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Celecoxib prevents malignant
progression of smoking-induced
lung tumors via suppression of
the COX-2/PGE2 signaling
pathway in mice
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Introduction: Lung cancer is characterized by a poor prognosis and is a

significant comorbidity of chronic obstructive pulmonary disease (COPD).

Therefore, effective chemopreventive agents are warranted. We evaluated the

effects of the cyclooxygenase-2 (COX-2) inhibitor celecoxib on the prevention of

lung-carcinoma development using an intermittent smoking-induced lung-

carcinoma mouse model. Additionally, we explored COX-2’s role in

lipid metabolism.

Methods:Male A/Jmicewere exposed to sham air ormainstream cigarette smoke

for 20 weeks. Vehicle or celecoxib was administered via intragastric feeding once

daily. Lung tissues were analyzed for tumor nodules and emphysema; the

bronchoalveolar lavage fluid was collected for cell counting. COX-2 expression

was measured using real-time polymerase chain reaction and western blotting;

lipidomic analysis was conducted using liquid chromatography-tandem mass

spectrometry. Cell proliferation and colony-forming assays were performed on

LA-4 cells to assess the effects of prostaglandins and COX-2 inhibitors.

Results: Intermittent smoking exposure increased lung adenomas, adenocarcinomas,

and COX-2 expression. Lung adenomas were characterized by abundant COX-2-

positive cells. Celecoxib reduced intermittent smoking-induced inflammation,

emphysema, and cell counts in the bronchoalveolar lavage fluid and decreased the
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incidence of lung adenocarcinomas, whereas the total number of observed lung

tumors was unchanged. Celecoxib markedly suppressed single-smoke-induced

prostaglandin E2 (PGE2) production in the airway. PGE2 increased LA-4 cell viability

via the EP4 receptor and promoted colony formation.

Discussion: Celecoxib effectively inhibited lung-carcinoma development,

inflammation, and emphysema, demonstrating the potential for chemoprevention

in smokers and patients with COPD. Further studies on EP4 inhibitors for the

prevention of emphysema and lung cancer are warranted.
KEYWORDS

chronic obstructive pulmonary disease, lung neoplasms, cyclooxygenase 2 inhibitor,
smoking, prostaglandin E2, chemoprevention
1 Introduction

Lung cancer is a notable comorbidity of chronic obstructive

pulmonary disease (COPD), accounting for 21–33% of COPD-

related deaths (1, 2). Lung cancer associated with COPD has a

poorer prognosis than that without COPD (3). Additionally, it is

more likely to cause perioperative complications and treatment-related

side effects (4). Therefore, there is a need for chemoprevention of lung

cancer in smokers and patients with COPD. Despite numerous studies,

no prophylactic agent has been established (5).

Smoking is a common risk factor for COPD and lung cancer.

Previous studies, including our own, have shown that emphysema, an

irreversible structural destruction, is a significant risk factor for lung-

cancer development in patients with COPD (6, 7). It has been

postulated that emphysema and lung cancer share a common

pathogenesis, including genetic abnormalities, cell cycle

abnormalities, chronic inflammation, cytokines, and a protease-

antiprotease imbalance (8). Smoking-induced chronic inflammation

is a major cause of carcinogenesis (9). Chronic inflammation induces

alveolar destruction and emphysema through direct damage to the

alveolar wall and indirect damage via proteases such as matrix

metalloproteinases (10). Additionally, damage to the alveolar

epithelium contributes to DNA damage, gene mutations, and the

accumulation of epigenetic abnormalities, leading to the development

of lung cancer (11). Chronic inflammation also promotes the growth
sis of variance; BALF,

acid; COPD, chronic

DHA, docosahexaenoic

nosorbent assay; EPA,

in; HDoHE, hydroxy

enoic acid; HHTrE,

hy; LOX, lipoxygenase;

ase chain reaction; PG,

TX, thromboxane.

02
and progression of existing tumors by enhancing cell proliferation,

increasing resistance to apoptosis, and exerting immunomodulatory

effects (11).

Cyclooxygenase (COX) is an enzyme responsible for the

biosynthesis of prostanoids. Arachidonic acid (AA), an

unsaturated fatty acid, is a substrate for COX and is converted

into lipid mediators such as prostaglandins, prostacyclins, and

thromboxanes (12). Two structurally distinct forms of the

cyclooxygenase enzymes (COX-1 and COX-2) have been

identified. COX-1 is a housekeeping enzyme responsible for

maintaining the basal prostanoid levels, which are crucial for tissue

homeostasis. In contrast, COX-2 is typically absent in most cells but

is strongly induced at sites of inflammation and during tumor

progression (12). COX-2 is also reported to be upregulated by

smoking exposure and is considered a key enzyme in smoking-

induced inflammation in the lungs (13, 14). In a previous study using

a rat smoking model, COX-2 inhibitors suppressed intrapulmonary

inflammation and inhibited the development of emphysema (15).

In recent years, lipidomic analysis has proven useful for

comprehensively evaluating the dynamics of lipid metabolism (16,

17). Lipidomic analysis of a previous smoking-exposed mouse

model indicated that smoking activated fatty acid metabolism in

the COX pathway (18). However, no previous studies have

examined the COX-2 dependence on the dynamics of fatty acid

metabolism in smoking-exposed lungs or its functional significance.

