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Cellular senescence-related
gene signatures in idiopathic
pulmonary fibrosis: insights
from bioinformatics
Shuting Weng, Jingye Zuo, Jiali Mo and Leping Ye*

Department of Pediatric Pulmonology, Children's Medical Center, Peking University First Hospital,
Beijing, China
Background: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease

characterized by irreversible lung tissue scarring. Cellular senescence (CS) plays a

significant role in IPF pathogenesis, yet the specific molecular mechanisms

remain unclear. This study aimed to identify key CS-related differentially

expressed genes (CS-DEGs) and investigate their potential as diagnostic

biomarkers and therapeutic targets for IPF.

Methods: Bioinformatics analysis was conducted on the GSE53845 dataset to

identify CS-DEGs in IPF. Gene set enrichment analysis (GSEA), protein-protein

interaction (PPI) network analysis, and functional enrichment analyses were

performed to explore the biological functions and pathways associated with

CS-DEGs. External validation of the identified CS-DEGs was performed using two

independent datasets, GSE32537 and GSE24206. Immunofluorescence staining

on lung tissue samples from IPF patients and normal controls was performed to

validate the expression of key CS-DEGs.

Results: A total of 122 DEGs were identified, and 8 core CS-DEGs were selected.

CDKN2A, VEGFA, SOX2, and FOXO3 were validated as key CS-DEGs, with high

diagnostic potential for IPF. Functional enrichment analysis revealed their

involvement in critical biological pathways, including cellular senescence,

immune response, and fibrosis regulation. Immunofluorescence staining

confirmed higher expression of CDKN2A and SOX2, and lower expression of

FOXO3 and VEGFA in IPF lung tissues compared to normal controls.

Conclusion: This study highlights the significant role of CS-related genes in the

pathogenesis of IPF and identifies four key CS-DEGs (CDKN2A, SOX2, FOXO3,

and VEGFA) that could serve as potential biomarkers and therapeutic targets for

IPF, providing a basis for further research.
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1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive

interstitial lung disease characterized by irreversible scarring of lung

tissue, ultimately leading to respiratory failure (1–3). The prognosis

is poor, with a median survival time of 2–3 years after diagnosis (2,

4). While the exact cause is unknown, age is a major risk factor (5,

6). A hallmark of IPF is the repeated injury to alveolar epithelial

cells, which activates fibroblasts and promotes their differentiation

into myofibroblasts. These myofibroblasts produce and deposit

excessive extracellular matrix (ECM), resulting in progressive

fibrosis (7–9). Despite advances in understanding these processes,

the precise mechanisms underlying IPF remain unclear. Currently,

lung transplantation is the only curative treatment, and antifibrotic

agents such as pirfenidone and nintedanib can only slow disease

progression without reversing fibrosis (2, 4, 5, 10). Therefore,

identifying novel biomarkers and therapeutic targets is crucial to

improve diagnosis and treatment outcomes in IPF.

Cellular senescence, a state of irreversible cell cycle arrest

triggered by various stressors, plays a pivotal role in aging and

age-related disease (11, 12). In IPF, accumulating evidence suggests

that senescent cells contribute to disease progression by promoting

inflammation, enhancing ECM deposition, and disrupting immune

homeostasis (1, 12). These cells secrete a variety of pro-fibrotic

factors collectively known as the senescence-associated secretory

phenotype (SASP), which further drives fibrosis (1, 13). However,

the specific cellular senescence-related genes (CSGs) involved in IPF

and their potential diagnostic or therapeutic relevance remain

largely unexplored.

In this study, we performed a comprehensive bioinformatics

analysis to identify differentially expressed genes (DEGs) and

cellular senescence-related DEGs (CS-DEGs) in IPF using

publicly available transcriptomic datasets. We assessed their

diagnostic value, investigated potential regulatory mechanisms

involving transcription factors (TFs) and microRNAs (miRNAs),

and identified potential therapeutic agents targeting key CS-DEGs.

Finally, immunofluorescence staining was used to validate the

expression of key CS-DEGs in lung tissue samples from

IPF patients.

