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Single-cell sequencing reveals
dysregulated cell type
perturbations and critical
mediator communication
remodelling in colorectal cancer
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Bin Sun2*‡, Zicheng Yu3*‡ and Hailong Liu1*‡
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Background: The heterogeneity of colorectal cancer (CRC) and its complex

immune microenvironment pose significant challenges for treatment.

Understanding the cellular composition and dynamic changes is essential for

uncovering mechanisms of tumour progression.

Methods: To invest igate the cel lular heterogeneity and immune

microenvironment of CRC, identifying critical subpopulations, functional

pathways, and prognostic biomarkers, single-cell transcriptomic data from 41

CRC samples across four datasets were integrated. Bioinformatic analyses

identified cellular subpopulations, cell communication networks, and

prognostic biomarkers. The expression patterns, clinical significance and

biological function of TUBB were validated in vitro.

Results: A distinct epithelial subpopulation with proliferative and invasive features

was identified, promoting tumour progression by resisting apoptosis and

remodelling the extracellular matrix. ActMono, a terminal state of myeloid

cells, was enriched in tumours and linked to disease progression. Cell

communication analysis highlighted galectin signalling in immune regulation. A

prognostic model (CRS) based on secretory immune cell-related genes identified

TUBB as a key molecule influencing the cell cycle and extracellular matrix

remodelling, with its expression patterns, clinical significance and biological

effects validated in vitro.

Conclusion: This study reveals critical subpopulations, signalling pathways, and

biomarkers in CRC, providing insights into tumour progression and potential

therapeutic strategies.
KEYWORDS

single-cell sequencing, colorectal cancer, tumour microenvironment, cellular
heterogeneity, immune regulation, TUBB
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1 Introduction

Colorectal cancer (CRC) ranks as the third most common

malignancy globally and represents a leading cause of cancer-

related mortality. Despite surgical resection combined with

chemotherapy being the standard treatment protocol,

approximately one-third of patients experience disease recurrence

(1, 2). While immune checkpoint inhibitors have shown significant

efficacy in microsatellite instability-high (MSI-H) tumours and

combined EGFR/BRAF inhibitor therapy has proven effective in

BRAF V600E-mutant CRC, these treatments are only applicable to

specific patient subgroups (3–5). Large-scale gene expression

studies have established molecular classification systems for CRC,

most notably the Consensus Molecular Subtypes (CMS), which

categorizes CRC into four subtypes: CMS1–4 (6). However, these

classifications, which are primarily based on bulk sequencing data,

cannot precisely resolve the complex cellular heterogeneity within

the tumour microenvironment.

The development of CRC involves the accumulation of

mutations in multiple oncogenes and tumour suppressor genes

(such as APC, KRAS, and PIK3CA) and microsatellite instability

caused by DNA mismatch repair gene dysfunction (3, 7). Although

high tumour mutational burden (TMB) and MSI status can predict

the response to immune checkpoint inhibitor therapy, only a

minority of patients respond to PD-1 inhibitor treatment (8, 9).

The complex molecular heterogeneity and microenvironmental

characteristics of CRC not only influence disease progression but

also present significant challenges for precision medicine,

highlighting the importance of understanding the CRC

microenvironment in detail. To date, there has not been a

comprehensive and systematic characterization of how tumour

and TME cells shape the tumoural, stromal, and immune

landscapes to form specific CRC subtypes.

Recent single-cell studies have revealed cellular heterogeneity in the

CRCmicroenvironment and identifiedmultiple functionally important

specific cell subgroups (10–13). While these studies have provided new

perspectives for understanding tumour progression mechanisms and

immune evasion, their geographical limitations and sample sizes make

fully characterizing the shared mechanisms within the CRC

microenvironment difficult. Cross-study comparisons are also

challenging due to varying cell annotation methods across different

studies. In this study, we integrated four datasets from public databases,
Abbreviations: CRC, colorectal cancer; CRS, prognostic prediction model; CMS,

consensus molecular subtypes; MSI-H, microsatellite instability-high; TMB,

tumour mutation burden; CNV, copy number variation; DEGs, differentially

expressed genes; kNN, k-nearest neighbour; SPCs, stem/progenitor cells; SecTA,

secretory immune cells; AEs, absorptive enterocytes; GCs, goblet cells; EECs,

enteroendocrine cells; BEST4-ECs, BEST4+ enterocytes; nCD4T, Naive CD4+ T

cells; CD8T, Cytotoxic CD8+ T cells; Plasma, Plasma cells; NK, Natural Killer

cells; sT, Stressed T cells; aT/NK, Activated T/NK cells; mB, Memory B cells;

Bcell, B cells; Mono, Monocytes; Mac, Macrophages; TMC, Transitional Myeloid

Cells; ActMono, Activated Monocytes/Macrophages; ProMye, Proliferating

Myeloid Cells; pDC, Plasmacytoid Dendritic Cells; OS, overall survival IIIC,

infiltrating immune-like cells
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encompassing 41 samples, to systematically describe the differential cell

population distributions and intercellular interaction networks between

tumour and normal tissues. We not only revealed the heterogeneous

characteristics and transcriptional reprogramming of epithelial cells in

tumour tissues but also identified several key cell subgroups potentially

involved in the formation of an immunosuppressive

microenvironment, providing new insights into CRC progression

mechanisms and the immune microenvironment.
2 Materials and methods

2.1 Data collection

Data for TCGA-COAD and TCGA-READ were downloaded

from the UCSC Xena platform (https://xenabrowser.net/datapages/).

Single-cell RNA sequencing (scRNA-seq) datasets were obtained

from the GEO database (accession numbers: GSE161277,

GSE200997, GSE221575, and GSE231559). The combined dataset

included samples from 27 primary colorectal cancer (CRC) patients

and 14 normal control samples. After quality control (QC), a total

of 88,212 high-quality single cells were retained for further analysis.
2.2 Data processing

Single-cell RNA-seq data were preprocessed using the Seurat

v4.3.0 R package. Quality control (QC) was performed to remove

low-quality cells and potential dying cells. Specifically, we retained

cells that expressed at least 400 genes, and excluded cells with >20%

mitochondrial gene expression. These thresholds were selected

based on the distribution of QC metrics and previous studies,

aiming to balance data completeness with the removal of low-

quality cells (14–16).

To detect and remove potential doublets, we applied

DoubletFinder v2.0.3. The expected number of doublets was

calculated based on an assumed doublet rate of ~7.5–8%,

following 10X Genomics guidelines, and using the formula:

nExp_poi = round(0.08 × N × N/10000), where N is the number

of cells in the sample. For doublet prediction, we used 20 principal

components (PCs = 1:20) and the following parameters: pN = 0.25,

pK = 0.09, nExp = nExp_poi, reuse.pANN = FALSE, sct = FALSE.

These settings were based on the recommended defaults in the

official DoubletFinder tutorial. Predicted doublets were removed

from the dataset prior to downstream analysis.

Data normalization, identification of highly variable genes,

principal component analysis (PCA), and unsupervised clustering

were performed using Seurat’s standard pipeline. Harmony v1.2.3

was used for batch correction and data integration, with sample

identity specified as the batch variable. The RunHarmony()

function was executed with default parameters, and the top 30

PCs were retained for downstream analysis. UMAP was used for

dimensionality reduction and visualization.

For differential expression analysis, we used the FindAllMarkers()

function in Seurat with the Wilcoxon rank-sum test, applying the
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following thresholds: min.pct = 0.25, logfc.threshold = 0.25,

only.pos = FALSE. Significant differentially expressed genes

(DEGs) were defined as those with p-value < 0.05.
2.3 Cell type identification

To identify cell types, we first performed differential expression

analysis across clusters using the FindAllMarkers() function in

Seurat. Marker genes were defined as those with an adjusted p-

value < 0.05, expression in more than 25% of cells within the cluster

(min.pct = 0.25), and an absolute log2 fold change > 0.25. For each

cluster, the top-ranked differentially expressed genes were

considered cluster-specific highly expressed genes.

We then compared these cluster-specific markers against

curated reference databases, including CellMarker and

PanglaoDB, to determine the most likely cell type identity for

each cluster. Annotation was conducted manually based on the

expression patterns of canonical lineage markers and known cell-

type-specific genes.

