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Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized the

treatment landscape for advanced cancers, yet their efficacy remains

heterogeneous among patients. Tumor mutation burden (TMB) has been

extensively explored as a potential biomarker for predicting ICI response.

However, its application is limited by several factors, including inconsistent

predictive power across different tumor types and the lack of a clear

relationship with overall survival (OS). This study aimed to explore the complex

interplay between TMB and the tumor microenvironment (TME) and to identify

novel predictive biomarkers that can enhance the precision of ICI therapy across

multiple cancer types.

Methods: We systematically collected and analyzed genomic and clinical data

from patients receiving anti-PD-1/PD-L1 immunotherapy across multiple

cohorts. Our dataset included information from The Cancer Genome Atlas

(TCGA) pan-cancer database and various ICI clinical trials. We first screened

immunosuppression-related genes (ISRGs) that might interfere with TMB's

predictive role by analyzing the survival data and gene expression profiles of

patients. Using LASSO regression and multivariable Cox proportional hazards

analysis, we constructed a risk model based on these ISRGs. The model's

predictive ability was rigorously validated in multiple independent cohorts.

Additionally, we employed algorithms such as CIBERSORT and ESTIMATE to

assess the correlation between the risk score and TME components. To further
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explore the therapeutic implications of our findings, we focused on RPLP0, a

ribosomal protein that emerged as a robust biomarker in our model. We

investigated its expression in tumor tissues and evaluated the impact of its

knockdown on immunotherapeutic efficacy using in vitro and in

vivo experiments.

Results: Our comprehensive analysis revealed that the predictive power of TMB

varies significantly across different cancer types and is highly dependent on its

interaction with the TME. In tumors with a favorable immune microenvironment,

characterized by high CD8+ T cell infiltration andM1macrophage presence, TMB

maintained its predictive abil ity. However, in immunosuppressive

microenvironments, TMB alone failed to accurately predict patient outcomes.

We identified 304 ISRGs and developed a 10-gene risk signature that

demonstrated reliable prognostic predictive ability in both ICI cohorts and

TCGA pan-cancer. The risk score derived from this model was significantly

associated with stromal components and an immunosuppressive TME,

characterized by elevated levels of M0 macrophages and activated mast cells.

Notably, RPLP0 was identified as themost robust predictive marker during model

building. We demonstrated its abnormal overexpression in tumor tissues and

further showed that intratumoral RPLP0 knockdown in a subcutaneous bladder

cancer model could enhance the efficacy of immunotherapy. The combination

of RPLP0 knockdown and anti-PD-1 treatment resulted in significantly

suppressed tumor growth and prolonged survival in mice, accompanied by

elevated levels of IFN-g and TNF-a in serum samples, indicating enhanced

anti-tumor immunity.

Conclusion: This study establishes a reliable riskmodel that complements TMB in

guiding treatment decisions for ICI therapy. By incorporating the interaction

between TMB and the TME, our model provides a more accurate prediction of

patient prognosis and treatment response across multiple cancer types. The risk

score's association with immunosuppressive TME components underscores the

importance of considering the tumor's microenvironment in treatment planning.

Furthermore, our findings highlight RPLP0 as a promising therapeutic target for

combination immunotherapy. The robust predictive ability of our model across

various cohorts and its potential to improve therapeutic outcomes offer new

insights and directions for enhancing the efficacy of ICI therapy. Future research

should focus on further validating this model in larger and more diverse cohorts,

refining the gene set selection process, and exploring the specific mechanisms

through which the identified biomarkers influence the TME and

treatment response.
KEYWORDS

immune checkpoint inhibitor, tumor mutation burden, tumor microenvironment, pan-
cancer, biomarker
1 Introduction

Immune checkpoint inhibitor (ICI) therapy has become

indispensable in the treatment of advanced tumors. As one of the

most widely used ICI treatment options, PD1/PDL1 blockade
02
significantly improves survival for a variety of tumors (1–4).

However, only approximately 20% of patients benefit from ICI

therapy for solid tumors (5). The low response rate of ICI treatment

not only leads to over-treatment but also increases the incidence of

adverse events (6). As the most widely studied biomarker, the
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correlation between tumor mutation burden (TMB) and ICI

therapy response rate has been confirmed (7). In addition, TMB

is associated with improved survival in ICI therapy across multiple

cancer types (8). However, in practical applications, TMB still has

several limitations. The prognostic value of TMB for overall survival

(OS) has not been shown (9). The predictive ability of TMB for ICI

treatment also differs for different tumor types (10). Here, we

provide the perspective that the predictive ability of TMB in

advanced tumor immunotherapy depends on its interaction with

the tumor microenvironment (TME). The establishment of risk

models to reflect the TME status based on data from the gene

transcriptome is effective (11). We aimed to identify predictive

biomarkers that can reflect the interaction between TMB and the

TME to provide new ideas and targets for the precise individual

treatment of ICI therapy.
2 Materials and methods

The flowchart of our methodology is exhibited in Figure 1.
2.1 Collection of genomic and clinical data

RNA-seq data before immunotherapy and matched clinical data

of patients who received anti-PD1/PDL1 immunotherapy in several
Frontiers in Immunology 03
cohorts with different cancer types were collected. The expression

profiles and corresponding clinical data of 348 patients with

metastatic urothelial cancer (mUC) treated with atezolizumab

(anti-PD-L1 antibody) were retrieved from the R package

IMvigor210CoreBiologies (http://research-pub.gene.com/

IMvigor210CoreBiologies) (4). Transcriptomic data of 208

patients with mUC, 162 patients with renal cell carcinoma (RCC),

81 patients with non-small cell lung cancer (NSCLC), and 206

patients with different cancer treated with the anti-PDL1 agent from

four cohorts (IMvigor210, IMmotion150, POPLAR, and

PCD4989g, respectively) were obtained from the European

Genome-Phenome Archive [EGA, https://ega-archive.org/; study

ID: EGAS00001004343 (12)]. Data from 407 patients treated with

atezolizumab + bevacizumab from a clinical trial in RCC

(IMmotion151) were collected from the EGA [study ID:

EGAS00001004353 (13)]. Data from clinical trials of nivolumab

(anti-PD1 antibody) were obtained from a report by Braun et al.

