
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a dysregulated M1/M2 macrophage ratio, which is consistent with the

bioinformatics analysis.

Conclusions: In conclusion, senescence-associated genes may drive

macrophage transformation, and they show high potential for surveillance and

risk stratification in AS, which may inform immunotherapy for AS.
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GRAPHICAL ABSTRACT
1 Introduction

Atherosclerosis (AS) is an age-related chronic inflammatory

disease characterized by a progressive accumulation of plaques,

which is the underlying pathology leading to myocardial infarction

and stroke, and accounts for approximately 31% of global mortality

(1). AS plaque formation is primarily driven by endothelial

dysfunction, which promotes low-density lipoprotein (LDL)

aggregation in the intima by compromising vascular barrier
02
integrity. The modification of LDL, primarily oxidation LDL

(oxLDL), promotes the recruitment and infiltration of monocytes

into the vessel wall, leading to the accumulation of cholesterol-

enriched foam cells that contribute to plaque growth and necrotic

core formation (2, 3). Over time, the development of necrotic

fragments, plaque destabilization, and subsequent rupture can

result in fatal acute cardiovascular events. In recent years,

personalized medicine has been recommended for the

comprehensive management of AS because it uses strategies to
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predict individual susceptibility and target prevention to

personalize healthcare (4). Currently, statins remain the

cornerstone of AS treatment, effectively lowering LDL levels

through the inhibition of HMG-CoA reductase. Although statins

reduce the risk of major adverse cardiovascular events in clinical

trials, there is still a substantial residual risk. In recent years,

numerous researchers have attempted to combine immune and

anti-inflammatory therapies and reduce major adverse

cardiovascular events. Notably, anti-inflammatory treatment with

canakinumab targeting the interleukin-1b (IL-1b) innate immune

pathway led to a significant reduction in recurrent cardiovascular

events (5, 6). In addition, studies have shown that immune

checkpoint proteins and co-stimulatory molecules play an

important role in the regulation of atherosclerosis (7–9). These

studies provide new insights into the importance of immune

modulation in AS.

Aging has been identified as a predominant risk factor for

cardiovascular disease (CVD) (10). It affects the vasculature even

before the development of AS. Generally, aging is associated with

arterial wall remodeling, characterized by accelerated elastin

network fragmentation and degradation, accompanied by

abnormal collagen fibers proliferation. In addition, reduced

endothelial nitric oxide synthase activity triggers decreased nitric

oxide (NO) bioavailability, and disruption of the integrity of the

endothelial barrier, all of which together contribute to increased

arterial stiffness (11). Aging affects the immune system in complex

ways, and various components of the immune system are involved

in the formation of AS. A notable characteristic of aging is

macrophage accumulation and altered polarization. Recent

studies suggest that M1-like macrophages, along with senescent

cells, may be a major source of pro-inflammatory cytokines (e.g., IL-

1b, IL-6, and TNF) during aging (12). The downregulation of CD36

and CD163 expression on the surface of senescent macrophages

significantly impaired recognition and phagocytosis of oxidized

LDL and apoptotic cells (13, 14). Senescence drives chronic

inflammatory progression in AS by remodeling monocyte/

macrophage differentiation trajectories and phagocytosis (15). A

study revealed that aged mice with chronic or acute hyperlipidemia

exhibited a greater degree of macrophage infiltration into AS lesions

than younger mice (16). In the context of AS, senescent cells

contribute to the degeneration of the fibrous cap, which is critical

for preventing plaque rupture. The clearance of these senescent cells

through senolytics interventions has been shown to restore the

numbers of vascular smooth muscle cells (VSMCs) and increase cap

thickness. Given the progressive functional decline of the aging

system, the incidence of acute cardiovascular events also increases

substantially with age (17). Understanding the interactions among

aging, adaptive immunity, and atherosclerosis is essential for

addressing and mitigating cardiovascular complications related to

aging. The aim of this study is to reveal underlying immune

mechanisms associated with aging-related biomarkers in AS by

integrating bioinformatics methods and machine learning

strategies, combined with single-cell RNA sequencing (scRNA-
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seq) and functional validation experiments. Ultimately, this study

aims to lay a theoretical foundation for personalized interventions

in AS, which could inform the future development of precision

therapies for AS patients.
2 Methods

2.1 Dataset collection

In this study, we obtained the original microarray datasets from

the Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo, accessed on 4 September 2024),

Specifically, we utilized the GSE43292 dataset from the GPL6244

platform and the GSE100927 dataset from the GPL17077 platform.

The GSE43292 dataset comprises 32 carotid AS samples and 32

carotid non-AS samples (18). while the GSE100927 dataset includes

29 AS carotid plaques and 12 control carotid arteries without AS

lesions (19). Additionally, the annotated files for GPL6244 and

GPL17077 were downloaded from GEO. For genes with multiple

probes IDs without prior filtering, we calculated the mean

expression value of all probes to represent the expression level of

individual genes. Furthermore, the GSE28829 dataset includes 13

early and 16 advanced human carotid AS plaque (20). The

GSE120521 dataset consisted of 4 stable and 4 unstable AS plaque

samples (21). GSE41571 dataset consisted of 6 stable and 5 unstable

AS plaque samples (22). The 3 datasets previously mentioned were

utilized as validation sets. In addition, we used the scRNA-seq

dataset GSE159677 to conduct a more comprehensive analysis of

the cell populations expressing key biomarkers (23). The samples in

GSE159677 were derived from whole carotid AS plaques and

matched adjacent non-AS tissues from the same patients. Before

conducting the formal analysis, the data were normalized using the

limma (v3.60.6) R package. Senescence-related genes (SRGs) were

sourced from MSigDB 3.0 (https://www.gsea-msigdb.org/gsea/

msigdb, accessed on 10 September 2024). All human data used in

this study were obtained from public repositories. According to the

original publication, the studies were approved by the local ethics

committee and conducted in accordance with the Declaration

of Helsinki.
2.2 Identification of differentially expressed
genes

We identified differentially expressed genes (DEGs) from

GSE43292 and GSE100927 using the Bioconductor R package

limma. Differential expression analysis was performed using a

linear model with empirical Bayesian variance adjustment. The

parameters |Log2 fold change|>0.585 (about 1.5-fold change) and

Benjamini-Hochberg adjusted P-value (FDR) < 0.05 were used as

screening criteria for DEGs. In addition, volcano plots of DEGs

were constructed using the ggVolcano R package.
frontiersin.org

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://doi.org/10.3389/fimmu.2025.1557266
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lu et al. 10.3389/fimmu.2025.1557266
2.3 Construction of weighted gene co-
expression networks

In this study, the R package “WGCNA” was used to construct

weighted gene co-expression network analysis (WGCNA). First,

screening top 1000 highly variable genes performed hierarchical

clustering on the study samples to detect and exclude abnormal

samples. The function blockwiseModules() was used to construct

the co-expression network with the following settings:

minModuleSize=30 and mergeCutHeight=0.25. Subsequently, a

soft-thresholding power of b = 16 was selected using the function

pickSoftThreshold to construct the scale-free network. Following

this, the adjacency matrix was built and converted to a topological

overlap matrix (TOM), and the dissimilarity was used to build the

gene dendrogram and module colors. Each module was designated

with a distinct color identifier, and the module diagnostic genes

represented the expression profile of the entire module. After

selecting the candidate modules, we defined |Module

Membership|>0.8 and |Gene Significance|>0.2 as the screening

criteria for key genes in the candidate modules.
2.4 GO and KEGG enrichment analyses

To elucidate the underlying biological mechanisms through

which overlapping DEGs regulate phenotypic changes, we inferred

the molecular networks and cellular processes in which these genes

may be involved by identifying the functional categories and

signaling pathways in which they are significantly enriched. We

analyzed the Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG, updated October 2025) pathways

for the target genes using the R package clusterProfiler (v4.12.6).

