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chronic kidney disease
Hanchao Gao1†, Ting Xie2†, Yunyi Li2†, Zigan Xu1†,
Zhuoheng Song1, Huixia Yu2, Hongming Zhou1, Weilong Li1,
Chen Yun3*, Baozhang Guan2*, Shaodong Luan1*

and Lianghong Yin2*
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Guangdong, China, 2Department of Nephrology, The First Affiliated Hospital of Jinan University,
Guangzhou, Guangdong, China, 3Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
Gasdermins (GSDMs), functioning as membrane perforating proteins, can be

activated by canonical inflammasomes, noncanonical inflammasomes, as well as

non-inflammasomes, leading to cell pyroptosis and the subsequent release of

inflammatory mediators. Increasing evidence has implicated that GSDMs are

associated with chronic kidney disease (CKD), including diabetes nephropathy,

lupus nephritis, obstructive nephropathy, and crystalline nephropathy. This

review centers on the role of GSDMs-mediated pyroptosis in the pathogenesis

of CKD, providing novel ideas for enhancing the prognosis and therapeutic

strategies of CKD.
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1 Introduction

Chronic kidney disease (CKD), a pressing concern in global public health, imposes a

considerable disease burden and poses a major challenge (1). CKD ranked as the 16th most

common cause of death globally in 2016 and is expected to rise to 5th by 2040 (2). The

global prevalence of CKD is about 9.1%, while awareness of CKD among the general

population and high-risk groups, at just only 6% and 10% (3, 4). Currently, the definition of

CKD is structural destruction or impaired function of the kidney lasting 3 months or more

(4). Renal fibrosis, a common pathological manifestation of CKD, is characterized by

glomerulosclerosis, tubular atrophy, interstitial fibrosis, and persistent inflammation (5, 6).

With the continuous destruction of renal tissue, renal function progressively declines, and

eventually it will develop into end stage renal disease. The ensuing need for renal

replacement therapies, including peritoneal dialysis, hemodialysis, and kidney

transplantation, undoubtedly further exacerbate the economic burden on patients.
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Pyroptosis, a necrotic programmed cell death mediated by

gasdermins (GSDMs), is characterized by cell membrane rupture

and the release of inflammatory factors such as interleukin-1 (IL-

1b) and interleukin-18 (IL-18) (7, 8). GSDMs were initially

identified in macrophages in 1992 and subsequently named in

2001 (9, 10). Shao et al. characterized GSDMs as the executors of

pyroptosis, and the in 2018, the definition was revised to cell death

involving GSDMs-formed membrane pores (7, 11, 12). Pyroptosis

primarily occurs in myeloid phagocytes, including macrophages,

dendritic cells, and neutrophils, with evidence later confirming its

presence in CD4+ T cells, keratinocytes, epithelial cells, and neurons

as well (13, 14). Pyroptosis is involved in innate immunity by

eliminating pathogens, including bacteria, fungi, and viruses,

through the mediation of inflammatory response. However,

uncontrolled pyroptosis has the potential to induce inflammation

in adjacent cells and tissues, thereby contributing to the initiation

and progression of diseases (15–17).

Recently, a wealth of evidence indicates that GSDMs-mediated

pyroptosis plays a pivotal role in the pathogenesis and progression of

CKD. This paper presents an overview of the fundamental

characteristics of the GSDMs family and examines and summarizes

their roles and potential mechanisms in CKD, providing novel insights

for enhancing the prognosis and treatment of this condition.
2 Gasdermins

Gasdermins were initially discovered in the gastrointestinal tract

and skin of mice, hence they were named “Gasdermins (GSDMs)” (18,

19). In humans, there are six GSDMs genes: GSDMA, GSDMB,

GSDMC, GSDMD, GSDME (also known as DNFA5), and PJVK

(pejvakin, also known as GSDMF, DFNB59). In mice, there are three

Gsdma genes (Gsdma1-3), four Gsdmc genes (Gsdmc1-4), Gsdmd,

Gsdme, and Pjvk, while the Gsdmb orthologs are lacking (20, 21)