This research aims to provide new insights into the molecular

mechanisms linking cellular senescence and IPF, while identifying

potential biomarkers and therapeutic targets to facilitate early

diagnosis and more effective treatments.
2 Materials and methods

2.1 Data collection and preprocessing

Gene expression datasets GSE53845 (platform GPL6480),

GSE32537 (platform GPL6244), and GSE24206 (platform

GPL570) were obtained from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). GSE53845,

used as the training set, includes transcriptomic data from lung
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tissue of 40 IPF patients and 8 healthy controls. GSE32537 and

GSE24206 served as validation sets, containing 119 IPF patients and

50 healthy controls, and 17 IPF patients and 6 healthy controls,

respectively. A set of 866 CSGs was retrieved from the CellAge

database (14) (https://genomics.senescence.info/cells/). All datasets

were normalized using the ‘normalizeBetweenArrays’ function

from the ‘limma’ R package (version 3.62.2) and underwent

quality control to ensure consistency and exclude outliers before

analysis. The workflow chart of this study was shown in Figure 1.
2.2 Identification of DEGs and CS-DEGs

DEGs between IPF patients and healthy controls were identified

using the ‘limma’ package in R software (version 4.4.0), with the

selection criteria of |log2 FC| > 0.5 and adj.P.Val < 0.05. The

intersection of DEGs with CSGs was then obtained using the

‘VennDiagram’ package to identify CS-DEGs.
2.3 Gene set enrichment analysis

GSEA was conducted to investigate biological processes

associated with DEGs, using the ‘clusterProfiler’, ‘enrichplot’, and

‘ReactomePA ’ packages in R. The analysis utilized the

‘h.all.v7.0.symbols.gmt’ as the reference gene set. In this approach,

DEGs were ranked by their expression differences between IPF

patients and healthy controls. Enrichment at the top of the ranked

list indicated upregulated pathways, while enrichment at the bottom

indicated downregulated pathways.
2.4 Functional enrichment analysis

To investigate potential functions and pathways associated with

specific genes, Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analysis were

conducted using the ‘clusterProfiler’ packages in R. GO analysis

included three categories: Molecular Function (MF), Cellular

Component (CC), and Biological Process (BP).
2.5 Protein-protein interaction network
construction and module analysis

CS-DEGs were uploaded to the Search Tool for the Retrieval of

Interacting Genes (STRING; http://string-db.org) database (15),

with an interaction score threshold of 0.4 to construct the PPI

network. The network was visualized using Cytoscape software

(version 3.10.2) (16). The Molecular Complex Detection

Technology (MCODE) plugin in Cytoscape (https : / /

apps.cytoscape.org/apps/mcode) was applied to identify densely

connected clusters within the PPI network, with parameters: K-

core=2, degree cut-off=2, and max depth=100.
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2.6 Identification and analysis of core
CS-DEGs

Core CS-DEGs were identified using the CytoHubba plugin in

Cytoscape (http://apps.cytoscape.org/apps/cytohubba), applying six

algorithms (Betweenness, Closeness, Degree, MCC, Radiality, and

Stress). The top ten genes from each algorithm were selected, and

the intersection of these genes was used to identify the core CS-

DEGs. A co-expression network of these core CS-DEGs was then

constructed using the GeneMANIA (17) (http://www.

genemania.org/) database to explore their interrelationships.
2.7 Immune cell infiltration analysis

Immune cell infiltration in each sample was analyzed using the

CIBERSORT algorithm to estimate the proportions of 22 immune

cell types. The results were visualized using the ‘ggplot2’, ‘ggpubr’,

and ‘pheatmap’ R packages. Correlation analysis between 22

immune cell types and core CS-DEGs was performed and

visualized using the ‘psych’ and ‘corrplot’ R packages.
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2.8 Identification of key CS-DEGs and
evaluation of their diagnostic value

To systematically evaluate the diagnostic potential of core CS-

DEGs in IPF, a multi-stage analytical framework was implemented.