COX-2 has multifaceted effects on tumors, including promoting

growth, invasion, and metastasis (19). Chronic inflammation has been

reported to contribute to tumor initiation (20). While COX-2

inhibitors have been associated with tumor progression, invasion,

and metastasis (21), their role in suppressing tumor initiation,

particularly in lung cancer, remains unclear. COX-2 has also been

reported to be expressed in several cancers, including human lung

cancer, and is linked to disease progression and poor prognosis (22,

23). Therefore, it has attracted attention as a target for

chemoprevention of cancer (21). COX-2 inhibitors have been

reported to prevent tumor development in chemically-induced lung-
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cancer models (24). Furthermore, knocking down the COX-2 gene

inhibited K-ras-induced lung carcinogenesis (25). However, there are

conflicting reports showing that although COX-2 inhibitor

administration in a butylated hydroxytoluene-treated model

improved intrapulmonary inflammation, it did not suppress lung

tumors (26). To the best of our knowledge, no previous studies have

examined whether COX-2 inhibitors are effective in preventing the

development of lung tumors in a mouse model of smoking exposure.

We hypothesized that COX-2 inhibitors may have a preventive

effect not only on smoking-induced emphysema but also on lung

tumors. Animal models are crucial for developing drugs for the

chemoprevention of lung cancer. Single-gene mutations and

chemically-induced mouse models have been established for this

purpose (24, 27, 28). However, these models have difficulty

mimicking smoking-induced lung cancer. We established animal

models that can examine emphysema and smoking-induced lung

tumors caused by exposure to intermittent smoking (29). In this

study, we aimed to i) examine whether COX-2 inhibitor

administration successfully suppresses the development of smoking-

induced lung cancer using our established mouse model and ii)

examine the behavior of the COX metabolic pathway during

smoking exposure by lipidomic analysis and elucidate the molecular

mechanism of lung-cancer inhibition by examining the function of

lipid metabolites through in vitro experiments.
2 Materials and methods

2.1 Mice

Male A/J mice (7–10 weeks old) were purchased from Sankyo

Labo Service (Tokyo, Japan). The mice were housed in plastic cages
Frontiers in Immunology 03
under a 12:12-h light-dark cycle. The mice had 1 week of

acclimatization prior to the investigation. All experimental

procedures were in accordance with the National Institutes of

Health guidelines and approved by the Laboratory Animal Center

of Keio University School of Medicine.
2.2 NNK treatment, smoking exposure, and
treatment groups

After 2 weeks of intraperitoneal injection of a potent carcinogen

(100 mg/kg), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone

(NNK) (Toronto Research Chemicals, Toronto, Ontario, Canada),

mice were exposed to sham air or mainstream cigarette smoke

generated from commercially available filtered cigarettes

(Marlboro, 12 mg tar/1.0 mg nicotine, Philip Morris Inc.,

Richmond, VA, USA) for 1 h/day, 5 days/week for 20 weeks.

Mice inhaled cigarette smoke through their noses, as previously

reported (29). For this procedure, a cigarette smoke inhalation

apparatus (SIS-CS system, Shibata Scientific Technology, Tokyo,

Japan) which includes a cigarette smoke generator (SG-300) and an

inhalation chamber, to which 20 body holders were set at a time,

was used. The cigarette smoke was generated at a stroke volume of

15 mL and 10 puffs/min and diluted with compressed air, resulting

in a total particulate matter concentration of 1,202 ± 196 mg/m3.

Vehicle or celecoxib (BioVision, Milpitas, CA, USA) was

administered (75 mg/kg) (30) via intragastric feeding once a day,

5 days/week for 20 week. Mice were divided into four groups:

vehicle-plus-air (n = 15), celecoxib-plus-air (n = 17), vehicle-plus-

smoke (n = 19), and celecoxib-plus-smoke (n = 21). The mice were

sacrificed for analysis at 20 weeks (Figure 1).
FIGURE 1

Study design and experimental protocols. Male A/J mice (7–10 weeks old) were exposed to sham air or cigarette smoke 2 weeks after NNK injection
(i.p.). The vehicle or celecoxib was administered via intragastric feeding (i.g.). Tumor development and emphysema were analyzed at 20 weeks.
SM, smoke.
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2.3 Sampling of mouse lung tissue and
bronchoalveolar lavage

The lungs were fixed by an intrabronchial infusion of 4%

paraformaldehyde, with the pressure maintained at 25 cm of water.

The lungs were removed, fixed, embedded in paraffin, and serially

sectioned at 100-µm intervals. Tissue sections (6 µm) were stained with

hematoxylin and eosin (H&E) for histopathological detection of tumor

nodules, as previously reported (29). In another subgroup of mice, the

lungs were lavaged with 0.6 mL of phosphate-buffered saline three

times. Total cell counts and cell differentials in the bronchoalveolar

lavage fluid (BALF) were examined as previously described (31). The

BALF supernatants were stored at -80°C for further analysis.
2.4 Morphometric assessment
of emphysema

The mean linear intercept, a standard parameter of alveolar size,

and the destructive index indicating alveolar destruction were

measured in ten randomly selected fields per mouse (29).
2.5 Pathological assessment of
lung tumors