(Table 1). In kidney tissue, GSDMD was highly expressed, GSDMC

and GSDME were moderately expressed, GSDMB was low, and

GSDMA was not detected (21). Except for PJVK, members of the
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GSDMs protein family are composed of three parts, namely, the N-

terminal pore-forming domain (PFD, NTD), the linker part, and the C-

terminal inhibitory domain (RD, CTD) (22). When the body is

exposed to various internal and external stimuli, GSDMs undergo

cleavage by cysteinyl aspartate-specific protease (Caspases) or

granzymes, and the dissociated N-terminal structural oligomers

punch holes in the cell membrane, mediating the release of

inflammatory factors, as well as the flux of water and electrolyte

flow, ultimately leading to pyroptosis.
2.1 GSDMA

Human GSDMA is located on chromosome 17 and is mainly

expressed in epithelial cells of the skin and upper digestive tract

(18). Gsdma1 is expressed specifically in the heart region, Gsdma2 is

expressed in the fundus and pylorus, and Gsdma3 is mainly

expressed in the skin (19). Overexpression of GSDMA is

associated with glioma immune escape and poor prognosis in

patients, while GSDMA knockdown increases T cell antitumor

response via immunotherapy (23). GSDMA can promote the

development of esophageal cancer and cisplatin resistance (24). In

addition, GSDMA has been implicated in systemic sclerosis,

asthma, intestinal bowel disease (IBD), and other immune-related

diseases (25–27). However, the role of GSDMA in kidney disease

has not been previously reported.
2.2 GSDMB

Human GSDMB is also located on chromosome 17 and is

mainly expressed in the gastrointestinal tract, thyroid, skin, lungs,

and kidneys (18, 28). Besides normal tissues, GSDMB is also highly

expressed in tumor tissues, such as bladder cancer, clear cell renal

cell carcinoma, gastric cancer, and non-small cell lung cancer (29–

32). Furthermore, GSDMB is also associated with IBD, asthma,

allergic rhinitis, psoriasis, and other diseases (33–36).
TABLE 1 Expression and activator of gasdermins.

Gene
Chromosome location

Main expression sites Activator
Human Mice

GSDMA 17q21 11D skin, upper gastrointestinal
tract

SpeB
Caspase-3/4/7

GSDMB 17q21 – gastrointestinal tract, thyroid,
skin, lungs and kidney

GZMA
Caspase-1/3/4/6/7

GSDMC 8q24.1 15 skin, spleen, trachea,
gastrointestinal tract

Caspase-6/8

GSDMD 8q24.3 15 sophagus, stomach, skin Caspase-1/4/5/11

GSDME 7p15 6B2.3 gastrointestinal tract, kidney Caspase-3

PJVK 2q31.2 2C3 auditory pathway –
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2.3 GSDMC

Human GSDMC is located on chromosome 8 (8q24.1), while

mouse Gsdmc is located on chromosome 15, and is mainly

expressed in skin, spleen, trachea, and gastrointestinal tract (37–

39). Under hypoxic conditions, GSDMC transcription was

enhanced in breast tumor cells, and GSDMC in turn converted

TNF-a-induced apoptosis to pyroptosis (40). In addition, GSDMC

is also associated with esophageal cancer, liver cancer, colorectal

cancer, pancreatic cancer, and renal clear cell carcinoma (41–46).
2.4 GSDMD

Similar to GSDMC, human GSDMD is also located on

chromosome 8 (8q24.3), and mouse Gsdmd is located on

chromosome 15, and is predominantly expressed in tissues such

as the gastrointestinal tract, kidney, and skin (47, 48). GSDMD is

the first member of the GSDM family to be found to perform

pyroptosis, and the mechanism is well understood (49). GSDMD is

mainly cleaved by Caspases at the Asp275 or Asp276 site, Caspase-

1/4/5 in humans and Caspase-1/11 in mice (47, 50). GSDMD is

involved in a variety of inflammatory diseases such as non-alcoholic

steatohepatitis, acute pancreatitis, colitis, sepsis, systemic lupus

erythematosus, psoriasis (51–55), and is also associated with acute

myocardial infarction, stroke, colon cancer, and other non-

inflammatory diseases (56–58). In addition, GSDMD is associated

with renal disease, which is described in detail below.
2.5 GSDME

GSDME, also known as deafness, autosomal dominant 5

(DFNA5), is localized on chromosome 7 in humans and

chromosome 6 in mice, exhibiting ubiquitous expression across

various normal tissues, notably including the gastrointestinal tract

and kidney (59). In addition to tumors, GSDME is also involved in

hearing loss, neurodegeneration, atherosclerosis, and many renal

diseases, which are described in detail below (60–64).
2.6 PJVK

PJVK, situated on chromosome 2 in both humans and mice, is

majored expresses in the inner ear and involved in auditory

pathways (65). Mutations in PJVK can lead to hearing loss (66).