First, receiver operating characteristic (ROC) curve analysis was

performed on both training set (GSE53845) and validation sets

(GSE32537 and GSE24206). Genes with an area under the ROC

curve (AUC) > 0.7 across all datasets were identified as key CS-

DEGs. Subsequently, the least absolute shrinkage and selection

operator (LASSO)-penalized logistic regression (a = 1) was

applied via the ‘glmnet’ R package to optimize multi-gene model,

employing stratified 5-fold cross-validation to mitigate overfitting.

The regularization parameter (l) was selected from 10

logarithmically spaced values (0.001-0.1) through cross-validated

AUC maximization. The multi-gene model was then rigorously

validated in two validation sets. To estimate the confidence interval

(CI) of the AUC, we applied Bootstrap resampling (1000 iterations)

to compute the 95% CIs for all AUC estimates. Finally, statistical

comparisons between multi-gene and single-gene models were

conducted using DeLong’s test.
FIGURE 1

The workflow chart of this study.
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2.9 Construction of regulatory networks
and exploration of potentially effective
drugs for key CS-DEGs

TFs and miRNAs regulating key CS-DEGs were obtained from

the TRRUST database (http://www.grnpedia.org/trrust) and

miRTarBase (version 9.0) (https://mirtarbase.cuhk.edu.cn/),

respectively. Potentially effective drugs targeting key CS-DEGs

were identified through the Drug-gene interaction database

(DGIdb)(https://dgidb.genome.wustl.edu/). The regulatory

networks and drug-gene networks were visualized using

Cytoscape software.
2.10 Multiplex immunofluorescence
staining

Lung tissue samples used in this study were archived, formalin-

fixed paraffin-embedded (FFPE) specimens obtained from the

Department of Pathology at Peking University First Hospital.

These included samples from three patients diagnosed with IPF

and three adjacent normal lung tissues from age-matched lung
Frontiers in Immunology 04
cancer patients, with normal tissues collected at least 1 cm away

from the tumor margin. All samples were originally collected

between 2018 and 2024 as residual materials from routine clinical

diagnosis and treatment, and were de-identified prior to analysis.

Histological diagnoses of all samples were confirmed by

hematoxylin and eosin (H&E) staining. This retrospective study

was approved by the Ethics Committee of Peking University First

Hospital (Approval No.: 2025-092-001). In accordance with

institutional policy and local regulations, and given the

retrospective nature and use of de-identified human tissue, the

Ethics Committee granted a waiver of written informed consent.

The study was conducted in accordance with the principles of the

Declaration of Helsinki.

Multiplex immunofluorescence staining was performed to

validate the expression of the four key CS-DEGs (CDKN2A,

FOXO3, SOX2, and VEGFA) in IPF lung tissues. In short,

formalin-fixed, paraffin-embedded lung tissue sections (4 µm

thick) were deparaffinized, rehydrated, and subjected to antigen

retrieval using EDTA (pH 8.0) by microwave treatment. After

washing with PBS, sections were incubated overnight at 4°C with

primary antibodies: anti-CDKN2A (Abcam, ab185620, 1:1000),

anti-FOXO3 (Abcam, ab23683, 1:1000), anti-SOX2 (Thermo,

PA1-094X, 1:1000), and anti-VEGFA (Affinity, AF5131, 1:2000).
FIGURE 2

Identification of differentially expressed genes (DEGs) and Gene Set Enrichment Analysis (GSEA) in IPF. (A) Volcano plot showing the DEGs identified
from the GSE53845 dataset, with |log2 FC| > 0.5 and adjusted p-value < 0.05 as the threshold. Red dots represent upregulated genes, while blue
dots represent downregulated genes. (B) Heatmap illustrates the expression levels of the identified DEGs across the samples. Gene set enrichment
analysis (GSEA) using reference gene sets from HALLMARK database (C) and REACTOME database (D) for DEGs in IPF.
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Following incubation with primary antibodies, tissue sections were

washed with PBST and then incubated with HRP-conjugated

secondary antibody for 30 minutes at room temperature. After

additional washing, sections were incubated with different

fluorescent dyes and counterstained with DAPI for 10 minutes.