To support and cross-validate our manual annotations, we

additionally employed the SingleR package, which uses reference

transcriptomic datasets to infer cell identities. The results from

SingleR were used as a secondary reference and were reconciled

with our primary marker-based annotation strategy.

Furthermore, we calculated Spearman correlation coefficients

between the average expression profiles of all clusters to evaluate

transcriptional similarity. Clusters with highly correlated expression

patterns and overlapping marker gene expression were considered

for subtype merging to avoid artificial over-segmentation. Final cell

type labels were determined by integrating information from

marker gene analysis, database matching, SingleR prediction, and

inter-cluster correlation.
2.4 Cell communication analysis

Cell-cell communication networks within the tumour

microenvironment were inferred using the CellChat v1.1.3 R

package based on receptor- l igand interact ions (17) .

Communication probability and the number of interactions were

calculated to construct communication networks. The interactions

between any two cell populations were visualized, and scatter plots

were generated to display the major signalling senders (signal

sources) and receivers (targets) in a two-dimensional space,

helping to identify the main contributors of outgoing or incoming

signals, particularly among immune cell types. A pattern

recognition approach was used to identify how multiple immune

cell types and signalling pathways coordinate.
2.5 Pseudotime trajectory analysis

Pseudotime trajectories were constructed using the Monocle

2 algorithm, an R package designed for single-cell trajectory
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analysis by Qiu et al. (18). This algorithm reduces high-

dimensional gene expression profiles into a low-dimensional

space and arranges the cells into trajectories with branching

points. Dynamic expression heatmaps were constructed using

the plot_pseudotime_heatmap function.
2.6 Machine learning-based feature
signature identification

A consensus feature signature was derived using a machine

learning-based integrative approach that combined ten different

algorithms: Random Survival Forest (RSF), Elastic Net (Enet),

Lasso, Ridge, Stepwise Cox, CoxBoost, Partial Least Squares for

Cox (plsRcox), Supervised Principal Components (SuperPC),

Generalized Boosted Regression Model (GBM), and Survival

Support Vector Machines (survival-SVM). To ensure robustness,

a consensus model was constructed by integrating predictions from

these methods.

A total of 101 algorithmic combinations were executed within a

leave-one-out cross-validation (LOOCV) framework, optimizing

feature selection and model performance. Hyperparameters for

each algorithm were tuned using grid search/random search (or

specify your method), and model performance was evaluated based

on the concordance index (C-index) and other relevant metrics

(e.g., AUC, log-rank test).The TCGA-READ and COAD datasets

were randomly split into a training set (60%) and a validation set

(40%), ensuring a balanced distribution of clinical and molecular

features. Stratified sampling was applied to maintain consistency

between groups. The final model was assessed on the validation set

for predictive accuracy and generalizability.
2.7 Immune infiltration evaluation

The CIBERSORT algorithm was applied to quantify immune

cell infiltration levels in pancreatic adenocarcinoma (PAAD)

patients and to explore differences in immune cell abundance

between high-risk and low-risk patient groups (19). Pearson

correlation analysis was conducted to assess the relationship

between immune cell abundance and risk scores. To further

investigate potential differences in immune function, single-

sample gene set enrichment analysis (ssGSEA) was employed to

obtain enrichment scores, and the Wilcoxon test was used to

compare immune function between high-risk and low-risk

groups (20).
2.8 Quantitative real-time PCR and
western blotting

Total RNA extracted from paired colorectal cancer tissues

was collected. Then the RNA was reversely transcribed into

cDNA with the kit (Takara, Dalian, China) and amplified. The

sequences of the primers are detailed as below: TUBB: 5’-
frontiersin.org
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ATTTCTTTATGCCTGGCTTTG-3’ and 5’-GACCTGCTGG

GTGAGTTCC’; GAPDH: 5’-ACACCCACTCCTCCACCTTT-3’

and 5’-TTACTCCTTGGAGGCCATGT-3’.

Total cellular protein from clinical samples were lysed

with RIPA lysis buffer (Solarbio, China) and added with

protease inhibitor at a ratio of 1:100 (Thermo Scientific, United

States). The information of primary antibodies was as follows:

TUBB (1:1,000, Abmart, TA7011M) and GAPDH (1:4,000,

Abmart, P30008S).
2.9 Kaplan–Meier plotter database analysis

We analysed the predictive value of TUBB in CRC using

Kaplan–Meier (KM) Plotter (https://kmplot.com) (21). Based on

the median expression (high and low expression), patients were

divided into two groups to analyse the overall survival (OS) and

recurrence-free survival (RFS).
2.10 Patients and clinical samples

59 paired colorectal cancer tissues were obtained from patients

who underwent colorectal cancer surgery at Yangpu Hospital of

Tongji University between November 2018 and November 2019.

The study got approval from Ethics Committee of the Yangpu

Hospital (LL-2023-LW-012). CRC tissues and paracancerous

tissues were collected during surgery and immediately frozen in

liquid nitrogen to assess the expression levels of specific genes and

proteins respectively.
2.11 Cell culture and transfection

Human colorectal (CRC) cell lines (HCT116 and SW620) were

acquired from Shanghai Institute of Biochemistry and Cell Biology.

All cell lines were cultured in DMEM medium (Gibco, Carlsbad,

CA, USA) which contains 10% foetal bovine serum (FBS; Gibco) at

37°C with 5% CO2.

Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) was used

to transfect cells with an siRNA specific for TUBB and a control

construct purchased from GeneChem (Shanghai, China). Cells were

utilized for downstream assays at 48h post-transfection. Analyses

were conducted in triplicate. TUBB overexpression plasmid was

customized from GenePharma (Shanghai, China).
2.12 Transwell assays and wound healing
assay

Cells were suspended in 250 mL of serum-free medium

and seeded into the upper chamber of a 24-well Transwell

plate (Nest, China). The lower chamber was filled with culture

medium containing 10% FBS. For invasion assays, the Transwell

chambers were coated with Matrigel (2 mg/mL) and DMEM,
Frontiers in Immunology 04
whereas for migration assays, they were left uncoated. After 24

hours of incubation, the invaded cells were fixed with 4%

paraformaldehyde for 30 minutes and stained with crystal violet

for 10 additional minutes, both at room temperature. Cells were

counted in five random optical fields of view under a light

microscope (Nikon Corporation, Japan).

For the wound healing assay, cells were cultured without FBS in

6-well plates for 24 hours. Linear wounds were created by

scratching with a 10 mL pipette tip. Wound closure was

monitored and photographed at 0 and 24 hours using a

microscope (Nikon Corporation, Japan).
2.13 Assays of cell proliferation and
apoptosis

To assess the rate of DNA synthesis, CRC cell lines were

subjected to treatment with 5-ethynyl-2’-deoxyuridine (EDU) at a

concentration of 50 mM, which was subsequently added to the cell

culture plates. Following a 30-minute incubation, DNA was stained

using Hoechst 33342, allowing for the visualization of positively

stained cells under a microscope. HCT116 and SW620 cells,

characterized by either TUBB overexpression or knockdown,

were dissociated into single-cell suspensions using 0.25% trypsin.

These cells were then stained with Annexin V-APC and 7-

Aminoactinomycin D (7-AAD) to evaluate apoptosis rates, which

were quantified through flow cytometry analysis.
2.14 Statistical analysis

All statistical analyses and data visualizations were performed

using R software (version 4.1.3). Pearson correlation coefficients

were used to evaluate the correlation between continuous variables.