The role of PJVK in renal diseases has not been described.
3 Molecular mechanism of pyroptosis

At present, there are two main types of pyroptosis pathways

mediated by Gasdermins: inflammasome-dependent pathway

(canonical pathway and non-canonical pathway) and non-

inflammasome-dependent pathway (Figures 1, 2).
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3.1 Canonical inflammasome-dependent
pathway

In the canonical pathway, inflammasomes are intricate multi-

molecular assemblies that encompass pattern recognition receptors

(PRRs), apoptosis-associated speck like protein (ASC), and pro-

Caspase-1 (67). As sensors that receive pathogen-associated

molecular patterns (PAMP) or damage associated molecular patterns

(DAMP) stimuli, PRRs mainly include NLR/NOD-like receptors

(NLRP1, NLRP3, NLRP6, NLRP9, NLRC4), Pyrin, and AIM2-like

receptor (68). NLRP1 can be activated by Anthrax lethal toxin (LeTx),

bacterial muramyl dipeptide, T. gondii, and ATP depletion (69).

NLRP3 senses a variety of stimuli, including microbial toxins, viral

RNA, ATP, ROS, uric acid crystals, cholesterol, and particulate matter

(70–72). Microbial RNA, metabolites, Lipoteichoic acid, and LPS can

be used as NLRP6 activation signals (73–75). NLRP9 and AIM2

inflammasomes can recognize pathogen dsDNA (76, 77). Bacterial

flagellin can induce the activation of NLRC4 inflammasome (78). Pyrin

cannot directly recognize PAMP or DAMP but can be activated when

bacterial toxins induce GTPase inactivation (79). PAMP or DAMP

activates TLRs/MyD88/NF-kB signaling pathway, leading to

transcriptional upregulation of NLRP3, ASC, pro-Caspase-1, pro-IL-

1b, and pro-IL-18 (80, 81). After inflammasome assembly, activated

Caspase-1 cleaves pro-IL-1b and pro-IL-18 to mature IL-1b and IL-18,

and simultaneously cleaves GSDMD to release the N terminus of

GSDMD (7, 82). GSDMD-NTs oligomerize in the cell membrane to

form transmembrane pores to release IL-1b and IL-18 as well as lead to
pyroptosis (15, 83).
3.2 Non-canonical inflammasome-
dependent pathway

In the non-canonical pathway, inflammasomes, human

Caspase-4/5 and mouse Caspase-11, specifically recognize the

lipopolysaccharide (LPS) by N-terminal CARD (84). The cleavage

of GSDMD by Caspase-4/5/11 triggers the process of pyroptosis

(47, 50). Caspase-11 fails to cleave pro-IL-1b and pro-IL-18 like

Caspase-4/5, but instead activates Pannexin-1 and releases ATP.

Subsequently, ATP binds to the P2X7 receptor (P2X7R), causing K+

efflux and further activating NLRP3 inflammasome to indirectly

cleave pro-IL-1b and pro-IL-18 (85).
3.3 Non-inflammasome-dependent
pathway

The human pathogen Group A Streptococcus (GAS) secretes the

cysteine protein streptococcal exotoxin B (SpeB), which cleaves

GSDMA at the junction area of Gln246 and triggers pyroptosis of

skin epithelial cells and keratinocytes, independent of Caspase (86, 87).

In HEK293T cells, Caspase-3/4/7 are able to cleave GSDMA to induce

pyroptosis (88). Granzyme A (GZMA), secreted by natural killer cells

and cytotoxic T lymphocytes, cleaves GSDMB at the K244 site of the

junction and targets phospholipids on the membrane of Gram-
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negative bacteria to directly kill bacteria (89, 90). GSDMB can bind to