The org.Hs.eg.db annotation package provided Homo sapiens-

specific GO terms, such as biological processes (BP), cellular

components (CC), and molecular functions (MF), alongside

KEGG pathways. A corrected P < 0.05 was considered statistically

significant. The Benjamini-Hochberg procedure was applied for

multiple testing correction to control the false discovery rate (FDR).
2.5 Feature gene selection based on
multiple machine learning methods

Machine learning prediction models include the least absolute

shrinkage and selection operator (LASSO) algorithm, support

vector machine (SVM) models, random forest (RF) models. The

LASSO algorithm, a form of logistic regression, is employed to

enhance predictive performance through variable selection and

regularization (24). The LASSO logistic regression model (family

= “binomial”) was implemented using the “cv.glmnet” function

from the glmnet R package with default standardization of

predictors (standardize = TRUE). The parameters were set with

alpha = 1 and nlambda = 1,000, with lambda.min automatically
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selected by the 10-fold cross-validation implemented within the

cv.glmnet function. The SVM algorithm finds the optimal variables

as a supervised machine learning method to support vectors. It is a

widely used supervised machine learning protocol for classification

and regression, which recursively eliminates the least important

features based on linear SVM-derived importance rankings to

optimize variable selection. The “Caret” package of the grid

search method is used to select hyperparameters for all classifiers

through 5-fold cross-validation on the training dataset. The SVM

has demonstrated its capability to identify the diagnostic

significance of biomarkers with high discriminative power, a

process facilitated by the “e1071” package (25). The RF analysis

was performed using the “RandomForest” function. The optimal

number of variables per split (mtry) was selected via grid search

using the tuneRF function, and the ntree parameter defaults to 500

(17). The top 20 key genes were selected based on the feature

weights mean decreased accuracy (MDA) and mean decrease Gini

(MDG). Subsequently, overlapping genes were identified in the

three machine learning methods for further analysis.
2.6 The construction of nomogram

In order to evaluate the comprehensive diagnostic performance

of the characterized genes, a multivariable logistic regression model

was first established using the “rms” package to predict the binary

outcome of AS. The “rms” package was applied to construct a

nomogram, and a calibration curve was established to evaluate the

accuracy of the nomogram. In the nomogram, each gene is assigned

a specific score, and the cumulative scores of the 3 genes are

employed to predict the risk of AS. Finally, a decision curve

analysis was performed using the “rmda” package to evaluate the

net benefit of the nomogram prediction, and this analysis supports

their potential value in guiding AS risk stratification decisions.
2.7 The ROC curve analysis and expression
analysis

In the GSE43292 and GSE100927 datasets, we validated the

accuracy of the screened diagnostic genes by performing receiver

operating characteristic (ROC) curve analysis utilizing the

“pROC” package. Each gene was individually assessed as a

continuous predictor, and the area under the curve (AUC) was

calculated to quantify its diagnostic performance. Genes with an

AUC > 0.7 were deemed diagnostically valuable for the disease. To

further validate the accuracy of the diagnostic genes, we

performed independent ROC analyses on the validation datasets

(GSE28829, GSE120521, and GSE41571) and compared their

diagnostic performance with the GSE100927 and GSE43292

datasets. The expression levels of hub genes between AS and

control samples were displayed in the boxplots generated by the

“ggplot2” in R package.
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2.8 Single-sample gene set enrichment
analysis

The single-sample gene set enrichment analysis (ssGSEA) was used

to identify the potential functions of diagnostic genes. The reference

gene set was sourced from the MSigDB (C2 gene set). P < 0.05 (FDR-

corrected) was used as the criterion for significant enrichment.
2.9 Correlation analysis between infiltrating
immune cells and diagnostic genes

The immune cell infiltration was calculated using the web tool

CIBERSORT (http://CIBERSORT.stanford.edu/, accessed on 20

September 2024) to explore the immune microenvironment of

AS. The analysis employed the LM22 reference set, which

comprises 22 human immune cell subtypes. The number of

permutations sets was 1000. The P-value < 0.05 (FDR-corrected)

in the CIBERSORT results was retained. The result of immune cell

infiltration was visualized by ggplot2 package. Pearson correlation

analysis was employed to determine the relationships between

diagnostic genes and immune cells.
2.10 Single-cell analysis

We included AS core plaque and patient-matched proximal

portion transcriptome data from GSE159677. The analysis was

conducted utilizing the “Seurat” R package (v5.2.0). Firstly,

quality control was performed to screen out cells that met the

following criteria: a gene count per cell >200, and mitochondrial

gene percentage <10%. Subsequently, data normalization was

performed using the NormalizeData function. For downstream

analysis, the “vst” method in the FindVariableFeatures function

was used to select the top 2000 variably expressed genes. Principal

component analysis (PCA), was performed on normalized data for

dimensionality reduction, followed by unsupervised graph-based

clustering using the FindClusters() function with a resolution

parameter of 0.3. The “Harmony” package was used to remove

batch effects across dissociated scRNA-seq raw data. Employing

unsupervised cluster analysis and unified manifold approximation

and projection (UMAP), discrete cell clusters were discerned within

each scRNA-seq dataset. In the first round of cell annotation, cells

were identified by the following markers: CD4+ T cells (CD3D,

IL7R, LTB, CD2), CD8+ T cells (CD8B, GZMK, CCL5, GZMA),

endothelial cells (ECs; VWF, PECAM1, PLPP1, PLVAP), fibroblasts

(Fibro; LUM, FGF7, DCN, COL1A1), monocytes (S100A9, S100A8,

FCN1, LYZ), macrophages (SELENOP, C1QA, HLA-DPA1, CCL3),

dendritic cells (DC, CD1C, CLEC10A, FCER1A, HLA-DQA1) and B

cells (JCHAIN, IGHG1,CD69, IGKC, CD79A). SMC (TAGLN,

MYH11, TPM2), and mast cells (TPSB2, TPSAB1, CPA3, MS4A2)