Bronchial-alveolar proliferative lesions were pathologically

diagnosed as hyperplasia, adenoma, or adenocarcinoma on the

H&E-stained sections, according to published criteria (32), by a

trained pathologist (M.S.). The criteria for adenoma included

rounded to columnar epithelial proliferation lining the alveoli in a

uniform pattern, minimal to no cellular atypia, absence of mitosis,

preservation of the original alveolar structure, and lack offibrovascular

stroma or clusters of plump epithelial cells. The criteria for

adenocarcinoma included increased cellular atypia, loss of alveolar

structure, higher mitotic activity, increased cellularity, and a papillary

growth pattern. Tumor incidence, multiplicity, and size were calculated

as previously described (29). All sections were evaluated blindly.
2.6 Quantitative real-time polymerase
chain reaction analysis

Total RNA was isolated from whole lungs using an RNeasy Mini

Kit (Qiagen, Hilden, NRW, Germany). Total RNA was reverse-

transcribed using the High-Capacity RNA-to-cDNA Kit (Thermo

Fisher Scientific, Waltham, MA, USA), following the manufacturer’s

protocol. Real-time quantitative PCR analysis was performed with

SYBR Green assays on the QuantStudio 5 Real-Time PCR System

(Thermo Fisher Scientific). Mouse b-actin was used as the endogenous
control for normalization. The primers used for COX-2 amplification

were 5′-GGCGCAGTTTATGTTGTCTGT-3′ (forward) and 5′-
CAAGACAGATCATAAGCGAGGA-3′ (reverse). The primers used

for b-actin amplification were 5′-GGCTGTATTCCCCTCCATCG-3′
(forward) and 5′-CCAGTTGGTAACAATGCCATGT-3′ (reverse).
Frontiers in Immunology 04
Relative expression levels were calculated using the delta-delta

Ct method.
2.7 Extraction of protein and western
blot analysis

Briefly, the lung samples were homogenized in radio-

immunoprecipitation assay buffer (Thermo Fisher Scientific). The

protein concentration was quantified using a bicinchoninic acid

assay, and equal amounts of protein (30 µg per lane) were loaded

onto SDS-polyacrylamide gels and electrophoretically transferred to

polyvinylidene fluoride membranes. The membranes were incubated

overnight with primary antibodies at 4°C, followed by incubation

with secondary antibodies for 1h. Anti-cyclooxygenase-1 antibody

(Abcam, Cambridge, UK, ab109025, 1:1000 dilution), anti-

cyclooxygenase-2 antibody (Abcam, ab15191, 1:1000 dilution), and

anti-b-actin antibody (Sigma Aldrich, St. Louis, MO, USA, A5441,

1:5000 dilution) were used for the assessment. Immunoreactive

proteins were visualized using the LumiGLO reagent and peroxide

(Cell Signaling Technology, Danvers, MA, USA). Specific bands were

captured using an LAS 4000 Mini System (GE Healthcare Life

Sciences, Chicago, IL, USA). Relative protein expression was

quantitated by densitometry (Image Quant TL software, GE

Healthcare Life Sciences) and normalized against b-actin levels.
2.8 Immunofluorescence and
immunohistochemical analysis

Immunofluorescence analyses were conducted on the vehicle-

plus-smoke group. The lung sections were deparaffinized in xylene

and rehydrated through a graded ethanol series. The primary

antibody used was anti-COX-2 (GeneTex, Irvine, CA, USA,

GTX15839, 1:100 dilution), and cells were counterstained with

DAPI (Vector Laboratories, Burlingame, CA, USA). Fluorescence

images were captured using a fluorescence microscope.

The vehicle-plus-smoke and celecoxib-plus-smoke groups were

immunohistochemically analyzed. The primary antibody used was

anti-PCNA (Dako, Glostrup, Denmark, M0879, 1:200 dilution),

and cells were counterstained with hematoxylin.
2.9 Enzyme-linked immunosorbent assay

PGE2 levels in BALF were measured using an enzyme-linked

immunosorbent assay (ELISA) kit (Cayman Chemical, Ann Arbor,

MI, USA, 514010).
2.10 Targeted liquid chromatography-
tandem mass spectrometry–
based lipidomics

Lipidomic analysis was performed as previously described (33).

BALF samples (900 mL) were dissolved in methanol. Deuterated
frontiersin.org
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internal standards (1 ng of eicosapentaenoic acid-d5, 15-

hydroxyeicosatetraenoic acid (HETE)-d8, leukotriene B4-d4,

PGE2-d4, and thromboxane B2-d4) were added to the methanolic

extract. The samples were kept overnight at −30°C. The methanolic

extract was then diluted in water. After centrifugation, the

supernatant was subjected to solid-phase extraction using a

MonoSpin C18-AX cartridge (GL Sciences, Tokyo, Japan). The

column was eluted with 90% methanol (containing 2% acetic

acid). The resulting solutions were then dried under nitrogen and

concentrated. For LC-MS/MS analysis, we used a triple-quadrupole

mass spectrometer (LCMS-8060; Shimadzu, Kyoto, Japan) attached

to an ACQUITY UPLC BEH C18 column (1.0 × 150 mm, 1.7-mm
particle size; Waters, Milford, MA, USA). The samples were eluted in