(10) and Gene Express ion Omnibus [GEO, ht tps : / /

www.ncbi.nlm.nih.gov/geo/, accession number: GSE91061 (14)].

These included 170 patients with advanced RCC from the

CheckMate cohort and 51 patients with advanced melanoma

from CA209-038, respectively. Patient clinical characteristics are

given in Supplementary Table S1. RNA-seq data in transcripts per

million (TPM) and the corresponding clinical data of TCGA Pan-

Cancer were obtained from the UCSC Xena browser TCGA-hub

(https://tcga.xenahubs.net). Patients with incomplete clinical
FIGURE 1

An overview of our methodology.
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information, gene expression data, and <30 days of OS or

progression-free survival (PFS) were excluded.
2.2 Screening of immunosuppression-
related genes

TMB represents the total number of somatic mutations per

million bases in the exon coding region of a gene, including coding

errors, base substitutions, base insertions, and base deletions (8).

Theoretically, the higher the TMB of the tumor, the more

neoantigens it produces, and the more likely it is to be recognized

and kil led by antitumor immune cells , meaning that

immunotherapy might be more effective. However, in different

solid tumors, the predictive ability of TMB for ICI treatment is

different. Therefore, we hypothesized that the high expression of

some genes, which interfered with the predictive role of TMB,

weakened antitumor immunity. In our study, we conducted

rigorous gene screening to identify 304 ISRGs from over 1,100

candidate genes. To address multiple hypothesis correction, we used

the log-rank test and FDR method (FDR < 0.05) to balance rigorous

correction and sensitivity. Our intersection approach retained genes

significant in both IMvigor210 and CheckMate cohorts, ensuring

robustness. This method also added validation by requiring

consistent patterns across cohorts, reducing multiple testing issues

and enhancing confidence in the biological relevance of the selected

genes. After removing patients without TMB information in the

IMvigor210 cohort, the median expression values of protein-coding

genes were used to classify patients into high- and low-gene

expression groups, respectively. Genes with P values of log-rank

test <0.05 in the survival analysis were retained. Next, the patients

were separated into high- and low-TMB groups according to the

median. We further screened out a group of genes, whose high

expression TMB group could not predict survival (log-rank

P >0.05), while when the genes were in low expression, the

patients in the high TMB group had better survival (log-rank P

<0.05). After intersecting these genes with those whose P values

were <0.05 in the survival analysis of OS in the CheckMate cohort,

ISRGs (n = 304) were obtained.
2.3 Construction and assessment of the
prognostic model

A total of 348 patients from the IMvigor210 cohort were

randomly divided into training and internal validation (3:1 ratio)

sets. Patients from the other cohorts were assigned to different

external validation sets. Using the “glmnet” R package, we applied

LASSO regression to pick and shrink the significant variables in the

regression panel (15, 16). The OS data of the training set were the

dependent variables in the regression, with an expression matrix of

304 ISRGs as the independent variables. The optimal lambda value

was calculated using 1000-times cross-validation. Multivariable Cox

regression analysis was conducted to establish a 10-gene-based risk

prognostic model. The risk score for each patient was calculated
Frontiers in Immunology 04
using the formula below, where “exp” represents the expression

level of genes and “coef” is the corresponding coefficient.

Risk Score =o
n

i=1
(coefi ∗ expi )

The patients were categorized into the high- and low-risk

subgroups according to the median cut-off value of the training

set or the optimal cut-off value calculated by the “survminer” R

package. To assess the predictive ability of the model, the “pROC” R

package was used to establish the receiver operating characteristic

(ROC) curve and calculate the area under the curve (AUC).
2.4 Functional enrichment analysis and
evaluation of TME components

We performed differential expression analysis between high-

and low-risk subgroups using the “limma” R package. Genes

ordered by log2(FoldChange) were inputted for Gene Set

Enrichment Analysis (GSEA), and the results were visualized with

the R package “clusterProfiler” (17, 18). Adjust P value <0.05 was

considered statistically significant. The annotated gene set file of the

hallmark gene sets (h.all.v7.5.1.symbols.gmt) was obtained from the

Molecular Signatures Database (http://www.gsea-msigdb.org/). The

CIBERSORT (19), ESTIMATE (20), and PROGENy (21)

algorithms were used to measure the TME components and

pathway activity. The “IOBR” R package was applied to calculate

gene signature scores of hallmark and TME with single-sample gene

set enrichment analysis (ssGSEA) algorithms (22). Running the

“Limma” R package, significantly differential gene sets were

identified by comparing the gene signature scores between the

high- and low-risk groups (adjust P value < 0.05). The association

between the risk score and ssGSEA scores was explored using

Spearman correlation analysis.
2.5 RT-qPCR, western blot, and small
interfering RNA (siRNA) interference

According to the manufacturer’s directions, we extracted the

total RNA from tissues and cell lines using TRIzol Reagent. Then we

conducted cDNA synthetization and quantitative real-time PCR

(qRT-PCR) with a PrimeScript RT reagent kit and SYBR Green

PCR reagent (EZBioscience, China). The primer sequences are

given in Supplementary Table S2. With ACTB as an internal

control, the mRNA relative expression levels were calculated

using 2-DDCT. The primary antibodies used in the western blot

were as below: anti-alpha tubulin rabbit polyclonal antibody

(11224-1-AP, Proteintech), anti-RPLP0 rabbit polyclonal antibody

(11290-2-AP, Proteintech). The concentration was determined

based on the manufacturer’s recommendation and practice. The

western blot assays were conducted following the manufacturer’s

protocol. We used genOFF™ in vivo siRNAs (RiboBio, China),

specially designed to target Rplp0. These siRNAs undergo unique

chemical modifications that bolster their serum stability without
frontiersin.org
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compromising efficiency. This enables direct intratumoral delivery,

a straightforward and effective method requiring minimal dosage.