For quantitative data, a two-tailed unpaired Student’s t-test or one-

way analysis of variance (ANOVA) with Tukey’s multiple

comparison test was performed to compare values between

subgroups. When multiple comparisons were conducted, p-values

were adjusted using the Benjamini-Hochberg (BH) method to

control the false discovery rate (FDR). A p-value or adjusted

p-value < 0.05 was considered statistically significant.
3 Results

3.1 Integrated analysis reveals cell type
composition and functional remodelling in
the CRC microenvironment

In this study, we performed an integrated analysis of 41 samples

from four public datasets (GSE161277, GSE200997, GSE221575,

and GSE231559) (2, 22–24), comprising 27 primary CRC tumour

samples and 14 normal control samples. After rigorous quality

control and doublet removal, we obtained 88,212 valid cells for

analysis (Supplementary Figures S1A, B). Through single-cell
frontiersin.org
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transcriptome analysis, which combines specific gene expression

profiles and classical cell markers, we classified these cells into 32

distinct clusters. On the basis of intercluster Spearman correlation

analysis and previously reported cell markers (14, 25), we identified

8 different cell types (Figures 1A, B, Supplementary Figure S1C),

including T cells expressing high levels of CD3D, CD3E, and TRAC;

B cells expressing CD79A, MS4A1, and CD79B; epithelial cells

expressing EPCAM, KRT8, and KRT18; plasma cells expressing

JCHAIN and SDC1; myeloid cells expressing LYZ, MNDA, and

C1QA; fibroblasts expressing COL1A1, DCN, and COL1A2;

endothelial cells expressing CLDN5, CDH5, PECAM1, and VWF;

and mast cells expressing TPSB2 and TPSAB1 (Figure 1C,

Supplementary Figures S1D–G). We calculated the top 50 highly

expressed genes for each cell type to confirm cluster specificity and

used AUCell to score activated pathways in each subgroup, further

validating cell identities (Figure 1D, Supplementary Figure S2A).

For the cell composition analysis, we first calculated the cell type

abundance in the tumour and normal groups and found significant

enrichment of epithelial cells in the tumour group (Figure 1E).

Using the PHATE algorithm (26), which captures both local and

global nonlinear structures, we identified significant differences

between tumour and normal epithelial cells that were not fully

revealed by conventional UMAP analysis (Figure 1F,

Supplementary Figure S2B). The cell proportion statistics revealed

significant intergroup heterogeneity among the samples.

Additionally, the proportions of epithelial cells, and myeloid cells

increased in the tumour group, whereas the proportions of B cells

and plasma cells decreased, suggesting remodelling of the tumour

immune microenvironment (Figure 1G, Supplementary Figures

S1H, I), with cell abundance calculations providing more intuitive

visualization of these results (Supplementary Figures S2C, D). We

calculated differentially expressed genes (DEGs) between the

tumour and normal groups for each cell type (Figure 1H), with

epithelial cells showing the most DEGs, followed by fibroblasts,

indicating that these two cell types may undergo the most

significant phenotypic changes during tumour progression.

GO analysis of the upregulated DEGs revealed that myeloid

cells were significantly enriched in cytokine production and

apoptotic signalling pathways, whereas T cells were enriched

mainly in NF-kB signalling and cytokine production-related

pathways. Notably, multiple cell types respond to oxidative stress

and hypoxia, particularly endothelial cells and fibroblasts, which

are actively involved in angiogenesis-related pathways, reflecting

the complex intercellular interaction network in the tumour

microenvironment (Figure 1I).
3.2 Multiple cell types exhibit coordinated
patterns of metabolic activation and matrix
remodelling

We performed a systematic analysis of transcriptional

characteristics across cell types in tumour and normal tissues.

First, through Wilcoxon rank-sum test analysis of DEGs, we

identified changes in several key molecules: the chemokine CCL5
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was significantly downregulated in multiple immune cells

(including T cells and myeloid cells), whereas CCL20 was

upregulated, suggesting a shift in the immune microenvironment

from an antitumour status to a protumour status (27). Moreover,

the concurrent upregulation of COL4A1/COL4A2 across multiple

cell types, particularly in fibroblasts and endothelial cells, reflected

extracellular matrix remodelling (Figure 2A). To comprehensively

understand the changes in the cellular composition during disease

states, we employed a multilayered analytical strategy. Differential

abundance analysis based on k-nearest neighbour statistics (28)

revealed significantly increased proportions of epithelial cells,

endothelial cells, and myeloid cells in the tumour group

(Figures 2B, C), suggesting expansion of the tumour parenchyma

and active angiogenesis. Furthermore, using the random forest-

based Augur algorithm (29) to assess transcriptional perturbation

levels across cell types, we found that endothelial cells, mast cells,

fibroblasts, and epithelial cells presented the most significant

transcriptional changes (Figure 2D). Using AUCell, we calculated

the pathway involvement of endothelial cells and mast cells in the

tumour group and found that endothelial cells were involved

primarily in extracellular matrix remodelling, whereas mast cells

were involved mainly in lipid metabolism (Supplementary Figures

S2E, F).

Given the dominant position of epithelial cells in samples and

their significant abundance and transcriptional changes, we

conducted in-depth functional analysis. GO enrichment analysis

of the DEGs revealed that the upregulated genes were enriched

mainly in protein synthesis- and ribosome biogenesis-related

pathways, reflecting robust growth demands and stress adaptation

responses of tumour cells, whereas the downregulated genes were

enriched in cell polarity- and structure-related pathways, suggesting

phenotypic alterations (Figures 2E–G). GSEA further confirmed the

significant activation of three key pathways: RNA processing,

translation, and extracellular vesicles. These changes not only

reflect cancer cell proliferative activity and stress adaptation but

also indicate tumour microenvironment remodelling and potential

metastatic tendencies suggesting that systematic changes occur

across multiple cell types in CRC (Figure 2H).
3.3 Epithelial cell heterogeneity and copy
number variation-driven malignant
progression in CRC

Considering that epithelial cells are the primary source of

malignant tumour cells in CRC and their significant perturbations

at both the abundance and transcriptional levels, we conducted an in-

depth analysis of epithelial cells. Through reclustering, we identified 8

distinct epithelial cell subgroups (Figure 3A, Supplementary Figures

S3A, B), including stem/progenitor cells (SPCs), secretory transit

amplifying cells (SecTA), absorptive enterocytes (AEs), goblet cells

(GCs), cycling transit amplifying cells (CycTA), infiltrating immune-

like cells (IIIC), enteroendocrine cells (EECs), and BEST4+

enterocytes (BEST4-ECs). On the basis of previous studies and

analyses of highly expressed genes in each subgroup (30, 31), we
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FIGURE 1

Single-cell transcriptomic analysis reveals cell type composition and functional remodelling in colorectal cancer. (A) UMAP dimensionality reduction
showing the integrated cell distribution map. A total of 32 cell clusters were identified, classified into 8 major cell types, with different colours
representing distinct cell clusters. (B) Spearman correlation heatmap based on gene expression across cell clusters, revealing transcriptional
similarities between clusters. (C) Expression profiles of characteristic marker genes across different cell types. (D) Heatmap displaying the top 50
highly expressed genes specific to each cell type, illustrating the transcriptional characteristics of different cell types. (E) Density distribution plot of
each cell type in tumour and normal groups, showing differences in cell abundance between groups. (F) PHATE dimensionality reduction plot
displaying cell distribution, with the left panel coloured by cell type and the right panel coloured by sample group, revealing spatial distribution
patterns of cell types and sample groups. (G) Left panel: Stacked bar plot showing the proportional distribution of different cell types across samples;
right panel: Composition ratio of tumour and normal groups within each cell type. * indicates statistical significance at p < 0.05. (H) Statistical
summary of the number of differentially expressed genes (DEGs) between tumour and normal groups for each cell type. (I) Representative GO
functional pathways enriched in upregulated DEGs in each cell type.
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validated these subgroup annotations (Figures 3C, D). By calculating

subgroup-specific highly expressed genes, we not only confirmed cell

identity specificity but also identified representative marker genes,

such as the stem cell characteristic factors SOX4, ELF3, and KLF5 in

the SPCs and VIM and CCL5 in infiltrating immune-like cells
Frontiers in Immunology 07
(Figure 3D). Additionally, we performed functional enrichment

analysis on the genes that were specifically expressed in each

subgroup to validate their functions (Supplementary Figures S3C,

D). When comparing tumour and normal tissues, we detected

significantly increased abundances of SPCs, SecTA, and CycTA in
FIGURE 2

Multi-dimensional analysis reveals transcriptomic remodelling and functional changes in cell types in colorectal cancer. (A) Differentially expressed genes
(DEGs) between tumour and normal groups across cell types, analysed using the Wilcoxon rank-sum test. Highly significant DEGs are defined as those with
an adjusted p-value (adj.pval) < 0.05, while lowly significant DEGs are defined as those with adj.pval < 0.1. “Upregulated”refers to genes with higher
expression in the tumour group relative to the normal group. (B) Differential abundance analysis using the Milo k-nearest neighbour (kNN) algorithm. Each
node represents a local cellular neighbourhood, with colour intensity representing the log fold change of tumour relative to normal. White nodes indicate
non-significant differences (FDR > 10%). The node layout is based on UMAP dimensionality reduction. (C) Statistical results of the Milo kNN differential
abundance analysis. (D) Augur analysis framework assessing the degree of transcriptomic perturbation in each cell subtype between biological states. A
higher AUC value indicates more significant transcriptomic alterations. (E) Volcano plot of DEGs in epithelial cells between tumour and normal groups. DC
values represent protein-protein interaction network strength, calculated using the STRING database. (F-G) GO functional enrichment analysis of DEGs in
epithelial cells. (F) Functional annotation of upregulated genes and (G) downregulated genes. (H) GSEA pathway enrichment analysis of DEGs in epithelial
cells, showing representative signalling pathways. NES represents the Normalized Enrichment Score.
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FIGURE 3