(23, 26). Subsequently, macrophages were extracted for further

annotation, specifically C1Q+ macrophages (C1QA, C1QB, C1QC,

FOLR2), TREM2hi macrophages (TREM2, SPP1, FTL, APOE),

FCN1+ macrophages (FCN1, S100A9, S100A8, VCAN) (27–29).
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2.11 Pathway activity and cell–cell
communication analysis

In the scRNA-seq dataset, Fibro, VSMC and ECs were

categorized into high senescence (HS) and low senescence (LS)

subgroups based on the senescence-associated transcriptional

signature “FRIDMAN. SENESCENCE. UP”, obtained from the

MSigDB, using the AUCell_exploreThresholds function. This

method dynamically determines the optimal thresholds by fitting

a bimodal distribution of AUCell (v1.26.0) scores. Cellchat (v1.6.1)

was employed to analyze cell-cell communication using a

normalized gene expression matrix. To investigate intercellular

communication associated with senescence, we performed

CellChat analysis of normalized gene expression matrices for HS

and LS cell subtypes versus other cell types.
2.12 Single cell trajectory analysis

We used Monocle2 to study inferred developmental trajectories

among macrophage subsets. Monocle2 uses reverse graph

embedding to learn the sequence of gene expression changes that

each cell undergoes in the dynamic biological samples provided.

This approach enables the precise positioning of each cell along the

trajectory of gene expression changes. Initially, the data normalized

and clustered via the “Seurat” R package were loaded into a monocle

object. Dimensionality reduction was performed using the

“reduceDimension” command and the DDRTree algorithm.

Subsequently, the trajectory was constructed using the

“plot_cell_trajectory” command with default parameters. Cells

were sorted along pseudotime trajectories using genes

dynamically selected by Monocle2’s differentialGeneTest and

dispersionTable. The root cells of the pseudotime trajectories

were automatically identified using the orderCells() function. The

dynamic trend of the expression levels of the diagnostic genes over

pseudotime were depicted in individual graphs using the

plot_genes_in_pseudotime function.
2.13 Animal models and aortic valve
harvesting

Male C57BL/6J mice (n=4) and ApoE-/- mice (n=4), all 8 weeks

of age, were purchased from Beijing Vital River Laboratory Animal

Technology Co., Ltd. (Beijing, China). All mice were given free

access to food and water under constant temperature and humidity

environmental conditions (12-hour light/dark cycle). To induce AS,

four ApoE-/- mice were switched from a normal food chow to a

high-fat diet (comprising 21% fat, 0.15% cholesterol) for 24 weeks.

The other four C57BL/6J mice were fed a normal food diet for 24

weeks and served as controls. At the end of the study, mice were

anesthetized by intraperitoneal injection of sodium pentobarbital

(60 mg/kg), after which the aortic valves were harvested, fixed in 4%

paraformaldehyde and placed at 4°C for 24 hours for subsequent

studies. The animals were cared for in accordance with the
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Guidelines for Care and Use of Laboratory Animals published by

the US National Institutes of Health (NIH Publication, 8th Edition,

2011). All procedures involving experimental animals were

approved by the Ethics Review Committee for Animal

Experimentation of Xiyuan Hospital, China Academy of Chinese

Medical Sciences (Approval No. 2024XLCO54-2).
2.14 Evaluation of AS lesions

For evaluation of AS lesions in the aortic sinus, the aortic root

was dehydrated and embedded in paraffin. Serial 4-mm sections

were obtained in the aortic sinus using a slicer (Leica RM2016,

Wetzlar, German). Sections were stained with hematoxylin-eosin

(HE, Sevicebio, Wuhan, China) to quantify plaque area. Tissue

sections were subsequently scanned and photographed at 400×

magnification under a digital scanner (3DHistech corporation,

Budapest, Hungary) and quantitatively analyzed using Image J

software (v1.53t; National Institutes of Health, Bethesda,

MD, USA).
2.15 Immunofluorescence staining

Tissue sec t ions of mice aor t ic va lves underwent

deparaffinization and hydration, followed by antigen retrieval

through boiling in sodium citrate at 100°C for 30 min. The

prepared tissue sections were closed with 5% BSA for 30 min at

room temperature. For immunofluorescence staining, the samples

were incubated overnight at 4°C with the following antibodies:

PDLIM1 polyclonal antibody (1:1000; Cat# 11674-1-AP;

Proteintech), PARP14 polyclonal antibody (1:7000; Cat# bs-

19886R; Bioss), SEL1L3 polyclonal antibody (1:5000; Cat# bs-

19626R; Bioss), F4/80 FITC-labeled polyclonal secondary

antibody (1:2000; Cat# GB113373; Servicebio), CD80 polyclonal

antibody (1:1000; Cat# GB114055; Servicebio), CD163

monoclonal antibody (1:3000; Cat# GB15340; Servicebio), CD36

polyclonal antibody (1:5000; Cat# GB112562; Servicebio). Tissue

sections were incubated with secondary antibodies (Alexa Fluor

594 labeled goat anti-mouse IgG, HRP conjugated Goat Anti-

Rabbit IgG, Cy5 conjugated Goat Anti-rabbit IgG or Cy3

conjugated Goat Anti-Rabbit IgG,1: 500; Servicebio, Wuhan,

China) were incubated at 37 °C away from light for 50 min,

washed 3 times with PBS, and then counterstained with 4′,6-
diamidino-2-phenylindole (DAPI). Finally, images were acquired

using a fluorescence microscope (Nikon Eclipse C1, Japan) and

the immunofluorescence data were quantified as mean

fluorescence intensity using ImageJ software.
2.16 Statistical analyses

All data were expressed as mean ± standard deviation.

Comparison of data obeying a normal distribution was performed
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using a two-tailed independent samples t-test. P-value ≤ 0.05 was

used to define significance.
3 Results

3.1 Identification of DEGs

Initially, we explored the different gene expression patterns in

the AS and control samples in the GSE43292 and GSE100927

datasets. The differential expression analysis revealed 2454 DEGs

in GSE100927, including 1397 up-regulated and 1057 down-

regulated genes (Figures 1A, B). Concurrently, a total of 2931

DEGs, including 1653 up-regulated and 1278 down-regulated

genes, were identified in GSE43292 (Figures 1C, D). These DEGs

were visualized in the volcano plots, and the heatmaps showed the

top 20 DEGs, which were selected based on the log2FC.
3.2 Weighted co-expression network
construction and core module selection

In order to further screen the key genes of AS, we performed

WGCNA on gene expression data from the GSE43292 dataset. A

soft threshold power of 16 was selected based on the scale-free

topology criterion and mean connectivity analysis (Figure 1E). A

total of 12 co-expression modules were identified using this power,

representing groups of co-expressed genes with similar expression

patterns. The hierarchical relationships among these modules are

depicted in the cluster dendrogram shown in Figure 1F.