a mobile phase consisting of water/acetate (100:0.1, v/v) and

acetonitrile/methanol (4:1, v/v). Polyunsaturated fatty acid

metabolites were analyzed in negative ion mode and quantified

using multiple reaction monitoring for identification (LabSolutions

Insight LCMS software, Shimadzu). Calibration curves between 0.1

and 100 pg and retention times for each compound were determined

using synthetic standards. Quantification was performed using the

calibration curves for each standard.
2.11 Cell line

The murine lung adenoma cell line LA-4 (ATCC, Manassas,

VA, USA, CCL-196, purchased in December 2021) was grown in

Ham’s F-12K (Kaighn’s) medium (Thermo Fisher Scientific)

supplemented with 15% fetal bovine serum (Sigma Aldrich) and

1% penicillin-streptomycin at 37°C in a humidified 5% CO2

incubator, following the supplier’s protocol. Only early-passage

cells were used for the experiments. The cell line was confirmed

to be mycoplasma-free, with the last test conducted in September

2024 using the Lonza MycoAlert Mycoplasma Detection Kit

(Lonza, Basel, Switzerland, LT07-118).
2.12 Cell proliferation assay

The MTS proliferation assay was conducted using the Cell Titer

96 AQueous One Solution Assay kit (Promega, Madison, WI, USA,

G3581), according to the manufacturer’s protocol. Briefly, 5×103

cells/well were seeded into 96-well plates and incubated for 24 h to

allow cell adhesion.

1. Cells were treated with various concentrations of PGD2,

PGE2, PGF2a, and 12- hydroxyheptadecatrienoic acid (HHTrE)

(Cayman Chemical, 12010; 14010; 16010; 34590).

2. Cells were treated with EP receptor antagonists (50 nM of

EP1 antagonist, 3 mM of EP2 antagonist, 0.1 mM of EP3 antagonist,

and 1 mM of EP4 antagonist (Cayman Chemical, ONO-8711,

14070; TG11-77, 30188; L-826,266, 18538; ONO-AE3-208,14522)

for 30 min before adding 1 mM of PGE2.

Control cells were treated with the same concentration of the

vehicle, dimethyl sulfoxide (Wako, Osaka, Japan, 046-21981). After

24 h of treatment, absorbance was measured at 490 nm.
Frontiers in Immunology 05
All experiments were performed at least three times, and the

representative data are shown.
2.13 Soft agar colony-forming assay

Cells were seeded (1×104 cell/well) in 0.33% low-melting-point

agarose in Ham’s F-12K (Kaighn’s) medium in the presence or

absence of PGE2 and layered onto 0.5% agarose in Ham’s F-12K

(Kaighn’s) medium. The cell dishes were maintained in a culture

incubator for 3 months. During this incubation period, 0.3 mL of

fresh medium, with or without PGE2 (1 mM), was added twice

weekly. Experiments were performed in triplicate on six-well plates

and repeated three times. Representative photographs of colony

samples were obtained. The colonies formed and total colony area

were then counted using the ImageJ software (34). The colonies of

>150 mm in diameter were counted.
2.14 Statistical analysis

The data are expressed as mean ± SE. The data were analyzed

using Student’s t-test or one-way analysis of variance (ANOVA),

followed by Tukey-Kramer’s post hoc test. Categorical data were

analyzed using the c2 test. All data were analyzed using JMP Pro

version 17 (SAS Institute, Cary, NC, USA). All p-values were two-

sided, and statistical significance was set at p < 0.05.
3 Results

3.1 Intermittent smoking exposure
increases lung tumor development and
COX-2 expression

Intermittent smoking exposure induced the formation of lung

adenomas (Figure 2A) and adenocarcinomas (Figure 2B), as

previously reported (29). Some tumors exhibited a mixture of lung

adenoma and adenocarcinoma features within the same lung tumor

(Figure 2C). To assess COX-2 expression, we performed quantitative

RT-PCR analysis and immunoblotting of lung samples from non-

smoking and intermittent smoking-exposed groups. The lung samples

used in this study were previously obtained from mice exposed to

intermittent smoking (29). The mRNA and protein expression levels of

COX-2 were higher in the intermittent smoking-exposed lungs than in

the non-smoking group (Figures 2D, E). However, in the case of COX-

1, mRNA levels were elevated in the lungs exposed to intermittent

smoking, whereas no significant difference was observed at the protein

level (Figures 2F, G). Immunostaining revealed a higher abundance of

COX-2-positive cells in the lungs of the intermittent smoking-exposed

group than in those of the non-smoking group, with a greater

prevalence in lung adenomas (Figure 2H) than in lung

adenocarcinomas (Figure 2I). These findings suggest that intermittent

smoking promotes COX-2 upregulation in early-stage lung tumors,

particularly in adenomas, which may contribute to tumorigenesis.
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3.2 Celecoxib suppresses inflammation and
emphysema formation caused by
intermittent smoking exposure

Celecoxib did not affect body weight in either the air or

intermittent smoking groups (Figure 3A). Celecoxib reduced the
Frontiers in Immunology 06
increase in total cells, macrophages, and neutrophils in BALF

induced by intermittent smoking exposure (Figure 3B). Linear

intercept and destructive index were significantly higher in the

vehicle-plus-smoke group than in the vehicle-plus-air group.