Copy number variation (CNV) analysis reveals genomic instability features in epithelial cell subtypes of colorectal cancer. (A) UMAP showing subtypes of
stem/progenitor cells (SPCs), secretory transit amplifying cells (SecTA), absorptive enterocytes (AEs), goblet cells (GCs), cycling transit amplifying cells (CycTA),
infiltrating immune-like cells (IIIC), enteroendocrine cells (EECs), and BEST4+ enterocytes (BEST4-ECs). (B) Stacked bar plot representing the proportional
distribution of cell types across different groups. (C) Expression of marker genes used for the identification of each cluster. (D) Heatmap showing the average
expression of genes in each epithelial cell subtype, with the left panel displaying clustering of subtype-specific genes and representative markers. (E) Density
plot showing the enrichment of cell counts in each group. (F) Augur framework displaying transcriptomic perturbation across subclusters under two
biological conditions, where a higher AUC represents greater transcriptomic changes. (G) GO enrichment analysis of differentially expressed genes (DEGs) in
EEC and SecTA subtypes. (H) InferCNV analysis predicting copy number variations in each epithelial cell subtype using T cells, B cells, and NK cells as
references. (I) CNV scores mapped onto the UMAP of epithelial cells, with colour intensity representing the CNV score. (J) Proportional distribution of cell
types with different CNV statuses, identified based on CNV scores. (K) Proportion of cells with different CNV statuses within each cell type. (L) Volcano plot
of DEGs between high CNV and normal cells.
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the tumour group, indicating the activation of stem cell properties

and inflammatory responses, whereas decreased abundances of AEs,

EECs, and BEST4-ECs reflected impaired normal absorption and

endocrine functions, revealing significantly different epithelial cell

states between the two groups (32, 33) (Figures 3B, E). Augur

framework analysis revealed that EECs and SecTA were the two

subgroups with the most significant transcriptional perturbations

(Figure 3F). GO enrichment analysis of DEGs revealed that EEC-

related genes were enrichedmainly in cytoskeleton- and cell junction-

related pathways, such as cell migration, cadherin binding, and cell–

cell junctions, changes that might affect their paracrine regulatory

function and hormone secretion polarity, potentially leading to

invasive characteristics. SecTA DEGs were enriched mainly in

protein synthesis and cell adhesion-related pathways, such as

cytoplasmic translation and cytosolic ribosomes, reflecting

significantly increased protein synthesis activity and metabolic

levels in SecTA within tumour tissue, suggesting possible increased

secretory protein production (Figure 3G).

To explore differences in malignancy among epithelial cell

subtypes, we performed CNV analysis via the inferCNV tool (34)

(Supplementary Figure S3E). The results revealed significant

heterogeneity in CNV patterns among different epithelial cell

subgroups, with IIIC showing the lowest CNV scores (Figures 3H,

I, Supplementary Figure S3F). After the cells were categorized into

four groups on the basis of their CNV levels (normal, low, medium,

and high), we observed gradually increasing trends in SPCs, CycTA,

and EECs with increasing CNV levels, which is consistent with

existing research reports and reflects tumour cell malignancy

(Figure 3J) (35, 36). When AUCell was used to evaluate activated

pathways in epithelial cells with different CNV levels, high CNV

significantly activated protein phosphorylation, transcription

regulation, and DNA templating, suggesting increased active

transcriptional and translational regulation (Supplementary

Figure S3G). Notably, IIIC presented mainly normal and low

CNV, whereas EECs and SPCs presented mainly medium or high

CNV, suggesting that genomic instability might be acquired

through enhanced stem cell properties and that CNV

accumulation might be an important driving factor in the

malignant transformation of these cells (Figure 3K). By

comparing the DEGs between the high and normal CNV groups,

we found that MALAT1, ELF3, and CLDN4 were significantly

upregulated in the high-CNV group, indicating significant

changes in epithelial cell properties (such as EMT) and cell

junction patterns (Figure 3L).
3.4 Pseudotime analysis reveals dynamic
transformation trajectories of CRC
epithelial cells

To analyse the dynamic transformation characteristics of

different epithelial cell subtypes in the tumour and normal

groups, we performed pseudotime analysis on 8 epithelial cell

subtypes via the monocle package. On the basis of this analysis,

we identified 5 distinct cell states (Figures 4A, B). By analysing the
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proportions of each cell type in each state, we found that in State1,

approximately half of the cells were identified as IIICs, which is

consistent with our previous CNV analysis finding that this cell type

had the lowest CNV level. Additionally, AEs and SPCs were

enriched at two different endpoints of the trajectory, whereas

tumour group cells presented similar distribution patterns across

all periods (Figures 4C, D, F). Further analysis of trajectory

distribution characteristics for each cell type revealed that IIICs

were enriched mainly at the starting point, EECs appeared primarily

at the endpoint in the S5 direction, and BEST4-ECs were

significantly enriched at both endpoints (Figure 4E). This

distribution pattern suggests different differentiation paths that

various cell types might undergo during tumour development.

To better understand the molecular mechanisms during cell

state transitions, we studied gene expression changes before and

after nodes 1 and 2 through BEAM analysis. As shown in Figure 4G,

at node 1, Cluster 3 and Cluster 2 represented upregulated gene sets

during development in the State5 and State4 directions,

respectively. Cluster 3 was enriched with multiple cell stress-

related genes, such as PPP1R15A and GADD45B; in particular,

abnormal GADD45B expression has been reported to be closely

related to CRC progression and prognosis (37, 38). Cluster2 was

enriched with cytoskeleton and metabolism-related factors, such as

ARPC3 and CA2, where CA2 participates in regulating the cellular

pH and ion balance, and its expression changes suggest significant

alterations in the tumour microenvironment (39). In the analysis

around node 2, we observed enrichment of numerous immune-

related genes at the starting point, such as IL32 and CEACAM7

(Figures 4H, I, Supplementary Figures S4B, C), indicating that

immune regulation might play an important role in early cell

state transitions and potentially participate in tumour

microenvironment remodelling.

To validate the reliability of the trajectory inference, we

simultaneously used two independent methods, SlingShot and

PAGA, for analysis. Both methods identified IIICs as the

trajectory starting point, which is highly consistent with the

results of Monocle. Furthermore, they both identified BEST4-ECs

and GCs as two endpoints of the trajectory, further supporting the

view of multidirectional differentiation trajectories of epithelial cells

during CRC progression and revealing the complexity and plasticity

of epithelial cell fate determination during tumour development

(40, 41) (Figure 4J, K, Supplementary Figures S4D–F). These

findings not only help us understand the dynamic changes in

CRC epithelial cells but also provide new perspectives for further

studies of tumour progression mechanisms and the development of

potential therapeutic strategies.
3.5 Immune cell heterogeneity and
functional remodelling in the CRC
microenvironment

Considering our previous findings of significant perturbations

in the immune response and immune microenvironment in the

tumour group, we conducted an in-depth analysis of lymphoid and
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FIGURE 4