Subsequently, a WGCNA-based module-trait correlation analysis

was conducted to identify gene modules significantly associated

with AS (Figure 1G). The blue module exhibited the highest positive

correlation with AS, comprising 1416 genes (r=0.59, P=3e-07;

Figure 1H), while the brown module demonstrated the highest

negative correlation with AS, consisting of 1152 genes (r=-0.54,

P=4e-06; Figure 1I). Accordingly, the blue and brown modules were

selected as the focus modules for further analyses. In addition, we

intersected the DEGs from the GSE43292 and GSE100927 datasets

with the genes identified by WGCNA, resulting in a total of 234 key

genes (Figure 1J).
3.3 GO and KEGG pathway analysis

Subsequently, we performed GO and KEGG functional

enrichment analyses for the key genes. Figure 2A presents the

significantly enriched GO terms. In the BP category, the key genes

were primarily associated with the regulation of macrophage derived

foam cell differentiation, macrophage cytokine production, foam cell

differentiation, T cell homeostasis, neutrophil differentiation, B cell

activation, and other immune and inflammatory processes. In CC

analysis, the key genes were significantly involved in lysosomal

lumen, vacuolar lumen, stress fiber, contractile actin filament
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FIGURE 1

Screening for key genes. (A, C) Volcano map of DEGs distribution in GSE100927 and GSE43292. (B, D) Heatmap of DEGs in GSE100927 and
GSE43292. The legend at the top right represents the log fold change in genes. The horizontal axis represents each sample and the vertical axis
represents each gene. Blue and white colors represent low and high expression values, respectively. (E) Identification of the optimal b value by using
scale-free topology model, and selection of b = 16 as the soft threshold based on average connectivity and scale-independence. (F) The network
heatmap showing gene dendrogram and modular eigengenes. (G) The heatmap of correlation analysis of modular eigengenes with clinical status. in
AS. The correlation (upper) and P-value (bottom) of module eigengenes and status of AS were presented. Red color indicates positive correlation
and blue color indicates negative correlation. (H) The correlation plot of blue module affiliation with gene significance in blue module. (I) The
correlation plot of brown module affiliation with gene significance in brown module. (J) Intersection of key module genes with DEGs was obtained
by Venn diagram and a total of 234 AS key genes were identified. GSE100927 dataset: AS groups, n=29 biologically replicated experiments; control
groups, n=12 biologically replicated experiments. GSE43292 dataset: n=32 biologically replicated experiments.
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bundle, collagen-containing extracellular matrix, plasma lipoprotein

particle, among others. The KEGG enrichment analysis revealed

significantly enrichment in pathways such as lysosome, sphingolipid

metabolism, ECM-receptor interaction, PPAR signaling pathway,

cholesterol metabolism, transcriptional misregulation in cancer and
Frontiers in Immunology 08
other pathway (Figure 2B). AS is recognized as an age-related

disease, highlighting the importance of further elucidating its

molecular pathogenesis from an aging perspective. We obtained

SRGs from MSigDB and identified the intersection of AS key genes

with SRGs using a Venn diagram, resulting in the identification of 89
FIGURE 2

GO and KEGG pathway enrichment analysis. (A, C) The bar graph shows the GO-enriched terms: biological process (BP), cellular composition (CC)
and molecular function (MF). The x-axis indicates the number of genes enriched to the entry, and thy-axis labels represent GO terms. (B, D) The
chord plot shows KEGG-enriched items. The red color in the graph expresses gene upregulation and blue color indicates gene downregulation.
Gene involvement in KEGG terms is identified by colored connecting lines.
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key senescence-related genes (Figure 1J). GO analysis of these genes

showed that key senescence-related genes were significantly enriched

for BP, such as organelle fission, glycosphingolipid catabolic process,

mitotic nuclear division, glycolipid catabolic process, inflammatory

response to wounding and negative regulation of B cell activation.

Among the CC enrichment results, significant enrichment was

observed lysosomal lumen, vacuolar lumen, collagen-containing

extracellular matrix, mitotic spindle, high-density lipoprotein

particle, and contractile actin filament bundle, among others

(Figure 2C). Subsequently, the key senescence-related genes were

further analyzed using KEGG pathway functional enrichment

analysis. This analysis identified significant enrichment in

pathways such as lysosome, glycosphingolipid biosynthesis, PPAR

signaling pathway, galactose metabolism, ECM-receptor interaction

and tryptophan metabolism (Figure 2D).
3.4 Screening of hub genes with diagnostic
value via machine learning

Three machine learning algorithms, LASSO, SVM and RF, were

used to identify AS diagnostic genes from 89 key senescence-related

genes. LASSO logistic regression was employed to perform binary
Frontiers in Immunology 09
classification analysis for predicting disease subtypes. Gene

coefficient trajectories and binomial deviance curves were

visualized to evaluate feature selection stability (Figures 3A, B).

The hub genes were selected from the variables corresponding to

the optimal penalty parameter values. Ultimately, the LASSO

regression identified five hub genes, including PDLIM1, CNTN1,

HMOX1, PARP14, and SEL1L3. The SVM was optimized using a

polynomial kernel for feature screening, based on optimal

parameter selection (Figure 3C). The top 20 genes identified by

the SVM as the most informative features included CENPE, CCNB2,

SEL1L3, ARHGDIB, PARP14, PDLIM1, GPR137B, CMTM7,

TNFRSF21, VAMP8, DCN, NFIX, HMMR, LUM, CLU, TSPAN8,

ST8SIA4, AADAT, PTTG1 and SPAG5. For the RF algorithm, the

diagnostic errors were visualized, and the candidate genes were

ranked in a descending order according to the importance of the

variables (Figures 3D, E). The top 20 genes were identified as

significant, including ARHGDIB, RUNX2, MAN2B1, PARP14,

CD68, NRXN3, HMOX1, MAF, CMTM7, SEL1L3, CNTN1, DPP4,

SLC6A6, PLD3, PDLIM1, GIMAP2, TSPAN8, ST8SIA4, MYL9,

TNFRSF21. Subsequently, Venn diagrams showed that the

overlapping genes of the three algorithms were PDLIM1, PARP14

and SEL1L3 (Figure 3F).
FIGURE 3

Screening of hub genes with diagnostic value via machine learning. (A, B) Feature selection in LASSO regression. (C) Expression validation of
biomarker labeled genes selected by SVM. (D, E) Genes are arranged in descending order according to MeanDecreaseAccuracy and
MeanDecreaseGini values in RF. (F) The Venn diagram depicting 3 common genes between LASSO, SVM, and RF that chant identified as aging-
related diagnostic genes in AS.
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3.5 Construction of a diagnostic model
for AS

We built a nomogram using the “rms” package, which

integrates the diagnostic genes PDLIM1, PARP14 and SEL1L3 to

predict the probability of AS. The predictive accuracy of these gene

drive models was validated through calibration curve analysis

(Figure 4A). The calibration curves demonstrated good agreement

between the nomogram-predicted probabilities and the actual

observed outcomes across the full risk spectrum (Figure 4B).