Additionally, they were significantly lower in the celecoxib-plus-

smoke group than in the vehicle-plus-smoke group (Figures 3C, D).
FIGURE 2

Morphological findings from lung tumors and COX-2 expression in the lung tissues. Representative images of (A) lung adenoma, (B) lung
adenocarcinoma, and (C) mixed lung adenoma and adenocarcinoma within the same tumor, stained with hematoxylin and eosin, are shown. Scale
bars: 100 mm. (D, E) COX-2 mRNA and protein levels were measured by RT-qPCR and western blotting, respectively, normalized to b-actin levels.
(F, G) COX-1 mRNA and protein levels were measured by RT-qPCR and western blotting, respectively, normalized to b-actin levels. The data are
shown as mean ± SE. Statistical analysis was performed with a Student’s t-test. The uncropped gels and blots are provided in (Supplementary
Figure 3). (H, I) COX-2 expression (red) in the lung adenoma (H) and adenocarcinoma (I) cells was examined by immunostaining. Tissues were
counterstained with DAPI (blue). Scale bars: 50 mm. SM, smoke; 1M, 1 month; 3M, 3 months; 5M, 5 months.
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These results suggest that celecoxib mitigates intermittent smoking-

induced lung inflammation and emphysematous changes,

potentially contributing to its protective effects against smoking-

related lung damage.
3.3 Celecoxib prevents intermittent
smoking exposure-induced lung-
cancer development

We compared the incidence, multiplicity, and size of lung

tumors among the four groups (Figures 4A–C). The vehicle-plus-
Frontiers in Immunology 07
smoke group exhibited higher lung tumor incidence and

multiplicity than the vehicle-plus-air group. However, the mean

lung tumor size demonstrated no significant differences among the

four groups. The celecoxib-plus-smoke group had fewer lung

adenocarcinomas than the vehicle-plus-smoke group, even

though the total numbers of whole lung tumors and lung

adenomas were not significantly different. No significant

differences in tumor incidence were observed between the two

groups. These results may indicate that celecoxib administration

prevented the progression from adenoma to adenocarcinoma. Next,

we examined PCNA staining in adenomas and adenocarcinomas in

celecoxib-treated and untreated groups. Both tumor types displayed
FIGURE 3

Effects of smoking exposure and celecoxib administration on body weight, inflammatory cells in the BALF, and emphysema in the lungs. (A) Changes
in body weight over 5 months. (B) Total cell numbers and cell fractionation in BALF. (C) Histological assessment of emphysema in the lungs.
Hematoxylin and eosin-stained lung sections are shown. Scale bars: 100 mm. (D) Comparison of mean linear intercept and destructive index. The
data are shown as mean ± SE. Statistical analysis was performed with ANOVA, followed by post hoc analysis with the Tukey-Kramer test. Vehicle-
plus-air group (blue); Celecoxib-plus-air group (red); Vehicle-plus-smoke group (green); Celecoxib-plus-smoke group (purple). SM, smoke.
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PCNA-positive cells overall, with adenocarcinomas showing a

higher prevalence than adenomas (Supplementary Figure 1).

Celecoxib appeared to reduce the number of PCNA-positive cells

in adenomas and adenocarcinomas. This reduction in PCNA

expression suggests that celecoxib may suppress tumor cell

proliferation, which could contribute to its inhibitory effect on

adenoma-to-adenocarcinoma progression.
3.4 Effect of celecoxib on lipid mediators in
bronchoalveolar lavage fluid under single
smoking exposure

To evaluate fatty acid metabolism in the lungs in response to

smoking exposure, fatty acid metabolites were quantitatively

measured in BALF samples from the four experimental groups

(with or without a single smoking exposure or celecoxib treatment)

(Figure 5A). We used an ELISA kit to assess the production of

PGE2, a major product of the enzymatic reaction catalyzed by COX-

2. Celecoxib significantly suppressed the smoke-induced PGE2
production (Figure 5B). Subsequently, we conducted LC-MS/MS-

based mediator lipidomic analysis to reveal the global alterations in

fatty acid metabolites induced by a single smoke exposure and

celecoxib. AA and docosahexaenoic acid (DHA) increased with a

single smoking exposure. Among COX-mediated metabolites,

PGD2, PGE2, PGF2a, 12-HHTrE, and 11-HETE produced from

AA, along with 13- hydroxy docosahexaenoic acid (HDoHE) from

DHA, were increased by single smoking exposure (Figures 5C–E).

Among these, PGE2 was the most abundant (Supplementary

Figure 2). Among the 12/15-lipoxygenase (LOX)-mediated

metabolites, 12-HETE, and 15-HETE from AA as well as 17-

HDoHE from DHA were also increased by a single smoking

exposure (Figures 5D, E). However, their downstream specialized

pro-resolving mediators (SPMs), such as protectins, maresins,
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resolvins, and lipoxins, were not detected in picogram-level

quantities. The amount of 5-HETE, a 5-LOX-mediated metabolite

derived from AA, was not altered by a single smoking

exposure (Figure 5D).