Caspase-1/3/4/6/7 and promote pyroptosis (91, 92). It has also been

reported that activated Caspase-7 cuts GSDMB at the D91 site to block

GSDMB-mediated pyroptosis (93). a-Ketoglutarate (a-KG)
contributes to pyroptosis by enabling Caspase-8 to cleave GSDMC at

the Asp240 site, with a similar cleavage occurring at the Asp233 site in

mouse GSDMC4 (94). In addition, GSDMC is also cleaved by Caspase-

6 to induce pyroptosis (40). Under hypoxia conditions, the increased

expression of GSDMC can transform the apoptosis induced by

Caspase-8 into pyroptosis (95). Besides Caspase-1/4/5/11, neutrophil

elastase (ELANE) and cathepsin G (CatG) can also activate GSDMD

(96, 97). Caspase-8 activated by Yersinia can cleave GSDMD and

GSDME to trigger pyroptosis (98). GSDME can also be specifically

cleaved by Caspase-3 at the Asp270 site to induce pyroptosis, which is

transformed into apoptosis after GSDME knockout or promoter

demethylation (11, 95, 99, 100).
Frontiers in Immunology 04
4 Gasdermins and CKD

Inflammation and fibrosis are prevalent pathological

characteristics in all forms of CKD, and persistent inflammation

can drive fibrosis progression, leading to the pathogenesis of CKD

(5, 101). Damaged cells secrete pro-inflammatory cytokines to

recruit inflammatory cells for infiltration, and release pro-fibrotic

mediators to promote proliferation of myofibroblasts, resulting in

the production and deposition of a large amount of extracellular

matrix, ultimately causing pathological changes and impaired renal

function (101, 102). Recently, a great number of studies has

demonstrated that GSDMs-mediate pyroptosis, a pro-

inflammatory form of cell death, which is associated with the

pathogenesis of various CKD, including diabetic nephropathy,

lupus nephritis, obstructive nephropathy, and crystal nephropathy

(Table 2, Figure 3).
FIGURE 1

Inflammasome-dependent pathway (canonical pathway and non-canonical pathway). The canonical pathway: NLRP3, ASC, and pro-Caspase-1
assemble into inflammasome in response to PAMP or DAMP. After inflammasome assembly, activated Caspase-1 cleaves pro-IL-1b and pro-IL-18 to
mature IL-1b and IL-18, and simultaneously cleaves GSDMD to release the N terminus of GSDMD. GSDMD-NT oligomerize in the cell membrane to
form transmembrane pores, causing K+ efflux, Na+ and water influx, followed by cell swelling and rupture, releasing IL-1b and IL-18, leading to
pyroptosis. The non-canonical pathway: inflammasome Caspase-4/5/11 recognizes Lipopolysaccharide (LPS). Activated Caspase-4/5/11 cleaved
GSDMD to induce pyroptosis. Caspase-11 activates the Pannexin-1 channel and releases ATP, which further activates the NLRP3 inflammasome to
indirectly cut pro-IL-1b and pro-IL-18.
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4.1 Diabetic nephropathy

Diabetic nephropathy (DN) is a prevalent microvascular

complication of diabetes mellitus, emerging as a major type of

CKD (103). Pathological changes of diabetic nephropathy include

cells damage (podocytes, renal tubular epithelial cells (RTECs),

endothelial cells), glomerular sclerosis, glomerular basement

membrane thickening, mesangial matrix increase, tubular

interstitial inflammation, and fibrosis (104).

Recent studies have revealed a correlation between GSDMs-

mediated pyroptosis and DN, suggesting a potential mechanistic

link between the two processes. In a recent study, high glucose (HG)

or streptozotocin (STZ) stimulated pyroptosis in renal cells

(podocytes, renal tubules, human glomerular endothelial cells,

and mouse glomerular endothelial cells) though the Caspase-11/

GSDMD pathway, resulting in impaired renal function, manifested
Frontiers in Immunology 05
by significant increases in serum nitrogen, serum creatinine, and