Immunofluorescence images were captured using a confocal

microscope (AFBIO, AF-NE610-5-6). Expression levels of

CDKN2A, FOXO3, SOX2, and VEGFA were quantified using

ImageJ software and GraphPad Prism (version 10.1.2).
2.11 Statistical analysis

All statistical analyses were performed using R (version 4.4.1)

(https://www.r-project.org/) and GraphPad Prism (version 10.1.2).

Differences between two groups were assessed using the Wilcoxon

rank-sum test or Student’s t-test, depending on the data

distribution. The correlation between variables was analyzed
Frontiers in Immunology 05
using Pearson or Spearman correlation tests. All p-values were

two-sided, with p < 0.05 considered statistically significant.
3 Results

3.1 DEGs identification and GSEA

After normalizing the microarray data, we performed a

differential expression analysis using the GSE53845 dataset. A

total of 2175 DEGs were identified, comprising 1133 up-regulated

genes and 1042 down-regulated genes (Figures 2A, B). To further

investigate the biological significance of these DEGs in the

pathogenesis of IPF, we conducted GSEA using both the

HALLMARK and REACTOME gene sets. The analysis based on

the HALLMARK gene set revealed that the DEGs were significantly

enriched in items related to allograft rejection, epithelial-

mesenchymal transition (EMT), fatty acid metabolism, interferon-
FIGURE 3

Identification and functional enrichment analysis of cellular senescence-related differentially expressed genes (CS-DEGs). (A) Venn diagram showing
CS-DEGs. (B) Bubble plot presenting the Gene Ontology (GO) analysis of CS-DEGs. The size of the bubbles indicates the count of genes in each GO
category, while the color of the bubbles represents the adjusted p-value. (C) Bar chart illustrating the results of KEGG pathway enrichment analysis
for CS-DEGs. The length of the bars corresponds to the number of genes in each pathway, and the color of the bars indicates the p-value for each
pathway. BP, Biological Process; MF, molecular function; CC, cellular component.
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gamma response, and TNF-alpha signaling via NF-kB (Figure 2C).

In addition, GSEA using the REACTOME gene sets indicated that

the DEGs were mainly associated with chemokine receptors binding

chemokines, collagen degradation, degradation of the extracellular

matrix, and extracellular matrix organization (Figure 2D).
3.2 CS-DEGs identification and function
enrichment analysis

By intersecting 866 CSGs with the 2175 DEGs identified in the

first part of our analysis, we obtained 122 CS-DEGs (Figure 3A). To

gain insights into the biological functions and pathways involving
Frontiers in Immunology 06
the CS-DEGs, we performed GO and KEGG pathway enrichment

analysis. The GO analysis revealed that, in the BP category, the top 5

enriched terms were epithelial cell proliferation, ossification,

outflow tract morphogenesis, regulation of epithelial cell

proliferation, and myeloid cell differentiation. In the CC category,

genes were enriched in collagen-containing extracellular matrix,

caveola, membrane raft, membrane microdomain, and plasma

membrane raft. For the MF category, the top 5 enrichment terms

included growth factor binding, ubiquitin protein ligase binding,

ubiquitin-like protein ligase binding, DNA-binding transcription

activator activity (RNA polymerase II-specific), and DNA-binding

transcription activator activity (Figure 3B). KEGG pathway analysis

showed that the CS-DEGs were mainly enriched in cellular
FIGURE 4

Protein–protein interaction (PPI) analysis of CS-DEGs. (A) PPI network of cellular senescence-related differentially expressed genes (CS-DEGs).
Nodes represent proteins, and edges represent interactions between proteins. (B-I) Clusters 1–8 identified by MCODE plugin from the PPI network.
The clusters are arranged in descending order of their scores, with each cluster representing a tightly interconnected group of genes.
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senescence, p53 signaling pathway, proteoglycans in cancer, human

T-cell leukemia virus 1 infection, and microRNAs in

cancer (Figure 3C).
3.3 PPI network analysis

We constructed a PPI network for the 122 CS-DEGs using the

STRING database, resulting in a network of 106 nodes and 468

edges (Figure 4A). Using the MCODE plugin in Cytoscape, we

identified 8 tightly interconnected gene modules, comprising 46

nodes and 53 edges (Figures 4B–I), which may represent key

functional clusters relevant to cellular senescence in IPF.