The quick absorption of the siRNAs reduces experimental animal

toxicity. In this experiment, cholesterol-modified in vivo siRNA

targeting Rplp0 for animal use was utilized. The siRNA sequences

are provided in Supplementary Table S3.
2.6 In vivo mouse experiments

The mouse experiments were approved by the Institutional

Ethics Committee for Clinical Research and Animal Trials Ethical

of the First Affiliated Hospital of Sun Yat-sen University. 6~8 weeks

old C57BL/6 mice were purchased and housed in specific-pathogen-

free conditions. Mice were subcutaneously injected with MB49 cells

(1 × 106 cells/100 mL) and randomly divided into four groups

(siCtrl, siRplp0, siCtrl+aPD-1 and siRplp0+aPD-1). One week after
subcutaneous injection, siRplp0 or negative siCtrl were injected into

tumors (5 nmol every 4 days, for a total of five times). For

immunotherapy, mice were intraperitoneally injected with 100mg
of anti-PD-1 antibody (BioXcell, USA) along with siRNA or siCtrl

injection. We referenced published studies on gene knockdown

using a similar intratumoral siRNA delivery method and our team’s

previous work (23–25). Cholesterol-modified in vivo siRNA

targeting Rplp0 for animal use was injected into tumor-bearing

mice to assess tumor size and growth. The volume of tumors was

measured and calculated (volume = (length*width2)/2) every week.

Such measurements were performed 4 times in total and stopped on

day 28. Blood samples were collected on day 30 after subcutaneous

injection. We obtained serum using serum separator tubes. The

levels of IFN-g and TNF-a in serum samples were determined

through a mouse IFN-g and TNF-a ELISA kit (Proteintch). We

closely monitored and recorded the mice’s conditions daily. When

mice reached humane endpoints—defined as tumor diameter

exceeding 15mm, ≥15% weight loss, or distress signs like cyanosis

and respiratory depression—we immediately euthanized them,

dissected fresh tumors, snap-froze them in liquid nitrogen to

preserve mRNA integrity, and stored them at -80°C. We also

recorded survival times. Later, we analyzed tumor volumes and

weights, and constructed survival curves.
2.7 Statistical analysis

Comparisons between high- and low-risk groups were conducted

using the Wilcoxon rank-sum test. The distribution difference

between the risk groups was tested using a two-sided Pearson’s chi-

squared test. The correlation between two continuous variables was

measured using Spearman correlation analysis. Kaplan–Meier (K–M)

survival analysis with the log-rank test was used to compare survival

between different subgroups. Univariate Cox regression (UniCox)

analyses were conducted to assess the association between TMB, risk

score, and survival in TCGA Pan-Cancer, which were visualized by

the “forestplot” R package. All statistical analyses were performed
Frontiers in Immunology 05
using R software (version 4.1.0), and all statistical tests were two-

tailed. Statistical significance was set at P < 0.05.

More details of materials and methods were given in

Supplementary Methods.
3 Results

3.1 Influence of interactions between
neoantigens and immune
microenvironment on prognostic effect of
TMB

TMB, one of the most extensively studied immunotherapy

biomarkers, has been used to predict the efficacy of certain tumor

immunotherapies. To further define its role in cancer, we analyzed 32

tumor datasets from TCGA (abbreviations in Supplementary Table

S4). The effectiveness of TMB for survival prognosis was not

consistent across different tumor types (Figure 2A). Given that the

ability of TMB to generate neoantigens underlies its use as an

immunotherapeutic biomarker, we analyzed the correlation

between neoantigens and immune-infiltrating cells in different

tumors. In tumors, such as bladder cancer and melanoma, TMB

demonstrated good predictive power when neoantigen production

was positively correlated with the degree of CD8+ cell infiltration

(Figures 2B, C). Therefore, we propose that different immune

microenvironments influence the predictive ability of TMB for

prognosis, even within the same tumor. We divided bladder cancer,

melanoma, and other tumors into immune-high and immune-low

groups by unsupervised clustering and observed the effect of TMB in

different subgroups (Supplementary Figures S1A–D). TMB

demonstrated its most reliable predictive power in the hyper-

immune group, which is characterized by high CD8+ T cell and

M1 macrophage infiltration. However, this observation may not

universally apply to all cancer types, such as OV and UCEC, where

immune infiltration patterns differ. Further analysis is needed to

clarify the predictive role of TMB across diverse tumor

immunophenotypes (Figures 2D–G). Similarly, the differential

predictive power of TMB was also observed in distinct immune

phenotypes in the IMvigor210 cohort (Figures 3A–C). In conclusion,

the predictive ability of TMB does not seem to represent its own

function but depends on the interaction between the neoantigens it

produces and the immune microenvironment. Therefore, the

prediction characteristics of TMB can be different depending on

changes in the microenvironment.
3.2 Construction of a prognostic model
with IMvigor210 cohort