Multi-algorithm trajectory analysis reveals the dynamic transformation process of epithelial cells in colorectal cancer. (A) Differentiation trajectory of epithelial
cell subtypes based on the Monocle algorithm, with different colours representing distinct cell types. (B) Developmental pseudotime and cell state
distribution inferred from the Monocle analysis. (C) Proportional composition of different epithelial cell subtypes within each cell state. (D) Proportional
composition of tumour and normal samples within each cell state. (E) Distribution trajectories of different epithelial cell subtypes along the pseudotime axis.
(F) Comparative cell differentiation trajectories between tumour and normal groups, with cells coloured by subtype. (G–H) BEAM analysis identifying key
transition node DEGs. Heatmaps displaying the top 30 genes with significant changes before and after (G) node 1 and (H) node 2. (I) Expression trends of
representative genes CA2, GADD45B, and IL32 along the pseudotime axis, coloured by sample group and differentiation trajectory. (J) Cell differentiation
trajectory inferred based on the Slingshot algorithm. (K) Left: Trajectory inference network constructed using the PAGA algorithm; Right: Integrated trajectory
analysis results combining PAGA and Slingshot.
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myeloid cells in our dataset. Through unsupervised clustering

methods, we subdivided lymphoid cells into 10 distinct subgroups

and annotated and confirmed their identities on the basis of

subgroup-specific highly expressed genes (Figure 5A, B,

Supplementary Figures S5A–C). Comparative analysis revealed

that lymphoid cell subtypes in the tumour and normal groups

presented similar overall distribution patterns, but nCD4T, Treg,

and plasma cells presented slightly increased abundances in the

tumour group, whereas B cells and NK cells presented significantly

decreased abundances, suggesting enhanced immunosuppression

and tumoura l immune remode l l ing in the tumour

microenvironment (Figures 5C, D).

To better understand the functional states of different immune

cell subgroups, we evaluated pathway activation in various

lymphoid cells via MSigDB characteristic gene sets. The results

revealed unique pathway activation patterns across different

lymphoid cells, with Treg cells significantly activating the

IL2_STAT5_SIGNALING and IL6_JAK_STAT3_SIGNALING

pathways, suggesting their important regulatory role in T-cell

proliferation and differentiation. Regarding inflammation-related

pathways, we observed that sT and aT/NK cells significantly

activated the TNFa_SIGNALING_VIA_NFKB pathway, whereas

INFLAMMATORY_RESPONSE was highly activated in nCD4T

and Treg cells (Figure 5E). Through Augur framework analysis of

transcriptional differences between the tumour and normal groups,

we found that sT was the most significantly altered cell subgroup

(Figure 5F). Further analysis revealed significant upregulation of

multiple genes related to antigen stimulation and cellular stress in

sT, including CD74, HSPA1A,HSPB1, and S100A11, suggesting that

sT cells might be in multiple stress states, potentially affecting their

normal immune function (Figure 5G).

In myeloid cell analysis, we identified 9 distinct cell subgroups

and examined their functional marker expression characteristics in

detail (Figures 5H, I, Supplementary Figures S5D–F). Cell

abundance analysis revealed that while most myeloid cell

subgroups maintained a relatively balanced distribution between

the tumour and normal groups, ActMono was significantly

upregulated in the tumour group (Figures 5J, K). Our pseudotime

analysis revealed that both PAGA and SlingShot identified

ActMono as an endpoint of myeloid cell differentiation

(Supplementary Figures S5G, H), suggesting that ActMono might

be a major cell subgroup responding in later stages of the cancer

response. Additionally, the characteristic expression profile of this

cell subgroup included multiple myeloid cell activation markers,

such as IL1RN, CXCL8, CCL20, and the chemokines CCL3 and

SPP1 (Figure 5L), indicating the activated state of myeloid cells in

the tumour microenvironment.
3.6 Activation of multiple immune
communications, including galectin, in the
tumour group

In the tumour microenvironment, cell–cell interactions play

crucial roles in disease progression. On the basis of our previous
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identification of CRC epithelial and immune cell subgroups, we

used the CellChat analysis platform to explore intercellular

communication networks during disease progression in detail.

The analysis results revealed that the cancer group presented

greater communication numbers and signal intensities than the

normal group did (Figure 6A, Supplementary Figure S6A). Signal

transmission patterns were significantly different between the

tumour and normal groups; in the tumour group, nCD4T cells

were the main signal sending centre, followed by CD8T cells;

however, in the normal group, B cells were the primary signal

receivers. Compared with those in the normal group, SecTA and

SPCs in the tumour group presented stronger signal sending

capabilities, indicating significant functional remodelling of

epithelial cell subgroups in the tumour state (Figure 6B). Further

analysis revealed cancer group-specific activation of several

important signalling pathways, including the CD40 pathway,

which regulates immune response intensity; the SPP1 pathway,

which mediates cell adhesion and microenvironment remodelling;

and key signalling pathways, such as the VEGF and TGFb
pathways (Figure 6C).

We focused particularly on the signal characteristics emitted by

SecTA and SPCs in tumours. As shown in Figure 6D, SPCs emitted

mainly MIF and GDF signals, whereas SecTA presented a more

complex signal network, including growth factor signals (MK,

GDF), chemokine signals (CXCL), immune regulatory signals

(galectin), and metabolic regulatory signals (GAS). This diverse

signalling pattern suggests that SecTAmight play important roles in

tumour microenvironment remodelling, especially in immune cell

recruitment and matrix reconstruction. Moreover, we observed AE

signal activation, mainly manifested as GRN and GAS signal

transmission, reflecting epithelial cell functional differentiation

during tumour progression. Regarding signal reception in the

tumour group, as previously predicted, SecTA showed a certain

signal intensity, whereas SPCs showed no signals; overall, SecTA

and SPCs played major communication roles compared with the

other epithelial cell types (Supplementary Figures S6B, C).

Particularly noteworthy is the galectin signalling pathway,

which, according to previous studies, participates in various

immune responses and affects T-cell function, potentially

promoting tumour immune escape and the formation of an

immunosuppressive microenvironment (42, 43). Pathway analysis

revealed that SecTA and Mac cells were the main signal emitters,

whereas nCD4T cells were the main receivers, with this process

being regulated by multiple cell types (Figure 6E). Among these,

LGALS9-CD45/CD44 was the receptor–ligand pair with the

greatest contribution (Figure 6F). In this signalling network,

SecTA and AEs transmit signals to CD8T and nCD4T cells, with

nCD4T cells subsequently transmitting signals to DC, forming a

complex signal cascade network (Figure 6G). Comparative analysis

revealed specific receptor–ligand interaction patterns between

tumour group SecTA, SPCs, and immune cells. In addition to the

galectin pathway, SecTA interact with various immune cells

through the MIF-(CD74+CXCR4/CD44) signalling network,

suggesting its important role in myeloid cell recruitment,

activation, and T-cell activation (Figure 6H). Additionally, we
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FIGURE 5

Single-cell transcriptomic analysis reveals the heterogeneity of lymphoid and myeloid cells in colorectal cancer. (A) UMAP dimensionality reduction
plot depicting lymphoid cell subtypes, identifying ten major subtypes: Naive CD4+ T cells (nCD4T), Cytotoxic CD8+ T cells (CD8T), B cells (Bcell),
Regulatory T cells (Treg), Plasma cells (Plasma), Natural Killer cells (NK), Naive B cells (nB), Stressed T cells (sT), Activated T/NK cells (aT/NK), and
Memory B cells (mB). (B) Expression profiles of characteristic marker genes for each lymphoid cell subtype, used to confirm cell identity. (C) Stacked
bar plot showing the proportional distribution of lymphoid cell subtypes in tumour and normal groups. (D) Density distribution plot of each lymphoid
cell subtype in tumour and normal groups. (E) GSEA enrichment heatmap of 50 hallmark gene sets from the MSigDB database, demonstrating the
functional characteristics of different lymphoid cell subtypes. (F) Transcriptomic perturbation assessment of each cell subtype under two biological
conditions using the Augur framework, with AUC values reflecting the significance of transcriptomic changes. (G) Violin plots showing the
expression levels of key marker genes. (H) UMAP dimensionality reduction plot depicting myeloid cell subtypes, identifying nine major subtypes:
Monocytes (Mono), Macrophages (Mac), Dendritic Cells (DC), Transitional Myeloid Cells (TMC), Activated Monocytes/Macrophages (ActMono),
Proliferating Myeloid Cells (ProMye), and Plasmacytoid Dendritic Cells (pDC). (I) Expression profiles of characteristic marker genes for each myeloid
cell subtype. (J) Stacked bar plot showing the proportional distribution of myeloid cell subtypes in tumour and normal groups. (K) Density distribution
plot of each myeloid cell subtype in tumour and normal groups. (L) Violin plots showing the expression levels of key marker genes in myeloid cells.
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FIGURE 6