urinary albumin levels (105). After knocking down the Gsdmd gene

in DN mice, pyroptosis and IL-18 were markedly reduced, resulting

in improved renal function (105).An et al. showed that punicalagin

effectively inhibit NLRP3/Caspase-1/GSDMD/IL-1b pathway, and

significantly ameliorates renal function, glomerular sclerosis, renal

interstitial fibrosis and other pathological changes in diabetic mice

(106). Cheng et al. also demonstrated that the expression levels of

Caspase-4/11, GSDMD-N, IL-1b, and IL-18 were markedly elevated

in HG-treated podocytes or podocytes from diabetic mice, and the

deficiency of Caspase-11 or Gsdmd alleviated inflammation and

podocytes loss in diabetic mice (107). Immunohistochemistry

staining showed that the levels of fibronectin, alpha-smooth

muscle actin, and the number of F4/80+ macrophages in DN

mice were higher than the control group (108). Western blotting

results indicated that the expressions of GSDMD-FL, GSDMD-NT,
FIGURE 2

Non-inflammasome-dependent pathway. Streptococcal exotoxin B (SpeB), secreted by human pathogen Group A Streptococcus (GAS), and
Caspase-3/4/7 are able to cleave GSDMA to induce pyroptosis. Granzyme A (GZMA), secreted by natural killer cells and cytotoxic T lymphocytes,
and Caspase-1/3/4/6/7 cleave GSDMB. a-ketoglutarate (a-KG) induces pyroptosis through Caspase-8 cleavage at GSDMC. In addition, GSDMC is
also cleaved by Caspase-6 to induce pyroptosis. Neutrophil elastase (ELANE) and cathepsin G (CatG) can activate GSDMD. Caspase-8 activated by
Yersinia can cleave GSDMD and GSDME to trigger pyroptosis. GSDMC and GSDME can transform apoptosis into pyroptosis.
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IL-1b, IL-18, and a-SMA were increased in DN mice, suggesting

that pyroptosis was associated with renal tubule injury and

interstitial inflammation (108). In the rat DN model and HG-

treated human kidney proximal tubular epithelial cells (HK-2 cells),

Caspase-1/3, GSDME, GSDME-NT, and IL-1b were significantly

upregulated. In rats that underwent renal cortical injection of

AAV9-shGSDME to knockdown Gsdme in the kidney, reduced

renal injury and pyroptosis were observed, demonstrating that

Caspase-3/GSDME promotes pyroptosis and contributes to renal

injury in DN (109).

In addition, pyroptosis was also detected in renal biopsy tissues

obtained from DN patients. When compared with patients with

glomerular minor lesion, the expressions of Caspase-1 and GSDMD

in renal tubular cells were increased in DN patients (108). Increased

expression of GSDMD in DN patients was positively correlated with

renal tubulointerstitial fibrosis and negatively correlated with renal

function (110). Additionally, the expression of NLRP3 was

upregulated in DN patients, and demonstrating a positive

association with tubulointerstitial injury (111).

These studies indicate that GSDMD and GSDME are activated

in DN, and GSDMD or GSMDE mediated-pyroptosis promotes the

pathogenesis of DN.
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4.2 Lupus nephritis

Systemic lupus erythematosus (SLE) is amultisystem autoimmune

disease characterized by autoantibody formation, immune complex

deposition, and chronic inflammation (112). Kidneys are the affected

organs in SLE, with up to 60% of patients developing lupus nephritis

(LN) (113). The pathological mechanism of LN involves the

deposition of immune complexes, infiltration of inflammatory cells,

and injury or death of glomerular and tubular cell (114).

Studies have shown that characteristic autoantibodies and typical

clinical and renal pathological changes of SLE can be produced after

intraperitoneal injection of pristane (115, 116). Increased expressions of

pyroptosis related proteins (NLRP3, GSDMD, and Caspase-1) and

inflammatory factors (TNF-a and IL-1b) were observed in pristane-

induced LNmicemodels (117). Cao et al. treated LN patients andMRL/

lpr mice with a combination of mycophenolate mortiate, calcineurin

inhibitors, and steroids, resulting in significant inhibition of Caspase-1/

GSDMD-mediated pyroptosis and alleviation of disease progression

(118). GSDME was observed to be highly expressed in the renal tubules

of SLE patients and pristane-induced lupus mice, while Caspase-3/

GSDME-mediated pyroptosis, autoantibody, glomerular IgG deposition

and renal lesions were ameliorated in Gsdme-/- lupus mice (119).
TABLE 2 Involved gasdermins and roles of gasdermins in chronic kidney disease.