Next, we identified ISRGs in the ICI cohort. A total of 1142

genes were retained; when their expression was high, TMB could

not accurately predict survival in the IMvigor210 cohort

(Figures 3D, E). A total of 304 genes were maintained at the
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FIGURE 2

Impact of the interaction between neoantigens and the immune microenvironment on the prognostic effect of TMB. (A) Univariate Cox regression
OS analysis of TMB in TCGA pan-cancer. Red color represents significant results (P < 0.05). (B) Differences in hazard ratio and correlation across
multiple tumor types, in which TMB could predict prognosis. Grey color represents the P value of Spearman correlation was > 0.05. (C) Spearman
correlation analysis between neoantigens and CD8+ T cell effector score in BLCA and KIRC. (D–G) K-M survival analysis of TMB in the high- and
low-immune groups respectively in BLCA, SKCM, OV, and UCEC. Tumors were divided into high - and low - immune groups by unsupervised
clustering. Hierarchical clustering was applied based on immune cell abundance, reflecting the differential immune cell infiltration in the tumor
microenvironment. P values were calculated by log-rank test. OS, overall survival; TCGA, The Cancer Genome Atlas; TMB, tumor mutation burden.
The abbreviation list of tumor cohorts from TCGA is given in Supplementary Table S4.
Frontiers in Immunology frontiersin.org06
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intersection of prognostic genes in the CheckMate cohort

(Figure 3F, Supplementary Table S5). Through the LASSO

regression analysis, 16 candidate ISRGs (RPS24, RPLP0, PLTP,

SRXN1, SRPX, PRSS3, CFHR3, LZTS2, MATN3, BNC1, SNAI1,
Frontiers in Immunology 07
SERPINA5, IFNE, CCBE1, NKAIN4, and RAD51AP2) were

selected (Figures 3G, H). Subsequently, a multivariable Cox

regression analysis was applied to identify 10 optimal ISRGs

(RPLP0, SRXN1, SRPX, PRSS3, CFHR3, LZTS2, SNAI1, IFNE,
FIGURE 3

Screening of ISRGs and construction of the prognostic model in IMvigor210. (A-C) K-M survival analysis of TMB in three immunophenotypes in
IMvigor210. P values were calculated by log-rank test. (D, E) K-M survival analysis of TMB in high- or low-MYC expression groups in IMvigor210,
which was the example gene of the 1142 genes that remained. (F) Venn diagram showing the overlapping 304 genes. (G-I) LASSO regression profile
showing gene coefficient changes across the regularization path, where increased regularization reduces minor gene coefficients toward zero,
retaining only predictive genes. LASSO coefficient distribution map (G), prognostic biomarker selection characteristics (H), and forest plot based on
multivariable Cox proportional hazards regression (I). ISRGs, immunosuppression-related genes; K-M, Kaplan–Meier; TMB, tumor mutation burden.
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FIGURE 4

Evaluation of the predictive efficiency of the prognostic model in the training set, internal validation set, entire set, and external validation set.
(A-C) left panel, distribution of the risk score, survival status along with survival times of patients, and heatmaps of the expression levels of the ten
optimal ISRGs. The dotted line represents the median risk score of the training set and stratifies the patients into low- and high-risk groups; middle
panel, K–M survival curves of OS; right panel, ROC curves of the predictive model for OS. (D-I) OS or PFS curves stratified by the low- and high-risk
groups in different external validation sets across distinct tumor types. Data were analyzed by log-rank test. ISRGs, immunosuppression-related
genes; K–M, Kaplan–Meier; OS, overall survival; PFS, progression-free survival; ROC, receiver operating characteristic curve.
Frontiers in Immunology frontiersin.org08
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FIGURE 5

Evaluation of the predictive efficiency for ORR status of the model and subgroup analysis combined with TMB. (A–D) Top panel, bar charts representing
the proportion of responders and non-responders by risk groups. Responders were defined as patients with complete (CR) or partial (PR) responses.
Non-responders were defined as patients with stable (SD) or progressive (PD) disease. The distribution difference between the two groups was analyzed
by two-sided Pearson’s chi-squared test; bottom panel, box plots representing the risk score by response group. Data were analyzed by Wilcoxon rank-
sum test. (E–G) K-M survival analysis of the risk score in three immunophenotypes in IMvigor210. (H–K) K-M survival analysis of the risk score in TMB
combinations in four indicated cohorts. ORR, objective response rate; K–M, Kaplan–Meier. TMB, tumor mutation burden.
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NKAIN4, and RAD51AP2) and construct a 10-gene prognostic

model. The HR with 95% confidence intervals and coefficients of 10

genes are shown in the forest plots (Figure 3I).
3.3 Evaluation of the predictive efficiency
of the prognostic model in the training and
validation set

We categorized patients into the high- or low-risk groups

according to the median risk score of the training set (0.993) or

the optimal cut-off value calculated by the “survminer” R package.

The survival status of patients and the relative expression of the 10

genes in different risk groups in each set are shown in Figures 4A–C.