Cell communication network analysis reveals signal transduction remodelling in the colorectal cancer microenvironment. (A) Quantitative
comparison of cell communication networks between tumour and normal groups, including the analysis of the number of signalling pathways and
signal strength. (B) Scatter plot showing the incoming and outgoing signal strength of cell subtypes in tumour and normal groups, illustrating the
roles of each subtype in the signalling network. (C) Comparative analysis of relative information flow for each signalling pathway between tumour
and normal groups. (D) Heatmap displaying the outgoing signal strength of different cell types in tumour and normal groups. (E) Network
localization and functional identification of cell types involved in the GALECTIN signalling pathway. (F) Contribution analysis of key receptor-ligand
pairs in the GALECTIN signalling pathway. (G) Circular plot showing the involvement and signal strength of each cell type in specific receptor-ligand
signalling pathways. (H) Bubble plot of receptor-ligand pairs specifically activated in the tumour group compared to the normal group, with SecTA as
the signal source. Bubble size represents signal strength, and colour intensity indicates the significance of the difference. (I) Signal network analysis
of cell types involved in the PPIA-BSG signalling pathway.
Frontiers in Immunology frontiersin.org13

https://doi.org/10.3389/fimmu.2025.1557564
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2025.1557564
examined signals transmitted from immune cells to SecTA and

found that PPIA-BSG signalling appeared to be specific and

exclusively interactive with SecTA (Supplementary Figure S6D),

with the crucial role of this pathway in various diseases previously

reported (44). The diversity of the incoming and outgoing patterns

of epithelial cells was also predicted (Supplementary Figures S6E,

F). Overall, the tumour group presented more complex receptor–

ligand interaction networks, revealing specific changes in cellular

communication within the tumour microenvironment.
3.7 SecTA subgroup-related features can
predict patient survival

To evaluate the molecular characteristics associated with CRC

prognosis, we integrated the TCGA-COAD and READ datasets

with their prognostic information to construct prediction models

through multidimensional gene expression analysis. First, we

performed intersection analysis of SecTA-specific DEGs with high

CNV group DEGs and tumour-normal epithelial cell DEGs,

resulting in the identification of 282 candidate genes. To establish

a robust prediction model, we employed a leave-one-out cross-

validation (LOOCV) framework, constructing and evaluating 101

prediction models. We randomly divided the TCGA dataset into

training and validation sets at a 6:4 ratio and evaluated model

performance through the C-index. The results showed that while

the StepCox[forward] model achieved the highest average C-index

(0.721), it required 80 features for survival fitting. In contrast, the

StepCox[both]+Enet[alpha=0.7] model achieved an average C-

index of 0.687 when only 25 features were used, demonstrating

better practicality (Figure 7A). On this basis, we selected the

StepCox[both]+Enet[alpha=0.7] strategy to construct the CRC

risk score (CRS) system.

The CRS model demonstrated good predictive performance in

both the training and validation sets. In both datasets, the low-risk

group had significantly prolonged overall survival (OS, p<0.0001;

Figure 7B). With respect to prediction accuracy, in the training set,

the CRS achieved AUCs of 0.74 (95% CI: 66.98–81.85), 0.78 (95%

CI: 71.34–84.05), and 0.76 (95% CI: 67.82–84.44) for 1-year, 3-year,

and 5-year OS prediction, respectively. Although the validation set

could not calculate the 1-year AUC due to sample size limitations,

the AUC values for 3-year and 5-year OS still reached 0.64 (95% CI:

51.86–79.78) and 0.66 (95% CI: 48.12–79.08), validating the model’s

predictive value (Figure 7C). Analysis of the combined training and

validation sets further confirmed the predictive ability of the CRS;

the low-risk group maintained significantly prolonged survival in

the overall sample (Figure 7D), with AUCs of 0.74 (95% CI: 66.26–

81.25), 0.75 (95% CI: 68.84–80.77), and 0.73 (95% CI: 65.63–79.6)

for 1-year, 3-year, and 5-year OS, respectively.

To better understand the associations between CRS and the

tumour immune microenvironment, we analysed immune cell

infiltration characteristics in the high- and low-risk groups via the

CIBERSORT algorithm (Figures 7E, F). The results revealed

significantly increased infiltration proportions of CD8+ T cells

and M2-type macrophages (p<0.001) in the high-risk group,
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whereas the proportions of resting CD4+ memory T cells were

significantly decreased (p<0.001). These changes in immune cell

composition suggest the possible existence of a stronger

immunosuppressive microenvironment in the high-risk group,

characterized by increased numbers of M2-type macrophages,

ind ica t ing the format ion of an immunosuppress ive

microenvironment, potentially suppressed CD8+ T-cell function,

and possibly weakened effector T-cell responses. These findings are

somewhat consistent with our previous single-cell analysis results.
3.8 TUBB participates in CRC progression
through regulation of the extracellular
matrix remodelling

Among the 25 feature genes in CRS, TUBB attracted our special

attention. Previous studies have revealed the role of TUBB as a

prognostic marker in pan-cancer (45), including breast cancer (46),

and its carcinogenic role with miR-195 in lung cancer (47), but its

role in CRC remains unclear. This prompted us to investigate the

potential role of TUBB in CRC progression in detail. First, we

analysed the expression patterns of TUBB across different epithelial

cell subtypes in both normal and tumour tissues. The results

revealed elevated TUBB expression levels in most tumour

epithelial cells, with particularly significant upregulation in EEC

and IIICs (Figure 8A). This change in expression pattern suggests

that TUBB might be associated with the malignancy of colorectal

cancer epithelial cells. Furthermore, we classified epithelial cells

based on TUBB expression levels. Among the cells expressing

TUBB, their distribution showed no obvious cell type specificity

(Figure 8B, Supplementary Figure S7A). This expression pattern

suggests that TUBBmight mark a special cellular state rather than a

specific cell subtype. To understand the functional significance of

TUBB, we performed differential gene analysis and GSEA

enrichment analysis between TUBB-positive and TUBB-negative

cells. The results showed significant upregulation of pathways

related to cytoplasmic translation, cellular respiration, energy

derivation by oxidation of organic compounds, and other related

pathways, including focal adhesion, in TUBB-positive cells. These

characteristics are consistent with typical pro-cancer phenotypes,

suggesting that TUBB may have oncogenic effects (Figure 8C).

Using the CellChat tool to analyse interactions between TUBB-

positive and TUBB-negative epithelial cells and immune cells

(Figure 8D, Supplementary Figure S7B), we identified two key

features: First, TUBB-positive cells significantly received

COLLAGEN, LAMININ, and VEGF signals. Notably, the

activation of GALECTIN and VEGF signalling suggests that

TUBB-positive cells possess immunosuppressive and pro-

angiogenic capabilities, indicating their potential role in tumour

progression and metastasis (Figures 8E-F, Supplementary Figure

S7C). These extracellular matrix component signals are typically

dominated by fibroblasts and endothelial cells, and the participation

of TUBB-positive epithelial cells in such signalling suggests their

potential role in microenvironmental remodelling. Specific

receptor-ligand pairs in TUBB-positive cells include LGALS9-
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FIGURE 7

Machine learning-based prognostic model construction for colorectal cancer and its immunological characteristics analysis. (A) Construction and validation
of the consensus feature signature CRS using a machine learning-based ensemble approach. A total of 101 predictive models were generated using a
LOOCV framework, and the C-index for each model was calculated across all training and validation datasets. (B) Kaplan-Meier survival curve and ROC
curve of the CRS prognostic model in the training set, with 1-year, 3-year, and 5-year AUC values used to evaluate the model’s performance. (C) Kaplan-
Meier survival curve and ROC curve of the CRS prognostic model in the validation set. (D) Kaplan-Meier survival curve and ROC curve of the CRS prognostic
model in all samples. (E) Immune infiltration analysis of high- and low-risk groups identified by the model, using the CIBERSORT method. (F) Boxplot
showing the infiltration levels of various immune cell types. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001.
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FIGURE 8

TUBB expression characteristics and its functional analysis in the colorectal cancer cell communication network. (A) Distribution of TUBB expression
across different epithelial cell subtypes, showing expression levels in both tumour and normal groups. ns: not significant, ****p < 0.001 (B) t-SNE
dimensionality reduction plot of epithelial cells based on TUBB expression levels, dividing the cells into TUBB-positive [TUBB(+)] and TUBBnegative
[TUBB (–)] groups. (C) GSEA enrichment analysis showing representative signalling pathways associated with TUBB expression. (D) Circular plot
displaying the interaction network strength between TUBB-positive/negative epithelial cells and various immune cells. (E) Analysis of the main
signalling pathways received by TUBB-positive and TUBB-negative cell groups as signal recipients. (F) Heatmap shows the scores of each cell type
involved in the GALECTIN and VEGF signalling pathways, including their roles as Senders, Receivers, Mediators, and Influencers. (G) Bubble plot
showing the interaction patterns between TUBB-positive and TUBB-negative epithelial cells as signal senders and immune cells. Bubble size
represents interaction strength, while colour intensity indicates significance.
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P4HB/CD44/CD45, among others (Figure 8G, Supplementary

Figures S7D-E). This matrix remodelling may affect tumour

progression by altering tissue stiffness and matrix density (48, 49).