Celecoxib administration significantly reduced the levels of

COX-mediated metabolites without affecting the levels of AA and

DHA (Figures 5C–F). The production of 12/15-LOX-mediated

metabolites was also mildly reduced, though not as much as the

COX metabolites (Figures 5D–F). These results demonstrate that

smoking exposure activates fatty acid metabolism through COX,

characterized by increased PGE2 production in the lungs, and that

celecoxib selectively inhibits this process.
3.5 Proliferative and malignant effects of
PGE2 on pulmonary adenoma cells

We sought to verify the inhibitory effect of celecoxib on the

transition from lung adenoma to adenocarcinoma, as suggested by

our animal experiments, using the LA-4 cell line derived from

mouse lung adenomas. We performed an MTS cell proliferation

assay to investigate whether the COX metabolites elevated by a

single smoking exposure and suppressed by celecoxib in the

lipidomic analysis would enhance LA-4 cell viability. Treatments

with PGD2, PGE2, PGF2a, and 12-HHTrE were evaluated. Only

PGE2 increased cell viability in a concentration-dependent manner

(Figures 6A–D). PGE2 binds to and activates four distinct receptor

subtypes named EP1–4. We performed an MTS cell proliferation

assay using ligand antagonists of the EP subtypes to elucidate the

mechanisms underlying PGE2-mediated enhancement of cell

viability. Treatment with an EP4 antagonist reduced cell viability

and increased PGE2 in LA-4 cells (Figure 6E). These results indicate

that PGE2 enhances cell viability via the EP4 receptor. Next, to

investigate whether PGE2 enhances the malignant potential of lung
FIGURE 4

Incidence, multiplicity, and size of lung tumors. (A–C) The incidence (A), multiplicity (B), and size of lung tumors (C) are shown. The data are shown
as mean ± SE. Statistical analysis of tumor incidence was performed with the c2 test. Statistical analysis of the multiplicity and size of the tumor was
performed with Student’s t-test or ANOVA, followed by post hoc analysis with the Tukey-Kramer test. ns, not significant; SM, smoke.
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adenoma cells, we examined their anchorage-independent growth

in soft agar. LA-4 cells were cultured in soft agar either with or

without PGE2. PGE2 significantly increased colony formation in

soft agar compared to the control (Figure 6F). These findings

suggest that PGE2, through activation of the EP4 receptor, not

only promotes cell proliferation but also contribute to the malignant

transformation of lung adenoma cells.
4 Discussion

To the best of our knowledge, this is the first study to elucidate

the molecular mechanisms underlying the protective effects of

celecoxib against smoking-induced emphysema and lung cancer.
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Although transgenic mouse models and single chemical-induced

models are also used as models of lung cancer, the smoking-induced

lung-cancer model is superior due to its more physiological

relevance (35). The results of this study suggest that celecoxib

may help prevent the development of smoking-induced lung

cancer. The molecular mechanism underlying the effect of

celecoxib involves the inhibition of the EP4-mediated PGE2
effects, which were enhanced by smoking exposure. These

findings indicate that celecoxib may be clinically useful for

preventing lung-cancer development in smokers and patients

with emphysema and COPD. In cancer prevention, there are

three key concepts: primary prevention, which aims to prevent

tumor initiation; secondary prevention, which seeks to prevent the

malignant progression of existing tumors; and tertiary prevention,
FIGURE 5

Effects of smoking exposure and celecoxib on lipid mediators in the BALF under single smoking exposure. (A) BALF samples from four experimental
groups (with or without single smoking exposure or celecoxib) were collected as illustrated. h: hour. (B) Concentration of PGE2 levels measured by
ELISA. (C–E) Lipidomic profiles of BALF after single smoking exposure. Lipidomic analysis revealed quantitative alterations of AA and DHA-derived
metabolites via COX, 5-LOX, and 12/15-LOX, including prostaglandins (PG), 12-HHTrE, HETE, and HDoHE after single smoking exposure. The data
are shown as mean ± SE (n = 5–7 per group). Statistical analysis was performed with ANOVA, followed by post hoc analysis with the Tukey-Kramer
test. ns: not significant, *p < 0.05, ***p ≤ 0.001, SM, smoke. (F) Heat map of the inhibition percentages of celecoxib.
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which includes reducing or controlling the symptoms and

morbidity of established cancer (36). This study demonstrated the

preventive effect of celecoxib on lung cancer development.

However, considering its role in preventing the transition from

lung adenoma to adenocarcinoma, its clinical significance may be

more aligned with secondary rather than primary prevention.

Celecoxib may be beneficial for patients with pre-neoplastic

lesions such as atypical adenomatous hyperplasia or post-

surgical patients.

COX-2, typically absent in healthy cells, is strongly induced at

sites of inflammation and during tumor progression (12). Here, we

found that COX-2 expression was higher in lung specimens exposed

to intermittent smoking than in those of the non-smoking group.

This aligns with previous studies reporting that smoking exposure

induces COX-2 expression in lung fibroblasts (14), neutrophils, and

macrophages (13). In this study, celecoxib administration

suppressed intrapulmonary inflammation and emphysema

formation caused by intermittent smoking exposure. A previous

study in rats reported that systemic exposure to smoking for 20

weeks followed by celecoxib administration suppressed NFkB-
mediated intrapulmonary inflammation and emphysema (15).

These results suggest that celecoxib may be effective in the

treatment of emphysema caused by smoking, regardless of the

smoking pattern. We administered celecoxib during the early
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prophylactic phase alongside smoking to improve smoking-

induced emphysema. However, in human clinical practice,

emphysema is typically treated only after it has significantly

developed. In general, mouse models of smoking-induced

emphysema differ from patients with COPD, as they typically

exhibit only mild emphysema, corresponding to GOLD 1 and 2,

and show minimal airway disease (37). Future studies are required

to determine whether celecoxib ameliorates advanced emphysema

and whether it is effective in inhibiting emphysema progression in

patients with COPD.