Patients in the high-risk group had poorer OS than those in the low-

risk group in the training set (HR = 1.912, P < 0.001), internal

validation set (HR = 2.769, P = 0.001), and entire set (HR = 2.007,

P < 0.001) (Figures 4A–C). Furthermore, patients with a higher risk

score had shorter PFS (Figure 4D). ROC curves were applied to

assess the predictive accuracy of the prognostic model, and the AUC

of the training, internal validation, and entire set were 0.716, 0.683,

and 0.703, respectively (Figures 4A–C). To further validate the

predictive efficiency of the model in pan-cancer, we further

analyzed the survival and ROC curves in the external validation

set (Figures 4E–I, Supplementary Figure S2, Supplementary Table

S6). In the atezolizumab arm of four cohorts among different tumor

types, the low-risk group exhibited an increased proportion of

responders (Figures 5A–D). Significant differences in risk score

levels were observed between responders and non-responders,

indicating the predictive value of this model for response to

atezolizumab (Figures 5A–D). Based on CD8+T cell infiltration,

urothelial cancer was divided into three immune subtypes:

inflamed, excluded, and desert. Patients with higher risk scores

had poorer OS despite the immune subtype (Figures 5E–G),

suggesting a superior predictive value of our model compared

with TMB. To verify that the predictive ability of TMB depends

on the immune suppression factors in the TME, we divided patients

into four subgroups according to TMB and risk score across

multiple cancer types. The survival analysis showed that low-

score high-TMB patients had the best prognosis, while high-score

high-TMB patients had the poorest survival, which was consistent

with our hypothesis (Figures 5H–K). In brief, our model showed an

excellent predictive capacity for survival and response in several

immunotherapy cohorts across multiple cancer types.
3.4 Analysis of correlation between risk
score and TME components

The CIBERSORT and ESTIMATE algorithms were applied to

access the TME components. In the IMvigor210 cohort, the

abundances of Tregs, M0 macrophages, and activated mast cells

in the high-risk group were significantly higher than those in the

low-risk group, while the abundances of gamma delta T cells, CD4

naïve cells, T cells follicular helper cells, and M1 macrophages had
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the opposite trend (Supplementary Figure S3A). Furthermore,

Spearman correlation analysis revealed that the risk score was

negatively correlated with the abundance of antitumor immune

cells, such as CD8 T cells, gamma delta T cells, CD4 memory-

activated T cells, follicular helper T cells, and M1 macrophages. The

risk score was positively correlated with the abundance of M0

macrophages and activated mast cells (Supplementary Figures

S3D–J). The IMmotion150 and POPLAR data sets showed a

trend of immune infiltration that was relatively consistent with

the IMvigor210 cohort (Supplementary Figures S3B, C, K–M). The

results of ESTIMATE showed that the stromal score was

conspicuously higher in the high-risk group in the IMvigor210

(P < 0.001, Supplementary Figure S3N) and IMmotion150 cohorts

(P < 0.01, Supplementary Figure S3O), while the immune score was

higher in the low-risk group in the POPLAR cohort (P < 0.01,

Supplementary Figure S3P). Taken together, the high-risk group

showed a more suppressive TME status than the low-risk group,

across all three cohorts.
3.5 Functional enrichment analysis,
ssGSEA, and PROGENy pathway activity
assessment

To investigate the underlying mechanism relevant to the ISRG

risk model contributing to the immunosuppressive status in the

TME, we conducted functional enrichment analysis. The results of

GSEA analysis based on hallmark indicated that epithelial–

mesenchymal transition (EMT), hypoxia, glycolysis, E2F targets,

MYC targets, and the G2M checkpoint pathway were enriched in

high-risk patients across multiple cancer types, whereas immune

responses, such as interferon response, were negatively correlated

with high-scoring risks in RCC, NSCLC, and SKCM

(Supplementary Figures S4A–D). Intriguingly, inflammatory

responses were activated in high-risk patients with mUC. We

further assessed the hallmark and TME gene set scores using the

ssGSEA algorithms. The heatmap of the IMvigor210 cohort

suggested that a high-risk score was closely associated with EMT,

hypoxia, myeloid-derived suppressor cells (MDSC), and gene

signatures featuring stromal components, including cancer

associated fibroblast (CAF) and TGF-b family members

(Supplementary Figure S5A), which was similar with the above

results. TME signature scores related to the activation of antitumor

immune cells, such as CD8 T and cytotoxic cells, were elevated in

the low-risk group, while hypoxia and signatures related to immune

suppression, such as MDSC and Th2 cells, were positively

correlated with high-scoring risks in the IMmotion150 and

POPLAR cohorts (Supplementary Figure S5C, E). The difference

in hallmark signature scores between the high- and low-risk groups

was roughly consistent with the GSEA results (Supplementary

Figures S5B, D, F). Activity scores of signaling pathways were

calculated using PROGENy algorithms. The high-risk group in

the IMvigor210 cohort had a significantly higher score than the low-

risk group for most malignant signaling pathways, including TGF-
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b, EFGR, hypoxia, Wnt, and TNFa (Supplementary Figure S6A).

Similar results and tendencies were observed in the IMmotion150

and POPLAR cohorts (Supplementary Figures S6B, C). Overall,

these comparative analyses revealed that hyperactivity of stromal
Frontiers in Immunology 11
components, EMT, and hypoxia in high-risk subsets might

contribute to the poor survival of immunotherapy patients and

lay the foundation for further dissecting the potential

molecular mechanisms.
FIGURE 6

Prognostic value of the predictive model and correlation analysis between the risk score and ssGSEA score in TCGA Pan-Cancer. (A) K-M OS analysis
of the risk score in TCGA pan-cancer in the indicated tumor types. P values were calculated by log-rank test. (B) Spearman correlation analysis
between the risk score and ssGSEA score of hallmark. ssGSEA, single-sample gene set enrichment analysis; K-M, Kaplan–Meier; OS, overall survival.
The abbreviation list of 32 tumor cohorts from TCGA is given in Supplementary Table S4.
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3.6 Prognostic value and exploration of the
mechanism of the model in TCGA pan-
cancer