Decision curve analysis (DCA) showed greater clinical utility of

the nomogram (orange curve) compared to the full treatment

strategy (brown curve) and individual biomarkers curves. The

curves for PDLIM1, PARP14, and SEL1L3 showed that patients

could benefit from the nomogram model with a high-risk threshold

of 0 to 1 (Figure 4C). In the training datasets GSE43292 and

GSE100927, the expression of PARP14 and SEL1L3 were elevated

in AS compared to the control group, whereas the expression of

PDLIM1 was reduced (Figures 4D, E). The diagnostic value of the

characterized genes was further verified using ROC curves. In the

GSE43292 and GSE100927 training sets, PDLIM1 (AUC: 0.829;

0.965), PARP14 (AUC: 0.865; 0.937), and SEL1L3 (AUC: 0.847;

0.912) had high diagnostic value (Figures 4F, G). Notably, in the

GSE28829 validation dataset, PARP14 expression was elevated in

advanced lesions compared to early lesions, although this difference

did not reach statistical significance. PDLIM1 expression was

significantly lower in advanced lesions than in early lesions.

Conversely, SEL1L3 expression was significantly higher in

advanced lesions compared to early lesions (Figure 4H).

Furthermore, an analysis of the GSE120521 and GSE41571

validation datasets revealed that the PARP14 and SEL1L3

expression levels were elevated in unstable plaques compared to

stable plaques, whereas PDLIM1 expression was reduced

(Figures 4I, J). In the GSE28829, GSE120521 and GSE41571

validation sets, PDLIM1 (AUC: 0.606; 1; 0.7), PARP14 (AUC:

0.817; 0.875; 0.733), and SEL1L3 (AUC: 0.894; 1; 0.867)

demonstrated significant diagnostic value (Figures 4K–M).

Consequently, these three genes may serve as reliable diagnostic

predictors for the AS.
3.6 The ssGSEA of characteristic genes

To elucidate the pathway activity patterns associated with the

dynamics of PDLIM1, PARP14, and SEL1L3 expression, we

performed KEGG-based pathway activity analysis by ssGSEA.

Samples stratified into the PDLIM1 low-expression group, as well

as PARP14 and SEL1L3 high-expression groups, exhibited

significant enrichment of pathway activities associated with

allogeneic rejection and immune responses (Figures 5A, D, E).

Conversely, samples within the PDLIM1 high expression group,

PARP14 and SEL1L3 low expression groups predominantly
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exhibited enrichment in metabolic reactions (Figures 5B, C, F).

These findings suggest that characterized genes may play an

important role in the regulation of immune infiltration and

metabolism processes.
3.7 Immune cell infiltration analysis in AS

We applied CIBERSORT with the LM22 signature matrix to

estimate the proportions of 22 immune cell types in AS samples.

Figure 6A illustrates the relative abundance of these immune cell

populations across individual samples. Compared with the control

group, the AS samples exhibited higher proportions of M0

macrophages, memory B cells, alongside decreased proportions of

CD8+ T cells, monocytes, naive B cells and activated natural killer

cells (Figure 6B). Subsequently, we conducted a Pearson correlation

analysis to evaluate the relationship between the diagnostic genes

and immune cells. Immune cells that exhibited a significant

correlation with any of the characterized genes were included in

the heat map. Interestingly, naive B cells, M0 macrophages,

monocytes, activated natural killer cells, CD8+ T cells, and

regulatory T cells constituted a substantial portion of AS plaque

and exhibited significant correlations with the three diagnostic

genes (Figure 6C). The correlation of immune cells with

diagnostic genes may reflect either a driver role in AS

pathogenesis or secondary responses to vascular inflammation.
3.8 The scRNA-seq reveals complex
cellular features of AS lesions

To comprehensively characterize the cellular landscape of AS

lesions, we collected the scRNA-seq dataset GSE159677, which

comprises human carotid artery plaques. This dataset was

generated using the 10x Genomics Chromium platform.

Following stringent quality control and log-normalization, we

performed an unbiased clustering of 46,278 high-quality cells.

This analysis identified 13 subpopulations as shown in UMAP

plot, which primarily included ECs, SMC, Fibro, CD4+ T cells,

CD8+ T cells, B cells, monocytes, macrophages, and a minor

presence of DC and mast cells (Figures 7A, B). Compared with

the proportion of cell distribution in the control group, our analysis

demonstrated a significant selective enrichment of T cells and

macrophages in AS. The predominance of these immune cell

populations in AS plaques supports the notion that the plaque-

prone microenvironment drives the differential expansion of

inflammatory cell lineages, rather than passive cell accumulation

(Figure 7C). Cell types were annotated based on canonical markers

such as VWF for ECs, LUM for Fibro, and C1QA for macrophages

(Figure 7D). Subsequently, we determined the distribution of

PDLIM1, PARP14 and SEL1L3 in ten integrated cell populations

(Figures 7E–G).
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FIGURE 4

Construction of diagnostic nomogram and evaluation of diagnostic performance. (A) A diagnostic nomogram based on three characteristic genes
was constructed. Each gene corresponded to a score and the total score of the three genes was used to predict the risk of AS (n=32 biologically
replicated experiments.). (B) The calibration curves were constructed to evaluate the accuracy of the nomogram (n=32 biologically replicated
experiments.). (C) DCA was performed to assess the net benefit of AS diagnostic decisions predicted by the nomograms (n=32 biologically replicated
experiments.). (D, E) The expression comparisons of the three hub genes (PDLIM1, PARP14 and SEL1L3) in the GSE43292 (n=32 biologically
replicated experiments.) and GSE100927 (AS groups, n=29 biologically replicated experiments; control groups, n=12 biologically replicated
experiments.) training datasets. (G, F) ROC curves showing the performance of the three genes in the GSE43292 (n=32 biologically replicated
experiments.) and GSE100927 (AS groups, n=29 biologically replicated experiments; control groups, n=12 biologically replicated experiments.)
datasets. (H-J) The expression comparisons of the three hub genes (PDLIM1, PARP14 and SEL1L3) in the GSE28829 (advanced groups, n=16
biologically replicated experiments; early groups, n=13 biologically replicated experiments.), GSE120521 (n=4 biologically replicated experiments.)
and GSE41571 (unstable groups, n=5 biologically replicated experiments; stable groups, n=6 biologically replicated experiments.) validation datasets.
(K-M). ROC curves showing the performance of the three genes in the GSE28829 (advanced groups, n=16 biologically replicated experiments; early
groups, n=13 biologically replicated experiments.), GSE120521 (n=4 biologically replicated experiments.) and GSE41571 (unstable groups, n=5
biologically replicated experiments; stable groups, n=6 biologically replicated experiments.) validation datasets. Statistics performed by Independent
sample T-test. *P < 0.05, **P < 0.01, ***P < 0.001.
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3.9 Senescence status of individual cell
populations

As a measure of cellular senescence, we employed a well-

established set of SRGs (FRIDMAN. SENESCENCE. UP,

Supplementary Table 1). Subsequent AUCell scoring of these cells

based on FRIDMAN. SENESCENCE. UP set, revealed that Fibro,

ECs, and SMC exhibited higher scores compared to other cell

populations, including macrophages, and T cells (Figures 8A, B).