Subsequently, we performed GO and KEGG enrichment

analysis on these 46 genes. The GO analysis revealed enrichment

in terms such as epithelial cell proliferation, ossification, RNA

polymerase II transcription regulator complex, caveola, and

DNA-binding transcription activator activity (Figure 5A). The

KEGG analysis highlighted pathways including proteoglycans in

cancer, microRNAs in cancer, fluid shear stress and atherosclerosis,

cellular senescence, and human cytomegalovirus infection

(Figure 5B). These findings underscore the potential roles of the

identified modules in the molecular mechanisms underlying IPF.
3.4 Identification and functional analysis of
core CS-DEGs

To identify the core CS-DEGs, we analyzed the 106 genes from

the PPI network using the Cytohubba plugin in Cytoscape. We

employed six algorithms—Betweenness, Closeness, Degree, MCC,

Radiality, and Stress—to determine the top ten scoring genes. A

Venn analysis of these results revealed eight overlapping core genes:
Frontiers in Immunology 07
VEGFA, HIF1A, EGFR, PPARG, SOX2, CDKN2A, FOXO3, and

CDKN1A (Figures 6A, B).

We then conducted a functional analysis of these eight core CS-

DEGs. Utilizing the GeneMANIA database, we constructed a co-

expression network that showed 61.91% of interactions were

physical, 16.37% were based on co-expression, 13.90% were

predicted interactions, 6.73% were genetic interactions, and 1.09%

were pathway related. These core genes were primarily associated

with functions such as the regulation of epithelial cell proliferation,

regulation of endothelial cell proliferation, epithelial cell

proliferation, endothelial cell proliferation, and regulation of

vasculature development (Figure 7A).

Additionally, the GO analysis indicated that these genes are

linked to processes including miRNA metabolic process, miRNA

transcription, regulation of miRNAmetabolic process, regulation of

miRNA transcription, and regulation of ncRNA transcription

(Figure 7B). The KEGG pathway analysis demonstrated

significant enrichment in pathways related to bladder cancer,

endometrial cancer, the HIF-1 signaling pathway, non-small cell

lung cancer, and pancreatic cancer (Figure 7C).
3.5 Immune cell infiltration analysis and
correlation with core CS-DEGs

Previous functional analyses of DEGs and core CS-DEGs

indicated a close association with immune processes. To further

investigate changes in the immune microenvironment in IPF, we

employed the CIBERSORT algorithm to analyze the infiltration of

22 immune cell types (Figures 8A, B), comparing the immune cell

profiles between the IPF group and healthy controls. The results

showed that in IPF lung tissue, the proportions of T cells CD8, T

cells CD4 memory activated, T cells gamma delta, Macrophages
FIGURE 5

Functional enrichment analysis of genes in the MCODE clusters. (A) Bubble plot of Gene Ontology (GO) enrichment analysis for genes in the eight
MCODE clusters. The bubble size indicates the number of genes in each GO term, and the color represents the adjusted p-value. (B) Bar plot of
KEGG pathway enrichment analysis for genes in the eight MCODE clusters. The bar length indicates the number of genes in each pathway, and the
bar color reflects the p-value. BP, Biological Process; MF, molecular function; CC, cellular component.
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FIGURE 6

Identification of core CS-DEGs. (A) Venn diagram showing the eight overlapping core CS-DEGs identified through six different algorithms. (B) Table
displaying the top ten genes identified by each algorithm used for core CS-DEG selection.
FIGURE 7

Interaction and functional enrichment analysis of core CS-DEGs. (A) Gene-genes interaction network of core CS-DEGs analyzed using the
GeneMANIA database. Nodes represent the 20 most significantly altered neighboring genes, with edge color indicating the type of interaction and
node color representing gene function. Network plot of GO analysis (B) and KEGG pathway enrichment analysis (C) for core CS-DEGs.
Frontiers in Immunology frontiersin.org08
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M1, and Dendritic cells resting were significantly elevated

compared to healthy controls. Conversely, the proportions of T

cells CD4 naive, Monocytes, Macrophages M2, and Neutrophils

were significantly decreased (Figure 8C).