To verify the predictive ability of our model for prognosis in

TCGA pan-cancer, survival analysis, and UniCox were performed

for the 32 cancer types. The Kaplan-Meier OS analysis showed that

an elevated risk score was associated with inferior prognosis across

multiple cancers, such as ACC, BLCA, COAD, HNSC, KICH,
Frontiers in Immunology 12
KIRC, KIRP, LIHC, LUAD, PAAD, READ, SARC, STAD, THCA,

UCEC, and UVM (Figure 6A). UniCox results indicated that a

higher risk score predicted worse OS and disease-specific survival

(DSS) status of patients for most cancer types (Supplementary

Figure S7). Collectively, these results suggest that the prognostic

capacity of our model was satisfactory and revealed its potential as a

biomarker for multiple cancers. Given the significant association

between the risk subgroups and stromal and immunosuppressive

components in the TME, Spearman correlation analysis between
FIGURE 7

Therapeutic potential of RPLP0 knockdown and anti-PD-1 combination therapy in BLCA subcutaneous tumor model. (A) Bar charts representing the
frequency of remaining optimal genes after LASSO regression with 10000 cycles training in IMvigor210. (B) mRNA expression level of RPLP0 in BLCA
and KIRC patients by qRT-PCR (n = 12). P value was determined by paired t-test. (C, D) Protein expression of RPLP0 detected by Western blot in paired
normal tissues and BLCA (C), KIRC tissues (D). (E–H) Tumor growth curves (E), survival curves (F), tumor images (G), and tumor weight (H) of mice under
the indicated treatments (n = 5 per group). (I, J) Bar charts representing the levels of IFN-g (I) and TNF-a (J) detected by ELISA in serum samples from
mice in different groups. One-way ANOVA followed by Tukey’s multiple comparisons tests were used to compare data in four groups. BLCA, bladder
urothelial carcinoma; ELISA, enzyme-linked immunosorbent assay; KIRC, kidney renal clear cell carcinoma. P < 0.05, ** P < 0.01, ***P < 0.001.
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the risk score and ssGSEA score of hallmark and TME was utilized

to further explore whether this association can be extended to pan-

cancer. The results of hallmark showed that the risk score was

strongly positively correlated with TGF beta, Wnt/b-catenin,
NOTCH, and HEDGEHOG signaling (Figure 6B), which are pro-

tumor signaling pathways, across pan-cancer. Consistent with the

above results, the risk score displayed a strong positive correlation

with EMT, glycolysis, angiogenesis, and hypoxia signatures

(Figure 6B, Supplementary Figure S8A), whereas it was anti-

correlated with oxidative phosphorylation in various cancers. For

the TME signature, the risk score was positively correlated with

MDSC and CAF and negatively correlated with T cells and

cytotoxic cells (Supplementary Figure S8B). Collectively, these

results shed light on the possible cellular biological mechanisms

of ISRGs across pan-cancer.
3.7 Therapeutic potential of RPLP0
knockdown and anti-PD-1 combination
therapy in BLCA

To identify robust biomarker genes in the model, we conducted

high-frequency LASSO screening on the IMvigor210 dataset and

recorded the number of times each gene was selected. We observed

that RPLP0 ranked extremely high in the number of times it was

selected, even in the case of mixed tumor factors (Figure 7A), which

suggests that it is a robust biomarker. Since RPLP0 showed

prominent expression in these cancers in pan-cancer analysis, and

was frequently selected in IMvigor210 cohort screening. Data from

specific databases like IMvigor210 facilitated research. We aimed to

explore cancers with poor immune-therapy responses, and BLCA

and KIRC showed lower response rates. Thus, our subsequent

research will predominantly concentrate on BLCA and KIRC.

Then we compared the expression level of RPLP0 in adjacent

normal tissue and tumors from clinical samples of KIRC and

BLCA. The qRT-PCR and western blot results indicated that

RPLP0 was significantly overexpressed in tumors (Figures 7B–D).

Concordantly, the RPLP0 protein expression profile in pan-cancer

and immunohistochemistry images from the Human Protein Atlas

database also demonstrated the elevated protein expression of

RPLP0 in tumor tissues (Supplementary Figures S9A, B). To

explore the synerg i s t i c e ffec t of target ing Rplp0 in

immunotherapy, we established the subcutaneous BLCA model

(MB49 cells in C57BL/6 mice) and administered different

treatments in four groups. Treatment of cholesterol-modified in

vivo siRNAs specifically targeting Rplp0 in tumors significantly

reduced Rplp0 expression in tumors (Supplementary Figure S10).

The result indicated that the combination of Rplp0 knockdown and

anti-PD-1 treatment prominently suppressed tumor growth and

prolonged survival of mice compared to siRplp0 or immunotherapy

monotherapy (Figures 7E–H). Through enzyme-linked

immunosorbent assay (ELISA), we found Rplp0 knockdown and

immunotherapy combination remarkably augmented the IFN-g
and TNF-a levels in serum (Figures 7I, J), which implies
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combinational treatment potentiated the anti-tumor immunity in

mice. These results confirmed the abnormal expression of RPLP0 in

tumors and its potential role as a therapeutic target

in immunotherapy.
4 Discussion

ICI therapy has broad prospects in the treatment of many

tumors. However, neither clinical pathology nor genomics research

has found any biological prediction index consistent with ICI

treatment response. Among the existing biomarkers, TMB is

considered a unified variable for predicting the therapeutic effect

of ICIs in pan-cancer. However, TMB has many limitations in

clinical applications. First, the predictive ability of TMB is mainly

reflected in the ICI treatment response and disease remission rates,

and its predictive or prognostic value for OS has not been confirmed

(9). Second, there are huge differences in TMB data between

different tumor types and individuals (26). For example, although

there is only a moderate amount of TMB in renal cell carcinoma,

the effect of ICI treatment on renal cell carcinoma is not poor.