Additionally, both groups predominantly sent signals such as

MHC-I, MIF, and APP (Supplementary Figure S7B). Second, we

found that TUBB-positive cells also participated in the transmission

of multiple specific signals, including CD99 and HLA-F (Figure 8G,

Supplementary Figure S7C). The involvement in these signalling

pathways suggests that TUBB may influence disease progression by

regulating immune responses. These findings collectively depict the

complex functions of TUBB in CRC: on one hand, it may promote

tumorigenesis by enhancing cell migration, while on the other hand,

it may influence disease progression by regulating the

microenvironment and immune responses.
3.9 The clinical exploration and validation
of TUBB

To further investigate the clinical significance of TUBB, we

obtained paired clinical tissue samples from colorectal cancer

patients at Yangpu Hospital, utilizing these for Western Blot

(n=59) and quantitative Reverse Transcription Polymerase Chain

Reaction (qRT-PCR) analyses (n=35). The results from Western

Blot indicated a notable increase in the expression levels of the

TUBB gene in cancerous tissues compared to adjacent non-

cancerous tissues (Figure 9A, Supplementary Figure S8), a result

that was corroborated by qRT-PCR at the mRNA level (Figure 9B).

Following these observations, we performed diagnostic Receiver

Operating Characteristic (ROC) analyses (Figure 9C) and KM

Plotter evaluations (Figure 9D) on TUBB, further validating its

diagnostic and prognostic predictive capabilities through survival

analysis of our colorectal cancer cohort (n=59) (Figure 9E).

Additionally, we accessed clinical data and gene expression

profiles of 644 colorectal cancer cases from the TCGA database

for this analysis (Table 1). Our findings revealed a significant

correlation between TUBB expression levels and variables such as

age and CEA levels. By analysing the differential expression of

TUBB at the protein and mRNA levels in clinical samples from our

hospital, we have confirmed the difference TUBB expression

between different age groups (Figures 9F, G). Consequently, our

research emphasizes the association of TUBB with clinical

characteristics of CRC.
3.10 TUBB promotes the viability, anti-
apoptosis and metastasis

In order to explore the functions of TUBB in CRC, TUBB was

knocked down by siRNA in SW620 and overexpressed in HCT116,

and the efficiency was verified by western blotting (Figure 10A).

EDU results showed that SW620 had a decreased proliferation,

while HCT116 had an increased viability (Figure 10B).

Furthermore, we detected the effect of TUBB on CRC apoptosis,

and our study indicated that overexpression of TUBB significantly
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reduced the apoptosis rate of CRC cells, while knockdown of TUBB

significantly increased the apoptosis rate of CRC cells (Figure 10C).

The wound healing assay showed a marked decrease in cell

migration following TUBB knockdown (Figure 10D) and an

increase after its overexpression. Consistent with the results,

transwell assays verified that TUBB knockdown inhibited SW620

invasion and migration, and its overexpression in HCT116 had the

opposite trend (Figures 10E, F).
4 Discussion

CRC is a malignant tumour with high global incidence and

mortality rates and is characterized by significant molecular

heterogeneity and a complex tumour microenvironment (50, 51).

Although traditional treatments such as surgery, chemotherapy,

and targeted therapy have made some progress, the prognosis for

advanced patients remains poor. While current single-cell

sequencing studies have revealed heterogeneous characteristics of

CRC cell populations and their interactions with the

microenvironment, providing new perspectives for understanding

tumour progression mechanisms and immune escape, individual

datasets are often limited by sample size and population

characteristics, making it difficult to comprehensively capture

disease heterogeneity and complexity (10, 52). Therefore,

integrating multiple CRC single-cell datasets is particularly

necessary. In this study, we analysed 41 samples from 4 datasets,

revealing not only the cellular diversity in stromal and immune

components but also the identification of multiple cell subgroups

that may play key roles in disease development, such as the SecTA

subgroup with special proliferation and invasion characteristics.

More importantly, our study highlights the complexity of cellular

crosstalk in CRC, which may be a key factor driving tumour

microenvironment remodelling. These findings provide certain

clues for the development of new therapeutic strategies.

Among epithelial cell subtypes, we found EECs and SecTA to be

significantly perturbed subgroups in the tumour group, and in our

cell communication analysis, we emphasized the important roles of

SecTA and SPCs in communication networks. We used AUCell to

score each epithelial cell subtype and calculated significantly

activated pathways, distinguishing them from other subtypes. For

SecTA, positive regulation of cell population proliferation, positive

regulation of cellular processes, and regulation of apoptotic

processes were three specifically activated pathways, suggesting a

highly active state (Supplementary Figure S4A). Combined with its

highly expressed genes, we speculate that SecTA play a

multifunctional promoter role in CRC progression. By

maintaining high proliferative activity and resisting apoptotic

signals, SecTA have significant survival advantages; moreover,

these cells actively participate in extracellular matrix remodelling

by secreting factors such as TGFBI and TIMP1 and combining with

CXCL1-mediated angiogenesis and immune cell recruitment,

effectively reconstructing the tumour microenvironment (53–55).

More importantly, SecTA expresses multiple molecules related to

cell migration and adhesion, such as CEACAM6 and TM4SF1,
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which not only increase tumour cell invasiveness but also create

conditions for distant metastasis (56, 57). Additionally, by

regulating inflammatory responses and immune cell recruitment,

SecTA may participate in shaping an immune microenvironment

favourable for tumour growth. This complex regulatory network

makes it a key cell subgroup driving tumour progression, which is

also verified in the cell communication section.

We found that sT cells were the most significantly perturbed

lymphoid cell subgroup between the tumour and normal groups.

This subgroup was highly expressed not only in mitochondrial
Frontiers in Immunology 18
genes but also in ribosome-related genes and multiple cell stress-

related genes. This suggests both high cellular metabolic levels and

high energy demands on the one hand and active protein synthesis

on the other hand, indicating that this T-cell subgroup is in a stress

state (58, 59). When we analysed myeloid cell heterogeneity, the

ActMono (activated monocytes) state was significantly enriched in

tumour tissues. Through pseudotime analysis, multiple algorithms

consistently identified this subgroup as one of the main endpoints

of myeloid cell differentiation, suggesting the reprogramming effect

of the tumour microenvironment on immune cell fate
FIGURE 9

Exploration and confirmation of the clinical significance of TUBB. (A) The protein expression of TUBB in 21 pairs of tissues. (B) The mRNA expression
of TUBB in the enrolled 35 patients. (C) Receiver operating characteristic curve for TUBB expression in normal samples and adjoining CRC tissues
and samples from TCGA. (D) RFS and OS were expressed using Kaplan–Meier survival curves. (E) Kaplan–Meier survival curves of RFS in cohort from
Yangpu Hospital (n=59). (F, G) Differences in TUBB expression in age subgroups at protein and mRNA level (n=59). OS, overall survival; RFS,
recurrence-free survival. **P < 0.01, ***P < 0.001 compared to the corresponding groups.
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determination. To better understand the functional characteristics

of ActMono, we used the AUCell algorithm for pathway

enrichment analysis of various myeloid cells (Supplementary

Figures S5I, J). The results revealed that ActMono activated a

series of characteristic pathways: first, the highly activated state

was maintained through the activation of metabolic pathways such

as protein folding and NAD biosynthesis; second, these cells

maintained innate immune functions such as antimicrobial

peptide production and Toll-like receptor signal transduction (60,

61); and, most importantly, they showed the ability to regulate T-

cell proliferation and migration, suggesting a potential pivotal role

in connecting innate and adaptive immune responses. This

combination of functional characteristics makes ActMono a

potential microenvironment regulator (62). On the one hand, its

accumulation in tumour tissue might reflect changes in the immune
Frontiers in Immunology 19
microenvironment; on the other hand, through its unique

immunomodulatory functions, it might influence the shaping of

the microenvironment. This bidirectional effect might not only

influence disease progression but also affect immunotherapy

efficacy (63). Therefore, an in-depth understanding of the

functional characteristics and regulatory mechanisms of ActMono

might provide important clues for the development of new

therapeutic strategies.