To further explore the overall communication between senescent

cells and other cell populations in the plaques, we categorized Fibro,

ECs, and SMC into HS and LS cells, respectively (Figure 8C). In

order to systematically map the dynamics of intercellular

communication, we performed a cell-cell interaction analysis

using CellChat. The CellChat analysis indicated that HS cells

established significantly more ligand-receptor interactions in the

AS microenvironment compared to LS cells. Notably, HS-Fibro,

HS-SMC and HS-ECs exhibited stronger communication primarily

with macrophages, although B cells and SMC were also involved

(Figures 8D–F). Specifically, it was computationally inferred that

HS cells release the cytokines macrophage migration inhibitory

factor (MIF) and b-galactoside-binding-lectins (GALECTIN,

Figures 9A–C), utilizing six main pathways, including MIF-

(CD74+CXCR4), MIF-(CD74+CD44), MIF-ACKR3, Galectin9

(LGALS9)-CD45 , LGALS9-HAVCR2 , and LGALS9-CD44

(Figures 9D–F). Thus, our data suggest that senescent cells in AS

lesions exert potent immunomodulatory effects, primarily by

activating macrophage-driven inflammatory responses through

MIF- and galectin-dependent pathways.
3.10 Single cell analyses reveal unique
cardiac macrophage subsets

Subsequently, macrophages were extracted from the integrated

dataset and subjected to reclustering using standard Seurat

procedures. A total of 5,295 high-confidence macrophages and

21,027 genes were retained for downstream analysis. Further

annotation identified three subtypes: TREM2hi macrophages,

C1Q+ macrophages and FCN1+ macrophages (Figure 10A). The

C1Q+ macrophages exhibited high expression levels of complement

genes C1QA, C1QB, C1QC, as well as M2-like macrophage related

genes (FOLR2), categorizing them as AS-resident macrophages,

which functionally resemble M2 macrophages (30). Trem2hi

macrophages were characterized by elevated expression of lipid

accumulation, including TREM2 and FABP4, and were also

enriched in LGALS3, ITGAX (31, 32). GO and KEGG analysis

showed that Trem2hi macrophages are involved in lipid

metabolism, cholesterol efflux and lysosomal functions (33, 34).

These Trem2hi macrophages appear to be foam cells, but they did

not produce inflammatory cytokines or chemokines associated with

AS. In contrast, FCN1+ macrophages highly express inflammatory

monocyte-associated genes, such as S100A9, S100A8, and VCAN,

suggesting a proinflammatory role for this subset in AS (Figure 10B)

(30). Notably, C1Q+ macrophages were significantly reduced and
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Trem2hi macrophages were significantly increased in the AS group

compared to the control group (Figure 10C).
3.11 Single cell trajectories reveal
developmental relationships

To further investigate the relationship between different

macrophages populations, we employed the Monocle2 package

for pseudotime analysis and utilized the DDRTree algorithm for

dimensionality reduction. Clusters defined by Seurat were

superimposed on a pseudotime trajectory generated by the

Monocle algorithm, which revealed that TREM2hi macrophages

and FCN1+ macrophages occupied a separate branch of the

trajectory. In contrast, C1Q+ macrophages spanned each branch

of the trajectory while maintaining transcriptional continuity.

Transcription of TREM2hi/FCN1+ macrophage clusters gradually

transitioned to a C1Q-enriched state (Figures 10D, E).

Subsequently, Gene expression was plotted in Monocle2 as a

function of pseudotime to identify genes driving macrophage

state transitions. We identified PARP14, PDLIM1 and SEL1L3 as

genes exhibiting increased expression in C1Q+ macrophages

(Figures 10F, G).
3.12 Biomarker expression in AS mice

HE staining analysis showed significant plaque accumulation in

the aortic sinus in the AS group, characterized by lipid-rich areas

and cholesterol crystal-like structures with inflammatory cell

infiltration (Figure 11A). We measured PDLIM1, PARP14 and

SEL1L3 pro t e in exp r e s s i on in mic e ao r t i c v a l v e s .

Immunofluorescence staining showed that PDLIM1 expression

was significantly down-regulated, while PARP14 and SEL1L3

expression were significantly up-regulated in the aortic root in the

AS groups compared with the control groups (Figures 11B–G). And

macrophages labelled by F4/80 also showed a significant up-

regulation in the AS group (Figures 11B, D, F, H). We further

labelled M1 macrophages with CD80, M2 macrophages with

CD163 and foam cells with CD36, which showed that CD163

expression was significantly reduced, CD80 and CD36 expression

was significantly upregulated in the AS group compared with the

control group (Figures 11I–L). These findings align with our

previous analysis. The above results suggest that the dysregulation

of the M1/M2 macrophage ratio, along with a substantial

proliferation of foam cells, contributes to the progression of AS.

This process may be facilitated by the stimulation of macrophage

transformation by SRGs such as PDLIM1, PARP14, and SEL1L3.
4 Discussion

Early detection, prevention and intervention of AS are key to

reducing morbidity and mortality, as well as alleviating the

enormous socioeconomic burden of atherosclerotic CVD (35, 36).
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Current clinical strategies rely on imaging modalities (such as

coronary artery calcium scoring, carotid ultrasound) and lipid

analysis for risk stratification. However, traditional biomarkers,

such as LDL do not fully predict residual risk in statin-treated

patients—— risk of persistent cardiovascular events caused by non-
Frontiers in Immunology 13
lipid mechanisms such as residual inflammatory risk, thrombotic

tendency, and metabolic derangements (37). Imaging techniques

such as computed tomography angiography lack sensitivity in

identifying vulnerable plaques with high lipid content or

intraplaque hemorrhage (38). Advanced age constitutes a
FIGURE 5

Characterized genes of single gene GSEA. (A, D, E) KEGG analysis of genes in the PDLIM1 low-expression group, PARP14 and SEL1L3 high-
expression group using GSEA (top 5). (B, C, F) KEGG analysis of genes in the PDLIM1 high-expression group, PARP14 and SEL1L3 low-expression
group using GSEA (top 5).
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significant risk factor for AS, driven by both immune senescence

and endothelial dysfunction. Aging is characterized by impaired

immune surveillance and chronic low-grade inflammation (39).

Key molecular mechanisms include the senescence-associated

secretory phenotype, where senescent ECs, macrophages, and
Frontiers in Immunology 14
VSMC release pro-inflammatory cytokines (such as IL-6, IL-1b),
matrix metalloproteinases, and reactive oxygen species. These

factors collectively contribute to the destabilization of

atherosclerotic plaques and expedite vascular remodeling (40, 41).