Additionally, TMB in renal cell carcinoma is not related to the

therapeutic effects of ICIs (10, 26). There is no consensus on the

determination of the critical value of TMB risk stratification in ICI

treatment; high-TMB failed to predict ICI response across all cancer

types (27).

The accumulation of somatic mutations in tissues is an

important driving factor in tumor transformation. TMB is

defined as the accumulation of nonsynonymous somatic

mutations in the coding region (7). Interestingly, TMB was higher

in tumors with a higher pathological grade. This suggests that TMB

is closely related to the degree of malignancy of the tumor, contrary

to the expectation. Somatic mutations can be expressed at the RNA

or protein level by transcription or expression. The greater the

number of non-synonymous mutations in tumors, the higher the

possibility of producing new antigens and the more likely it is to

activate T cells and cause an immune response. However, not all

newly produced polypeptides or proteins have immunogenicity

(28). TMB cannot completely represent new immunogenic

antigens. Notably, many factors, such as the infiltration level and

activity of T cells in tumors, tumor metabolism, and immune

checkpoint expression, will affect the recognition and response of

the TME to new antigens (29). High TMB exhibited heterogeneous

immune infiltration: in certain cancers, it associated with

pronounced CD8+ T cell and M1 macrophage infiltration,

indicative of an active yet suppressed immune response;

conversely, low infiltration in others implied immune evasion or

a poorly immunogenic milieu. These results highlight the intricate

TMB-immune infiltration relationship. Given the variability of

immune infiltration across cancer types, the role of TMB in

immune prognosis should be generalized cautiously. Overall, this

analysis enhances the understanding of TMB and immune

infiltration’s interplay in cancer prognosis as presented in

Figure 2A. In summary, judging from the complexity of the
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immune response and the characteristics of TMB itself, TMB has

limitations as a predictive biomarker, especially when used alone.

Therefore, we propose that the predictive ability of TMB is based on

the interaction between new antigens and the immune

microenvironment. Even in different microenvironments of the

same tumor, the predictive ability of TMB will have completely

different results. For example, in mUC, high-TMB tumors

responded well to ICI treatment. After subdividing mUC into

sub-categories according to the immune microenvironment, TMB

retained its predictive ability in the high immune group, but TMB in

the low immune group could not separate the clinical outcomes of

patients, whether they received ICI treatment or not.

It is feasible to establish risk characteristics by transcriptome

analysis to monitor the immune status of tumors and guide

individualized immunotherapy (11, 30). Therefore, based on this

interesting characteristic of TMB, we screened some target genes by

analyzing the transcriptome data of the ICI treatment cohort of

mUC. For example, MYC is activated by genetic, epigenetic, or

post-translational mechanisms in most cancers, and it can inhibit

the immune response against these cancers in various ways (31, 32).

We then used the LASSO-Cox method to establish the related risk

model and verified it using the ICI treatment dataset of multiple

cancers. In the independent ICI treatment datasets of multiple

tumors, our model showed good prognosis prediction ability. We

observed a similar situation in TCGA Pan-cancer. This suggests

that the gene set screened using this method may have a relatively

consistent role in pan-cancer. Furthermore, functional enrichment

analysis, ssGSEA, and correlation analysis between the risk score

and ssGSEA score corroborated that tumors with higher risk scores

had higher activation of TGF-b signaling, hypoxia, EMT,

angiogenesis, and stromal components, such as ECM, CAF, and

MDSC, across pan-cancer. The TGF-b signaling pathway, which

attenuates the function of adaptive and innate immune cells and is

linked with tumor immune evasion (33), can shape the

heterogeneity of CAF (34) and induce the polarization of MDSC

(35), resulting in the suppressive status of the TME. Due to the

important role of the TGF-b pathway in the TME, various small-

molecule compounds targeting TGF-b signaling are currently in

preclinical experiments (36). Considering the obvious differences in

TGF-b signaling between high- and low-risk groups, combined

immunotherapy, anti-TGF-b therapy, and anti-angiogenesis

therapy for patients in high-risk groups may be a future research

direction with great potential.

In the process of variable selection and model building, we

observed an interesting phenomenon. When a model was

determined to be suitable for pan-cancer, there was always a

ribosomal protein RPLP0, which ranked high in the number of

times being selected in high-frequency LASSO screening in

IMvigor210 cohorts. Besides forming ribosomes and participating

in protein biosynthesis, ribosomal proteins are closely related to

cancer initiation and progression (37–39). It has been reported that

RPLP0, a member of the ribosomal P complex family, was

upregulated in gynecologic tumors and involved in the process of

tumor development (40–42). Herein, we confirmed the

overexpression of RPLP0 in BLCA and KIRC tissues with clinical
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samples. Through in vivo mouse experiments, siRNA interference,

and ELISA, we demonstrated that RPLP0 knockdown in tumors

and anti-PD-1 combinational treatment remarkably inhibited

tumor growth and improved anti-tumor immunity.

Although our research shows good predictive value in multiple

tumors, it is mainly focused on a retrospective study of existing

data, its applicability is limited, and it still needs to be further

verified in larger cohorts and in other populations. Different tumors

can share an optimal cut-off value, but ideally, the optimal cut-off

value should be chosen based on the conditions of each tumor. The

risk model, initially developed using a bladder cancer cohort

(IMvigor210), demonstrated robust predictive performance across

diverse tumor types and treatment settings (including monotherapy

and combination therapy), suggesting its potential cross-tumor and

cross-treatment applicability. However, employing distinct optimal

risk cut-offs (e.g., the median risk score from the training set or

dynamic thresholds derived via the “survminer” R package) in

validation cohorts may introduce optimistic bias in model

evaluation, as these adjustments aim to align with cohort-specific

characteristics to enhance real-world validity. Future studies should

adopt the following strategies to harmonize evaluation consistency:

1. Fixed cut-off: Apply the median risk score from the training

cohort as a universal threshold to ensure standardized criteria,

though its generalizability requires validation. 2. Dynamic cut-off:

Optimize thresholds based on cohort-specific characteristics,

necessitating statistical adjustments to mitigate overfitting risks. 3.