This study, through the integration of multiple single-cell

datasets, provides a comprehensive understanding of tumour cell

functional characteristics during CRC progression and their effects

on the immune microenvironment, particularly emphasizing the

important role of the SecTA subgroup in tumour progression

through the regulation of multiple mechanisms, including

proliferation, apoptosis, and microenvironment remodelling. We

found that ActMono, an important endpoint state of myeloid cells,

not only is significantly enriched in tumour tissue but also plays a

key role in connecting innate and adaptive immune responses

through regulating T-cell function, suggesting its important role

in shaping the tumour immune microenvironment. These findings

provide important clues for understanding the immune escape

mechanisms of CRC and developing new therapeutic strategies.

Besides, through machine learning algorithms, we have established

a CRS system that demonstrates outstanding prognostic

performance. Meanwhile, there have been no previous studies on

the role of TUBB in colorectal cancer. Our study, for the first time,

reveals the role of TUBB in CRC progression by combining

bioinformatics with clinical sample analysis, emphasizing its

potential as a significant risk factor and we also validated its

proliferation, anti-apoptosis, and metastasis ability.

Despite the comprehensive nature of our integrative single-cell

analysis and the identification of key cellular subpopulations such as

SecTA and ActMono, we acknowledge several limitations in this study.

First, our findings rely heavily on in silico analyses, and although we

have validated TUBB expression and function using patient samples

and in vitro assays, the downstream signalling pathways regulated by

TUBB and the mechanistic interdependencies between SecTA,

ActMono, and immune modulation remain to be experimentally

elucidated. Future studies utilizing in vivo models and perturbation

assays, such as gene editing or pathway inhibition, will be necessary to

unravel the causative roles of these interactions. Second, technical

limitations inherent to single-cell RNA sequencing, such as dropout

events and batch effects, may affect gene expression quantification and

cell type annotation. Although we applied established correction and

integration methods, residual biases may persist. Third, while the CRC

Risk Score (CRS) prognostic model demonstrated good performance in

internal validation, its generalizability remains to be confirmed.

External validation using independent CRC cohorts and cross-

validation across additional publicly available datasets are needed to

further assess the model’s robustness and minimize the risk of

overfitting. Lastly, although we integrated 41 samples from four

datasets, the sample size is still relatively limited. Future studies with
TABLE 1 Clinical characteristics of patients with colorectal cancer.

Characteristics Low expres-
sion of TUBB

High expres-
sion of TUBB

P
value

n 322 322

Pathologic T stage,
n (%)

0.411

T1&T2 61 (9.5%) 70 (10.9%)

T3&T4 258 (40.2%) 252 (39.3%)

Pathologic N stage,
n (%)

0.873

N0 183 (28.6%) 185 (28.9%)

N1&N2 137 (21.4%) 135 (21.1%)

Pathologic M stage,
n (%)

0.195

M0 226 (40.1%) 249 (44.1%)

M1 49 (8.7%) 40 (7.1%)

Pathologic stage,
n (%)

0.956

Stage I&Stage II 175 (28.1%) 174 (27.9%)

Stage III&Stage IV 138 (22.2%) 136 (21.8%)

Age, n (%) 0.011

<= 65 122 (18.9%) 154 (23.9%)

> 65 200 (31.1%) 168 (26.1%)

Gender, n (%) 0.693

Female 148 (23%) 153 (23.8%)

Male 174 (27%) 169 (26.2%)

CEA level, n (%) 0.049

<= 5 123 (29.6%) 138 (33.3%)

> 5 88 (21.2%) 66 (15.9%)
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larger, more diverse patient cohorts andmulti-omics integration will be

critical to validate and extend our findings, and to explore the

translational potential of SecTA, ActMono, and TUBB as therapeutic

targets or biomarkers.
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4. André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab
in microsatellite-instability-high advanced colorectal cancer. New Engl J medicine.
(2020) 383:2207–18. doi: 10.1056/NEJMoa2017699

5. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, et al.
Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer.
New Engl J medicine. (2019) 381:1632–43. doi: 10.1056/NEJMoa1908075

6. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al.
The consensus molecular subtypes of colorectal cancer. Nat Med. (2015) 21:1350–6.
doi: 10.1038/nm.3967

7. Schrock AB, Ouyang C, Sandhu J, Sokol E, Jin D, Ross JS, et al. Tumour
mutational burden is predictive of response to immune checkpoint inhibitors in
MSI-high metastatic colorectal cancer. Ann oncology: Off J Eur Soc Med Oncology.
(2019) 30:1096–103. doi: 10.1093/annonc/mdz134

8. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al.
Tumour mutational burden as an independent predictor of response to
immunotherapy in diverse cancers. Mol Cancer Ther. (2017) 16:2598–608.
doi: 10.1158/1535-7163.MCT-17-0386

9. Yarchoan M, Hopkins A, Jaffee EM. Tumour mutational burden and response
rate to PD-1 inhibition. New Engl J medicine. (2017) 377:2500–1. doi: 10.1056/
NEJMc1713444

10. Mei Y, Xiao W, Hu H, Lu G, Chen L, Sun Z, et al. Single-cell analyses reveal
suppressive tumour microenvironment of human colorectal cancer. Clin Transl Med.
(2021) 11:e422. doi: 10.1002/ctm2.422

11. Qian J, Olbrecht S, Boeckx B, Vos H, Laoui D, Etlioglu E, et al. A pan-cancer
blueprint of the heterogeneous tumour microenvironment revealed by single-cell
profiling. Cell Res. (2020) 30:745–62. doi: 10.1038/s41422-020-0355-0

12. Wang R, Li J, Zhou X, Mao Y, Wang W, Gao S, et al. Single-cell genomic and
transcriptomic landscapes of primary and metastatic colorectal cancer tumours.
Genome Med. (2022) 14:93. doi: 10.1186/s13073-022-01093-z

13. Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O’Brien SA, et al. Single-
cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell.
(2020) 181:442–59.e29. doi: 10.1016/j.cell.2020.03.048
14. Chu X, Li X, Zhang Y, Dang G, Miao Y, Xu W, et al. Integrative single-cell
analysis of human colorectal cancer reveals patient stratification with distinct immune
evasion mechanisms. Nat Cancer. (2024) 5:1409–26. doi: 10.1038/s43018-024-00807-z

15. Zhang S, Fang W, Zhou S, Zhu D, Chen R, Gao X, et al. Single cell transcriptomic
analyses implicate an immunosuppressive tumour microenvironment in pancreatic
cancer liver metastasis. Nat Commun. (2023) 14:5123. doi: 10.1038/s41467-023-40727-7

16. Guan J, Wang G, Wang J, Zhang Z, Fu Y, Cheng L, et al. Chemical
reprogramming of human somatic cells to pluripotent stem cells. Nature. (2022)
605:325–31. doi: 10.1038/s41586-022-04593-5

17. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088.
doi: 10.1038/s41467-021-21246-9

18. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph
embedding resolves complex single-cell trajectories. Nat Methods. (2017) 14:979–82.
doi: 10.1038/nmeth.4402

19. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015)
12:453–7. doi: 10.1038/nmeth.3337

20. Jin Y, Wang Z, He D, Zhu Y, Chen X, Cao K. Identification of novel subtypes
based on ssGSEA in immune-related prognostic signature for tongue squamous cell
carcinoma. Cancer Med. (2021) 10:8693–707. doi: 10.1002/cam4.v10.23
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