Notably, celecoxib administration specifically reduced the

multiplicity of lung adenocarcinomas, although there was no

significant difference in the multiplicity of lung adenomas or

whole lung tumors. In this study, celecoxib appeared to reduce

the number of PCNA-positive cells in adenomas and

adenocarcinomas. Furthermore, PGE2 increased LA-4 cell

viability in a concentration-dependent manner. These results are

consistent with previous reports indicating that celecoxib decreased

the number of Ki-67-positive bronchial cells in former smokers

(38). It is difficult to determine from our results whether celecoxib

suppresses the development of lung adenocarcinoma by inhibiting

de novo carcinogenesis or by preventing the progression from lung

adenoma to adenocarcinoma. A previous study using chemically

induced lung-cancer mouse models reported that the frequency of
FIGURE 6

Effects of COX metabolites on cell proliferation and colony formation. (A–E) MTS assays. Treatments with (A) PGD2, (B) PGE2, (C) PGF2a, and (D) 12-
HHTrE were evaluated. Only PGE2 increased cell viability in a concentration-dependent manner. (E) Treatments with EP1–4-specific antagonists.
These experiments were repeated at least three times in quintuplicate, and representative data are shown. The data are presented as a fold increase
over the vehicle-treated control. (F) Colony formation of LA-4 cells in soft agar. The colony numbers and total colony area were counted. PGE2
significantly increased colony formation in soft agar compared with the control group. Experiments were repeated three times in triplicate, and
representative data and photographs are shown. Magnification, ×20. The data are shown as mean ± SE. Statistical analysis was performed with
Student’s t-test or ANOVA, followed by post hoc analysis with the Tukey-Kramer test. ns, not significant.
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lung adenomas decreases while the proportion of adenocarcinomas

increases over time (39). Although we were unable to evaluate

tumors before 5 months, investigating different time points can

provide further insights into the antitumor effects of celecoxib.

Although this study did not perform quantitative analysis of PGE2
or other lipid mediators in lung adenomas and adenocarcinomas,

further investigation is warranted to strengthen the association

between fatty acid metabolism, including PGE2, and the transition

from adenoma to adenocarcinoma. The adenoma-adenocarcinoma

sequence is widely known to occur in colorectal cancer (40). In mice

and humans, a stepwise transition from hyperplasia to

adenocarcinoma has been postulated (41). Tumors with

characteristics of lung adenoma and lung adenocarcinoma in lung

specimens exposed to intermittent smoking suggest that the latter

mechanism is the most likely underlying mechanism. Notably,

COX-2 expression was higher in lung adenomas than in lung

adenocarcinomas due to intermittent smoking exposure. In a

human phase 2 trial, the combined effect of chemotherapy and

celecoxib was more pronounced than that of chemotherapy alone in

patients with high COX-2 expression in the tumor tissue (42). The

high expression of COX-2 in adenomas may explain why COX-2

inhibitors were effective against them. Previous histological studies

on lung cancer have reported that COX-2-positive tumors tend to

be more common in smokers (43). COX-2 is also known to be

expressed early in carcinogenesis and even in the relatively early

stages of chemically-induced lung cancer in mice (44).

Approximately 71.6% of human lung atypical adenomatous

hyperplasia is positive for COX-2 by immunostaining (45). Based

on these findings, COX-2 may play an important role in bridging

the gap between precancerous lesions and invasive cancer.

In general, studying chemopreventive agents for cancer in

humans is challenging because of the long time required to define

targets and outcomes (5). Despite these challenges, celecoxib has

been reported to inhibit bronchial epithelial growth and

precancerous lesions in bronchoscopic specimens of former

smokers treated with COX-2 inhibitors (38). However, it remains

to be examined whether celecoxib is effective in patients with COPD

and precancerous lesions. Ideal chemopreventive agents should be

well-tolerated, inexpensive, and potentially useful for treating

comorbid diseases in high-risk individuals. Celecoxib is widely

used as an anti-inflammatory drug. Although no apparent side

effects were observed in this study, large human studies have

suggested the possibility of cardiovascular complications, such as

myocardial infarction and stroke, associated with long-term high-

dose celecoxib use (46, 47). However, the results of this study suggest

that celecoxib may also be effective in inhibiting the progression of

COPD and emphysema, thus offering great clinical promise. Further

investigation is needed to assess the optimal dosage, duration of

administration, and suitable patient populations. PGE2 is primarily

formed through metabolism of arachidonic acid by cyclooxygenases

and the terminal enzyme microsomal prostaglandin E synthase-1

(mPGES-1). Selective inhibition of downstream mPGES-1 to reduce

only PGE2 biosynthesis is suggested as a safer therapeutic strategy

(48). Mice lacking in mPGES-1 have slower growing tumors and

decreased angiogenesis and metastasis (49). Future studies on the
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preventive effects of mPGES-1 inhibitors on emphysema and lung

cancer are warranted.