In the present study, our findings confirmed that the SRGs poly
FIGURE 6

Immune cell infiltration analysis. (A) The stacked bar plot representing the proportions of different immune cells in each sample. (B) The boxplot
depicting the comparison of the 22 types of immune cells between AS and controls. (C) The correlation heatmap showing the association of
immune cells with the three characterized genes. Statistics performed by Independent sample T-test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001, n=32 biologically replicated experiments.
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(ADP-ribose) polymerase family member 14 (PARP14), SEL1L

family member 3 (SEL1L3) and PDZ and LIM domain 1

(PDLIM1) are diagnostic genes of AS. These genes exhibit robust

diagnostic capabilities, effectively distinguishing between early and

advanced AS lesions, as well as between stable and unstable plaques.
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In addition, our results suggest that PDLIM1, PARP14 and SEL1L3

may drive macrophage transformation and promote the

progression of AS lesions.

In this study, we conducted a comprehensive bioinformatics

analysis that identified 234 AS key genes between the AS and
FIGURE 7

Single-cell sequencing reveals complex cellular features of AS lesions. (A) UMAP plot showing cell distribution from carotid and AS plaque samples.
(B) Umap plot showing cellular composition in the AS microenvironment, colored according to cell types. (C) Proportion of major cell types
between Control and AS groups. (D) Violin plot showing typical genealogical marker genes used to identify different cell types. (E-G) Uamp plot (left)
and violin plot (right) showing the distribution and expression of PDLIM1, PARP14 and SEL1L3 in different cell clusters of AS.
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control groups. Functional enrichment analysis of these genes

revealed significant associations with terms related to immune cell

engagement, immune activation, and inflammation. These findings

suggest a strong link between AS and immune and inflammatory
Frontiers in Immunology 16
processes, which is consistent with current views (36). Importantly,

we screened 89 SRGs from 234 key genes for AS. In order to

prioritize robust biomarkers, we applied 3 machine learning models

(LASSO, RF, SVM) with different feature selection principles to
FIGURE 8

Cell interaction analysis using CellChat. (A) Umap plot showing senescence AUC scores for different cell types. (B) Violin plot showing differences in
senescence AUC scores between different cell types. (C) Umap showing the distribution of high senescence (HS) and low senescence (LS) cells in
Fibro, SMC and ECs in different cell clusters. Circle plots show the cellular interaction weights and number of interactions between HS cells, LS cells
in (D) Fibro, (E) SMC, and (F) ECs, and other cell types in the AS microenvironment. Different colors in the circle diagram represent different cell
types, and the edge width is proportional to the cell-cell interaction weights.
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further identify key features of AS. Extracting the intersection of

markers from the combination of the three algorithms can further

reduce the number of markers and thus improve the specificity and

sensitivity of the signature. Ultimately, PDLIM1, PARP14 and

SEL1L3 were used as diagnostic biomarkers for AS. Further ROC

analysis of these diagnostic genes revealed that PDLIM1, PARP14

and SEL1L3 could effectively distinguish between individuals with

AS and those without the condition. Their AUC values were
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consistently greater than 0.7 in both the training and validation

cohorts, suggesting their strong discriminatory ability. These results

suggest that PDLIM1, PARP14 and SEL1L3 have great potential for

clinical applications in disease prediction, early diagnosis and

disease stratification in AS.

Given the important role of immunity in AS, we sought to

explore the relationship between diagnostic genes and immune cells

in AS. It was found that PDLIM1, PARP14 and SEL1L3 showed
FIGURE 9

Analysis of cell-cell interaction signaling pathways. (A-C) Heatmaps show the outgoing (left) and incoming (right) signal intensities of each signaling
pathway in different cell types. (D-F) Bubble plots show all the important ligand-receptor pairs that send signals from highly senescent cells in (D)
Fibro, (E) SMC, and (F). ECs to the other cell types. The dot colors and sizes in the bubble plots represent communication probability and p-values,
with blue and red corresponding to minimum and maximum values, respectively.
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different degrees of correlation with immune cells such as B cells,

macrophages, monocytes and T cells. Very importantly, we found

differences in the expression of PDLIM1, PARP14 and SEL1L3

between the two groups of macrophages by analyzing scRNA-seq

data. The scRNA-seq technique reveals significant expansion of

senescent EC and VSMC by resolving cellular heterogeneity of AS,

confirming the pathological mechanism of vascular senescence

driving AS progression at the cellular dynamic level (42). It is

now widely recognized that vascular senescence and AS are
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mutually reinforcing processes, sharing common risk factors.

Surprisingly, we found that senescent vascular cells (EC, SMC,

and Fibro) exhibited stronger communication with macrophages

via MIF and lectins by cell communication analysis. These

interactions not only locally recruit more monocyte-macrophages

to migrate to the subendothelium, where they undergo phenotypic

changes due to senescence-associated secretions and transform into

foam cells, but also induce plaque formation by SMCs and

inflammatory cells through phenotypic changes in exosome
FIGURE 10

Macrophage single-cell mapping and trajectory analysis. (A) Umap showing the clustering and annotation of macrophages. (B) Bubble plot showing
canonical lineage marker genes used to identify distinctive cell types. (C) Bar plots showing the composition ratio of each macrophage cluster. (D, E)
Trajectory map indicating the developmental correlations of the 3 clusters. (F) Diagnostic genes expression changes over pseudotime. x-axis indicates cells
analyzed by trajectory analysis, y-axis represents the relative expression of genes. (G) Violin plot showing the expression of diagnostic genes in the 3
macrophage subtypes.
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secretion (42). This mechanistic insight precisely accounts for the

observed increase in foam cells within the AS group. Researchers

have identified the proinflammatory cytokine MIF as a major

mediator of AS. Plasma MIF levels are associated with arterial
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stiffness, which serves as a marker of vascular aging. Preclinical

studies have shown that blocking MIF leads to regression of AS

plaques (43, 44). In addition, HS cells have been found to release

lectins, a carbohydrate-binding protein known to support immune
FIGURE 11

Expression of biomarkers in mice AS tissues. (A) Representative images of aortic root sections stained with HE and quantitative analysis of plaque area.
Representative images and protein levels of immunofluorescence staining for (B, C) PARP14, (D, E) PDLIM1, (F, G) SEL1L3, (B, D, F, H) F4/80, (I, J) CD80, (I,
K) CD163, (I, L) CD36 in mice aortic root, respectively. Scale bar, 50 mm. Statistics performed by independent sample T-test. *P < 0.05, **P < 0.01, ***P <
0.001, n=4 biologically replicated experiments, n=3 technically repeated experiments.
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cell migration and vascular program reprogramming. Thus, our

study suggests that senescent vascular cells and macrophages play a

role in the progression of AS lesions.