Diseases Research objects Stimulation Gasdermins Roles Reference

DN Podocytes, MGECs, HGECs
Casp-11−/− mice, Gsdmd−/− mice,
db/db mice

HG
HFD/STZ
-

GSDMD Renal functional deterioration,
inflammation, glomerular sclerosis, and
renal interstitial fibrosis

(105–107)

HK-2 cells
C57BL/6 mice

HG
HFD/STZ

GSDMD Tubular injury, interstitial inflammation,
and renal fibrosis

(108)

HK-2 cells, rat HBZY-1 cells
Rats

HG
STZ

GSDME Tubular injury and inflammation (109)

DN patients – GSDMD Renal tubulointerstitial fibrosis and renal
functional deterioration

(108, 110)

LN HGECs
Podocytes from MRL/lpr mice
BALB/c mice
MRL/lpr mice, LN patients

LPS
LPS+ATP
Pristane
-

GSDMD Inflammation (117, 118)

HK-2 cells
Gsdme−/− mice,
SLE patients, lupus mice

TNF-a+CHX
Pristane
-

GSDME Tubular injury, interstitial inflammation,
and renal fibrosis

(119)

ON Gsdme−/− mice UUO GSDME Inflammation and renal fibrosis (122)

RTECs
HK-2 cells
Gsdme−/− mice

OGSD+TNF-a
TGF-b1
5/6 nephrectomy/UUO

GSDME Tubular injury, inflammation, and
renal fibrosis

(63, 123)

CN HK-2 cells
Gsdmd−/− mice

CaOx crystals/Oxalate
Glyoxylic acid

GSDMD Inflammation (131, 132)

NRK-52E cells, RTECs
Gsdmd−/− mice, HN rats

Uric acid;
Potassium
oxonate+adenine

GSDMD Inflammation and renal fibrosis (138–140)
DN, diabetic nephropathy; MGECs, mouse glomerular endothelial cells; HGECs, human glomerular endothelial cells; HG, high clucose; HFD, high-fat diet; STZ, streptozotocin; HK-2 cells,
human kidney proximal tubular epithelial cells; HBZY-1 cells, glomerular mesangial cells; LN, Lupus Nephritis; MRL/lpr mice, MRL/mpj-Faslpr (MRL/lpr) mice; TNF-a, tumor necrosis factor-a;
CHX, cycloheximide; SLE, Systemic Lupus Erythematosus; UUO, unilateral ureteral obstruction; RTECs, renal tubular epithelial cells; OGSD, oxygen-glucose-serum deprivation; TGF-b1,
transforming growth factor-beta 1; NRK-52E cells, renal tubular epithelial cells; HN, hyperuricemic nephropathy.
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4.3 Obstructive nephropathy

The causes of obstructive nephropathy (ON) include urinary

calculi, congenital stenosis, and tumor masses. The main

characteristics of ON include renal dysfunction, inflammation,

and renal interstitial fibrosis, which may progress to CKD with

the progression of the disease (120, 121).
Frontiers in Immunology 07
Several studies have used the unilateral ureteral obstruction (UUO)

model to investigate the role of GSDMs in ON. In UUO model,

Caspase-11 was activated to cleave GSDMD to mediate pyroptosis,

which induced the formation neutrophil extracellular trap and the

transformation of macrophage to myofibroblast, promoting

inflammation and renal fibrosis (122). Furthermore, Li et al.’s

research suggested that Caspase3/GSDME-mediated pyroptosis of
FIGURE 3

Summary of potential mechanisms of GSDMD/GSDME-mediated pyroptosis in chronic kidney disease. (A) Diabetic Nephropathy. Under high glucose
or high-fat diet/streptozotocin stimulation, GSDMD is activated by Caspase-1/4/11, while GSDME is activated by Caspase-3, triggering pyroptosis,
leading to impaired renal function, increased inflammation and fibrosis. (B) Lupus Nephritis. After the generation of autoantibodies by injection of
pristane, GSDMD and GSDME can be cleaved by Caspase-1 and Caspase-8, respectively. Subsequently, pyroptosis and renal damage occur.
(C) Obstructive Nephropathy. Following obstruction of the ureter, pyroptosis induced by Caspase-1/11/GSDMD and Caspase3/GSDME pathways can
be activated, mediating renal injury, inflammation, and fibrosis. (D) Crystalline Nephropathy. Calcium oxalate can induce pyroptosis and cause renal
damage through the Caspase-1/11/GSDMD pathway. Uric acid releases cathepsin B through the p53 pathway and subsequently activates the
Caspase-1/11/GSDMD pathway. Furthermore, uric acid directly triggered Caspase-8/Caspase-3/NLRP3/GSDME-mediated pyroptosis, resulting in
kidney damage.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1557707
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2025.1557707
renal tubular cells promoted the progression of renal injury and fibrosis