This is the first study on the effects of celecoxib as a compound

on fatty acid metabolism regulation in smoking-exposed lung

tissue. In this study, COX metabolism, with PGE2 as the most

abundant metabolite, was enhanced in airways exposed to single

smoking events. PGE2 plays dual roles in the activation and

regulation of inflammation. In the early stages, it promotes local

vasodilation and the accumulation of neutrophils and macrophages,

whereas in later stages, it suppresses both innate and antigen-

specific immunity at multiple molecular and cellular levels. Its

production is tightly regulated by epithelial cells, alveolar

macrophages, and other immune cells in response to infection,

injury, or inflammation (50). Celecoxib effectively inhibited the

formation of these COX metabolites. This is consistent with

previous studies reporting consistent increases in AA, PGD2, and

PGE2 levels in the lungs of mice after long-term smoking for 2, 3,

and 7 months (18). The suppression of the COX pathway and

intrapulmonary inflammation observed in this study aligns with

reports that antagonism of PGD2 receptors led to the suppression of

intrapulmonary inflammation in a mouse model of smoking (51).

Additionally, PGE2 induced intrapulmonary inflammation and

lung fibrosis and was associated with the pathogenesis of COPD

(52), and smokers had higher levels of urinary PGE2 metabolites

than nonsmokers (53). Thus, COX metabolism may be an

important therapeutic target for smoking-related intrapulmonary

inflammation and emphysema. Of interest, 12/15-LOX metabolism

was also reduced in celecoxib-treated mice. However, as this study

utilized BALF for lipidomic analysis, the levels of detected

mediators were lower than in lung tissues in previous work (54).

As a result, only precursors of pro-resolving mediators (17-

HDoHE, 14-HDoHE, and 13-HDoHE) were detected. Some

prostaglandins and leukotrienes are typically pro-inflammatory

lipid mediators, others have an anti-inflammatory effect. SPMs

such as lipoxins and resolvins which are biosynthesized via the 5-

LOX plus 12/15-LOX pathway, have been suggested to play

important roles in the resolution of inflammation (55). Previous

reports have demonstrated a relationship between 15-LOX and

COX-2. Acetylated COX-2 contributes to the production of 15(R)-

HETE in endothelial cells. In addition, PGE2 switches 5-LOX

metabolism and LTB4 synthesis to 15-LOX metabolism and LXA4

synthesis in human neutrophils. These findings partially explain the

relationship between COX-2 inhibition and the impairment of 15-

LOX metabolism (56). Collectively, this raises the possibility that

SPMs could play a role in the regulation of cancer progression,

which warrants further investigation.

A previous study reported that lung-cancer tissues from

cigarette smokers exhibited elevated levels of PGE2 compared to

those from nonsmokers with lung cancer (57), suggesting that PGE2
is a lipid metabolite present in smoking-induced lung tumors. In

this study, among COX-dependent metabolites, only PGE2

enhanced the viability of lung adenoma cells in a concentration-

dependent manner, according to the MTS assay. The addition of

PGE2 enhanced the colony-forming ability of lung adenoma cells in

the colony-forming assay, indicating in vitro tumorigenicity. The
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COX-2/PGE2 pathway has been reported to have various effects on

tumors, including the promotion of angiogenesis, invasion, anti-

apoptosis, and tumor immunosuppression (19, 22). Prostaglandins

exert their biological effects in an autocrine or paracrine manner by

binding to their respective cell surface receptors, which belong to

the G protein-coupled receptor family. For PGE2, these receptors

are designated as EP1, EP2, EP3, and EP4 (12). Each EP interacts

with its unique G protein to activate particular downstream

signaling pathways such as the protein kinase A pathway, b-
catenin pathway, nuclear factor-kappa B pathway, and

phosphatidylinositol 3-kinase/AKT pathway. These pathways play

various roles in regulating biological behaviors (58). Activated EP1

can upregulate intracellular calcium ion concentrations; EP2 and

EP4 receptors are associated with cyclic AMP stimulation and

protein kinase A signaling through sequential activation of Gas

and adenylyl cyclase; and EP3 is responsible for downregulating

cyclic AMP levels (58). Previous studies have demonstrated that EP

receptor subtypes (EP1, EP2, EP3, and EP4) contribute to lung-

cancer progression (59–66), suggesting the potential therapeutic

advantage of targeting PGE2 synthesis in the lungs rather than

focusing on individual receptors. Additionally, previous in vivo

studies have reported that EP4 is expressed during the oncogenic

process of colorectal cancer and enhances the malignant potential of

colorectal adenomas (67). Genetic and drug inhibition of EP4 can

inhibit intestinal tumor growth (68). This is consistent with the fact

that EP4-mediated signaling inhibited the growth potential of lung

adenoma cell lines in this study. Furthermore, previous study on

human lung-cancer specimens indicated that the intensity of EP4

expression is associated with a poor prognosis (69). EP4 inhibitors

may have potential utility in preventing smoking-induced lung

cancer. Further studies are warranted to investigate their effects

using LA4 cell colony formation assays and an intermittent

smoking exposure mouse model. Additionally, future research

should explore the preventive effects of EP4 inhibitors on both

emphysema and lung cancer.

In conclusion, in a mouse model of intermittent smoking-

induced lung cancer, celecoxib administration suppressed

intrapulmonary inflammation, emphysema, and the development

of lung adenocarcinoma. Lipidomic and in vitro analyses revealed

that celecoxib inhibits the malignant transformation of precancerous

lesions and counteracts the EP4-mediated effects of PGE2. These

findings suggest that therapeutic interventions targeting the COX-2

pathway may be useful for the chemoprevention of lung cancer in

smokers and patients with COPD. Future studies are warranted to

further explore these findings.
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