Senescent cells generally engage the immune system to facilitate

their clearance from tissues. The accumulation of senescent cells in

AS is thought to result from deficient immune surveillance, and

immunostimulants have been shown to increase the removal of

these cells (45). Empirical evidence supports the notion that aging

promotes proinflammatory changes in monocytes/macrophages

associated with AS. In addition, altered adhesion molecules on

aged EC are expected to promote macrophage migration and

activation within plaques with aging (46). The accumulation of

senescent cells in AS is hypothesized to result from impaired

immune surveillance, with immunostimulants demonstrated to

enhance the clearance of these cells. There is growing evidence

that macrophages may play a driving role in all stages of AS, from

the formation of “fatty streaks” to the development of complex

plaques. Senescent foamy macrophages are implicated in the

initiation of early AS and complex advanced lesions. In addition,

the removal of senescent macrophages has been shown to stabilize

AS by reducing inflammatory cytokines, monocyte recruitment

factors and plaque destabilization-related matrix metalloproteases

(47–50). For a considerable period, plaques have been believed to

encompass multiple phenotypically diverse macrophage

subpopulations (27, 51). The advancement of scRNA-seq has

transcended the conventional classification of macrophages into

M1 andM2 types. Instead, it facilitates an unbiased characterization

of cellular heterogeneity and enables the identification of cellular

identities through labeling strategies. Furthermore, it significantly

enhances the ability to uncover previously unrecognized cell

populations or functional states associated with diseases, along

with their specific markers and the molecular regulators that

underpin them (33, 52). In this study, we conducted an in-depth

analysis of the macrophage population to discover three major

macrophage populations in AS plaques, including TREM2hi

macrophages, C1Q+ macrophages and FCN1+ macrophages. We

further characterized their gene expression profiles. Notably, the

C1Q+ macrophages subset is characterized by the expression of

genes encoding the complement C1q chains, which play crucial

roles in atheroprotective functions of macrophages, including the

reversal of cholesterol transport, the attenuation of inflammation,

and the facilitation of cellular clearance (53). The TREM2hi

macrophages subpopulation, a new macrophage lineage also

previously reported in the literature (53). TREM2 expression in

antigen-presenting cells has been previously described in human

disease, where it is hypothesized to have a negative correlation with

plaque stability (54). It was suggested that TERM2-expressing

myeloid cells may arise in response to microenvironmental

stressors that are commonly associated with neurological

disorders and AS, such as localized inflammation, altered lipid

metabolism, and protein misfolding. Pseudotime analysis revealed

that TREM2hi macrophages and FCN1+ macrophages transformed

to C1Q+ macrophages over time. C1Q+ macrophages predominate
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in advanced plaques, where they facilitate cholesterol efflux and

mitigate inflammation. Plaque regression has been reported to be

dependent on monocyte recruitment and differentiation to anti-

inflammatory rather than pro-inflammatory macrophages, which

may indicate an important influence of macrophage phenotype in

the plaque microenvironment (55).

A previous study showed that PDLIM1 knockdown reversed

miR-150 ablation-induced suppression of expression and

macrophage infiltration (56). The expression level of PDLIM1 was

significantly downregulated in advanced AS compared to early AS,

and models constructed using PDLIM1 have a good diagnostic

performance for AS (57). PARP14, a member of the PARP family,

has been implicated as a potential molecular switch for macrophage

activation, cross-regulating macrophage M1 and M2 polarization in

the context of AS (58). The PARP family (especially PARP1 and

PARP14) is involved in lipid metabolism and regulates lipid

metabolism and homeostasis in vivo through transcription factors

that play a central role in AS development (59). It was shown that

PARP14 inhibits STAT1 phosphorylation and nuclear translocation

via ADP-ribosylation, thereby blocking the expression of pro-

inflammatory genes. Meanwhile, PARP14 catalyzes ADP-

ribosylation of HDAC2/3 in response to IL-4 stimulation and

rescinds its transcriptional repression of STAT6, thereby

promoting anti-inflammatory M2-type macrophage polarization.

This dynamic equilibrium mechanism explains the central role of

PARP14 in regulating the inflammatory response (60, 61). SEL1L3,

a member of the SEL1L (Sel-1 Suppressor of Lin-12-Like) family, is

situated within the endoplasmic reticulum (ER) and plays a pivotal

role in enabling ER-associated degradation. This degradation

process is triggered by ER stress, which promotes the breakdown

of misfolded proteins. ER stress drives intraplaque inflammation

and necrotic core formation via macrophage lipid accumulation

and NLRP3 inflammasome activation (62). SEL1L3 was found to be

highly expressed in AS tissues, which is consistent with the results of

our analysis, but the exact mechanism has not been explored (63).

We suggest that these SRGs may drive macrophage transformation

and drive the progression of AS lesions. This evidence offers novel

insights into the pathogenesis of AS and its associated immune

mechanisms, which could inform strategies for targeted prevention,

disease monitoring, and therapeutic intervention.

The early detection and diagnosis of AS are particularly

important for the prognosis of the disease. Carotid intima-media

thickness, ankle-brachial index, and pulse wave velocity are

commonly used to predict early AS changes. However, there

remains a lack of satisfactory biomarkers for effective screening

and early diagnosis of AS (4, 64). Vascular senescence has a

significant impact on AS lesions. Deciphering vascular senescence

is the cornerstone of developing new therapies against AS targeting

lipid metabolism and inflammation. Primary prevention of AS is

crucial for the management of atherosclerotic CVD. In our study,

we found that higher levels of PARP14 and SEL1L3 might be

associated with more severe disease. The integration of PDLIM1,

PARP14 and SEL1L3 detection with established diagnostic
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modalities could potentially assist clinicians in identifying

individuals at elevated risk for AS and enabling early-stage

diagnosis, demonstrating considerable promise for clinical

application in disease surveillance and risk stratification. Our

study is subject to several noteworthy limitations that warrant

acknowledgment. First, while the use of public scRNA-seq

datasets provided valuable exploratory insights, this approach

inherently restricted our access to extensive clinical metadata,

such as patient age, gender distribution, and comorbidities.

Secondly, while this study has conducted preliminary screening of

key marker genes for AS, subsequent validation through in vivo and

in vitro experimental models remains imperative. Finally, our

analytical approach is subject to technical limitations inherent in

public sequencing datasets, including potential batch effects

between different experimental platforms, variability in single-cell

capture efficiencies, and relatively limited sample sizes. These

factors may affect the generalizability of our findings,

necessitating a cautious interpretation of the results.
5 Conclusions

In conclusion, our study reveals that immune mechanism-

mediated SRGs PDLIM1, PARP14, and SEL1L3 may collectively

participate in the mechanism of AS formation. The dynamic

interaction between the vascular senescence microenvironment

and immune cells emerges as a critical pathological link

facilitating AS progression. Specific up-regulation patterns of

PARP14 and SEL1L3 in diseased tissues provide potential research

directions for the development of targeted prevention strategies,

precision diagnostic biomarkers, disease stratification systems and

novel immunotherapies for AS.
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