Multi-method integration: Combine multiple thresholding

approaches with sensitivity analyses to strengthen robustness.

Strategy selection should weigh study objectives (e.g., clinical

rigor vs. exploratory research) and cohort heterogeneity, with

transparent reporting of methodological limitations. In the future,

we can attempt to screen the gene set in a more elaborate manner

and build a better model.

Although we selected RPLP0 as a biomarker candidate, its roles

in TME and the specific mechanism should be further investigated

in vitro and in vivo. We found that RPLP0 is highly expressed in

tumor tissues and RPLP0 may regulate immune cell infiltration and

activity in the TME. For instance, RPLP0 might affect the

recruitment or function of immunosuppressive cells like MDSCs

or Tregs, which are known to suppress anti-tumor immune

responses. Moreover, RPLP0’s role in immune regulation may

stem from its function in ribosomal biogenesis and protein

synthesis. As a ribosomal protein, RPLP0 participates in mRNA

translation. Its dysregulation may lead to the production of specific

proteins that alter the TME. These proteins could include cytokines

or chemokines affecting immune cell migration, as well as factors

promoting angiogenesis or extracellular matrix remodeling, all of

which may influence immune cell entry into tumors. However, the

exact pathways and mechanisms underlying these effects of RPLP0

remain to be clarified. To address these knowledge gaps, we propose

the following research directions: 1. In vitro mechanistic studies:

Perform co-culture experiments of tumor cells with immune cells to

determine the impact of RPLP0 on immune cell function. Also,

conduct transcriptomic and proteomic analyses of RPLP0-knocked-

down tumor cells to identify downstream effector molecules and
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pathways. 2. Analyzing RPLP0’s role in immune cell infiltration:

Apply advanced technologies like flow cytometry and single-cell

RNA sequencing to analyze the immune cell landscape in RPLP0-

knocked-down tumors. 3.Exploring RPLP0-tumor stroma

interactions: Study how RPLP0 interacts with stromal

components such as cancer-associated fibroblasts and the

extracellular matrix. Investigate the paracrine signaling pathways

that RPLP0 may be involved in. 4. Clinical correlation studies:

Analyze clinical datasets to correlate RPLP0 expression with

immune infiltration patterns and patient outcomes. Although

RPLP0 shows promise as a biomarker and therapeutic target, a

more in-depth investigation of its mechanisms in influencing the

TME and immune responses is essential. This will facilitate the

development of more effective immunotherapeutic strategies.

In summary, our classifier seems to be a useful and reliable

prediction tool, which can provide the prognostic value of ICI

treatment for pan-cancer and can supplement the existing

prediction systems to achieve more accurate individual treatment.

Moreover, RPLP0 may be a valuable biomarker and therapeutic

target for patients treated with ICIs.
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W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun. (2013) 4:2612. doi: 10.1038/ncomms3612

21. Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, et al.
Perturbation-response genes reveal signaling footprints in cancer gene expression.
Nat Commun. (2018) 9:20. doi: 10.1038/s41467-017-02391-6

22. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics immuno-
oncology biological research to decode tumor microenvironment and signatures. Front
Immunol. (2021) 12:687975. doi: 10.3389/fimmu.2021.687975

23. Han D, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to
suppress hepatocellular carcinoma progression. Hepatology. (2017) 66:1151–64.
doi: 10.1002/hep.29270

24. Sang LJ, Ju HQ, Liu GP, Tian T, Ma GL, Lu YX, et al. LncRNA camK-A regulates
ca2+-signaling-mediated tumor microenvironment remodeling. Mol Cell. (2018)
72:71–83.e7. doi: 10.1016/j.molcel.2018.08.014

25. Shu G, Chen M, Liao W, Fu L, Lin M, Gui C, et al. PABPC1L induces IDO1 to
promote tryptophan metabolism and immune suppression in renal cell carcinoma.
Cancer Res. (2024) 84:1659–79. doi: 10.1158/0008-5472.CAN-23-2521

26. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A,
et al. Mutational heterogeneity in cancer and the search for new cancer-associated
genes. Nature. (2013) 499:214–8. doi: 10.1038/nature12213
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Glossary

AUC Area under the ROC curve
Frontiers in Immunol
CAF Cancer associated fibroblast
DSS Disease-specific survival
ECM extracellular matrix
EMT Epithelial–mesenchymal transition
ELISA enzyme-linked immunosorbent assay
GSEA Gene Set Enrichment Analysis
ICI Immune checkpoint inhibitor
ISRGs Immunosuppression-related genes
K–M Kaplan–Meier
MDSC Myeloid-derived suppressor cells
mUC Metastatic urothelial cancer
NSCLC Non-small cell lung cancer
ORR Objective response rate
ogy 18
OS Overall survival
PFS Progression-free survival
qRT-PCR quantitative real-time PCR
ROC Receiver operating characteristic curve
RCC Renal cell carcinoma
siRNA small interfering RNA
ssGSEA Single-sample gene set enrichment analysis
TCGA The Cancer Genome Atlas
TMB Tumor mutation burden
TME Tumor microenvironment
TPM Transcripts per million
UniCox Univariate Cox regression.
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