induced by ureteral obstruction (63). In the UUO mice model,

inhibition of Caspase-3 or loss of Gsdme was found to alleviate renal

fibrosis (123). Disulfiram has been reported to directly inhibit GSDMD

cleavage, thereby suppressing pyroptosis and cell fibrosis; however, it is

ineffective in inhibiting pyroptosis once the process has already been

initiated (124). Furthermore, Tongluo Yishen Detection has been

proven to effectively inhibit pyroptosis and improve renal function

and fibrosis by targeting NLRP3/Caspase-1/GSDMD pathway (125).

YiShen HuoXue decoction can also inhibit this pathway to improve

renal fibrosis and inflammation (126).
4.4 Crystalline nephropathy

Crystals, including calcium oxalate (CaOx) and uric acid (UA),

that deposit in the renal tubules and interstitium induce ischemia,

tubule fibrosis, and inflammation through mechanisms involving

tubular obstruction and cytotoxicity, ultimately leading to

crystalline nephropathy (CN) (127, 128).

Oxalate nephropathy, although rare, has a poor prognosis and often

develops into the final stage of CKD (129, 130). Studies have shown that

CaOx induced RTECs andHK-2 cells injury throughNLRP3/Caspase-1/

GSDMD pathway (131, 132). H3 relaxin, with its anti-inflammatory and

antioxidant properties, exerted a protective effect against oxalate

nephropathy in rats by targeting the NLRP3/Caspase-1/GSDMD axis

(133). Melatonin alleviated RTECs damage and renal CaOx crystal

deposition by inhibiting non-canocial inflammasome mediated

pyroptosis by NLRP3/Caspase-11/GSDMD (134).

Recent studies have shown that hyperuricemia plays a

pathogenic role in the progression of kidney disease, leading to

CKD (hyperuricemic nephropathy, HN) (135–137). GSDMD was

significantly upregulated in renal tissue of experimental HN mice,

and the loss of renal function and renal tubule fibrosis were

improved after Gsdmd knockout (138). A study has shown that

UA activated autophagy through the p53 pathway and released

cathepsin B, which subsequently activated the NLRP3/Caspase-

1,11/GSDMD pathway to participate in the development of

experimental HN (139). A. manihot L. flower mitigates UA-

induced RTECs damage by inhibiting Caspase-8/Caspase-3/

NLRP3/GSDME-mediated pyroptosis (140).

Current studies have shown that GSDMs-mediated pyroptosis

is involved in experimental CN, but its role in human CN remains

to be determined.
4.5 Other experimental CKD

Animal models of CKD provide powerful experimental basis for

further exploring the pathogenesis of CKD, verifying the effectiveness

of treatment methods. 5/6 nephrectomy (5/6Nx), by removing one

whole kidney and two-thirds of the opposite kidney, simulates human

CKD manifestations including renal fibrosis and decreased kidney

function (141, 142). It is shown that Gsdme deletion significantly

improves renal function and renal interstitial fibrosis in mice
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underwent 5/6Nx (123). Adenine-induced renal injury is also

commonly used to mimic human CKD. Data indicated that

pyroptosis-related proteins such as GSDMD were upregulated in

adenine-induced CKD mice, and pyroptosis was significantly

alleviated after butyrate intervention (143).
5 Conclusion

Here, we provide an overview indicating that GSDMD/

GSDME-mediated pyroptosis is an important factor in the

pathogenesis of CKD. However, several issues remain to be

explored and elucidated through further research. First, it has

been established that GSDMD and GSDME are associated with

multiple types of CKD; however, the role of GSDMDA, GSDMB,

GSDMC, and PJVK in CKD remains unclear. Second, in addition to

being activated by Caspases to trigger pyroptosis, GSDMs can

convert apoptosis to pyroptosis in some cases, so whether there is

mutual conversion or interaction between pyroptosis and apoptosis

in CKD. Third, at present, in animal and cellular experiments, some

drugs and knocking out/down GSDMs can improve CKD; however,

clinical trials are needed to verify. Therefore, we hope that future

studies will focus on the design and development of drugs that

specifically target GSDMD/GSDME, with the aim of improving the

quality of life of CKD patients and will also further explore the

functional roles by other members of GSDMs.
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