We then performed correlation analysis between these nine

immune cell types and the eight core CS-DEGs. The results

indicated that HIF1A was positively correlated with T cells CD4

memory activated but negatively correlated with Macrophages M2.

EGFR negatively correlated with T cells CD4 memory activated,

while PPARG positively correlated with Macrophages M2.

Additionally, FOXO3 was positively correlated with both

Monocytes and Neutrophils (Figure 8D).
3.6 Identification of key CS-DEGs with
diagnostic value in IPF

To assess the diagnostic potential of the eight core CS-DEGs in

IPF, we performed ROC analysis across the GSE53845, GSE32537,

and GSE24206 datasets, using an AUC > 0.7 as the criterion for

diagnostic relevance. This approach identified four key CS-DEGs—

VEGFA, SOX2, CDKN2A, and FOXO3—with significant

diagnostic value (Figures 9A–C). VEGFA and FOXO3 had
Frontiers in Immunology 09
reduced expression in IPF lung tissue, while SOX2 and CDKN2A

were upregulated (Figures 9D–F).

To evaluate the diagnostic performance of the 4-gene signature

(CDKN2A, VEGFA, FOXO3, and SOX2) in IPF, we first

constructed a LASSO logistic regression model using the

GSE53845. The 5-fold cross-validated ROC curve demonstrated a

high AUC of 0.956 (95% CI: 0.868-1.000), indicating excellent

discriminatory ability (Figure 10A). The model’s robustness was

confirmed in two independent datasets: GSE32537 (AUC = 0.798,

95% CI: 0.718-0.879) and GSE24206 (AUC = 0.882, 95% CI: 0.739-

1.000) (Figures 10B, C). We next compared the 4-gene model with

each key CS-DEG in the GSE53845. The 4-gene model showed

higher AUC than any single marker—CDKN2A (0.981), VEGFA

(0.781), FOXO3 (0.938), and SOX2 (0.778) (Figures 10D–G).

DeLong’s test indicated a significant improvement over SOX2 (p

= 0.047), whereas differences versus the other genes were not

statistically significant (Figure 10H). Overall, integration of four

key CS-DEGs improves diagnostic accuracy, underscoring the

clinical potential of this 4-gene model for IPF.

Further functional analysis revealed that these genes are

involved in neuronal stem cell population maintenance, response

to decreased oxygen levels, response to oxygen levels, ovarian

follicle development, and positive regulation of cell adhesion(GO)
FIGURE 8

Immune characteristic analysis in IPF and healthy control lung tissues. Histogram (A), heatmap (B), and boxplot (C) comparing the infiltration ratios of
22 immune cell types between the IPF group and the healthy control group. (D) Correlation plot between core CS-DEGs and immune cells with
differential infiltration. The numbers in the squares represent the correlation coefficients, with red indicating positive correlation and blue indicating
negative correlation. ns P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.
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(Figure 11A), and are enriched in pathways related to Bladder

cancer, Non-small cell lung cancer, Pancreatic cancer, and EGFR

tyrosine kinase inhibitor resistance(KEGG) (Figure 11B).

Figure 11C displays the chromosomal locations of these key genes.
3.7 Construction of TF, miRNA, and drug
networks targeting key CS-DEGs in IPF

To explore transcriptional regulation for the four key CS-DEGs,

we constructed separate regulatory networks of transcription

factors (TFs) (Figure 12) and miRNAs (Figure 13A). The analysis

revealed seven TFs (HDAC3, SP3, E2F1, HDAC4, FOXM1,

DNMT1, SP1) regulating both CDKN2A and VEGFA, and three

TFs (NFKB1, TP53, RELA) influencing both VEGFA and FOXO3.

Notably, FOXO3, one of the key CS-DEGs, also acts as a TF

regulating VEGFA expression. The analysis identified 1, 5, 19,

and 30 miRNAs targeting SOX2, CDKN2A, FOXO3, and

VEGFA, respectively.

To identify drugs with potential therapeutic effects on these key

CS-DEGs, we constructed a drug-gene interaction network

(Figure 13B). This analysis revealed 2, 26, and 52 candidate drugs

w i t h po t e n t i a l e ff e c t s on FOXO3 , CDKN2A , and

VEGFA, respectively.
Frontiers in Immunology 10
3.8 Validation of key CS-DEGs in IPF lung
tissue

To further validate the four key CS-DEGs, we performed H&E

staining and immunofluorescence staining on clinical samples.

H&E staining revealed significant fibrotic changes in IPF lung

tissue, including disrupted alveolar structure, thickened alveolar

walls, inflammatory cell infiltration, and dense collagen

deposition (Figure 14A).

Immunofluorescence staining showed that the average

fluorescence intensity of CDKN2A and SOX2 was significantly

higher in IPF lung tissue compared to healthy controls, while

FOXO3 and VEGFA expression were significantly lower in IPF

samples (Figure 14B). Quantitative analysis confirmed these

differential expression patterns, validating the bioinformatics

results and highlighting the importance of CDKN2A, VEGFA,

SOX2, and FOXO3 in IPF pathogenesis (Figure 14C).
4 Discussion

IPF is a fatal, age-related interstitial lung disease characterized

by fibroblast activation and ECM deposition (1). Emerging evidence

suggests that cellular senescence in various cell types, including
FIGURE 9

Screening of key CS-DEGs based on the diagnostic value of core CS-DEGs in IPF. ROC curves for core CS-DEGs in datasets GSE53845 (A),
GSE32537 (B), and GSE24206 (C), respectively. The curves represent the performance of different genes, with curve colors corresponding to each
gene. Boxplots showing the expression levels of key CS-DEGs in the IPF group and healthy control group for datasets GSE53845 (D), GSE32537 (E),
and GSE24206 (F). ns P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.
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alveolar epithelial cells, fibroblast, and mesenchymal stem cell, plays

a crucial role in the initiation of IPF (5, 18, 19). Cellular senescence

contributes to the disease through two primary mechanisms:

impaired regeneration of alveolar epithelial cells and the

compromised recovery of alveolar structure and function create a

pro-fibrotic environment (1, 19–21); additionally, the paracrine

effects of the SASP promote the accumulation of senescent cells

in the pulmonary microenvironment, exacerbating tissue damage
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and fibrosis (13, 22). Given the involvement of cellular senescence

in IPF and other age-related diseases, targeting senescent cells or

blocking SASP has emerged as a promising therapeutic strategy (7,

11, 12).

In this study, we aimed to explore the molecular mechanisms

underlying cellular senescence in IPF. We identified 122 CS-DEGs,

including 60 upregulated and 62 downregulated genes. Through a

multi-step bioinformatics approach, four key CS-DEGs—
FIGURE 10

Diagnostic performance of the 4-gene model in IPF. Five-fold cross-validated ROC curve of the LASSO logistic regression model using four key
CS-DEGs (CDKN2A, VEGFA, FOXO3, and SOX2) in the training set (GSE53845) (A). External validation of the multi-gene model in two independent
validation sets: GSE32537 (B) and GSE24206 (C). AUC values with 95% confidence intervals (CI) are shown. Comparison of ROC curves between the
multi-gene model and each individual gene: CDKN2A (D), VEGFA (E), FOXO3 (F), and SOX2 (G) in the training set. P-values are calculated using
DeLong’s test. (H) Summary table of AUC values (95% CI) for the multi-gene and single-gene models, and their statistical comparison with the multi-
gene model using DeLong’s test. *P < 0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1557848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Weng et al. 10.3389/fimmu.2025.1557848
CDKN2A, VEGFA, SOX2, and FOXO3—were selected based on

their consistent diagnostic performance across datasets (AUC >

0.7). Their differential expression in IPF lung tissues was

subsequently validated by multiplex immunofluorescence,

confirming their potential as diagnostic biomarkers. Moreover, a

multi-gene logistic regression model incorporating these four genes

demonstrated excellent overall predictive performance (AUC =

0.956). Although the single-gene model based on CDKN2A

showed an even higher AUC (0.981), the difference did not reach

statistical significance, potentially indicating the pivotal role of

CDKN2A in senescence-associated pathways. In contrast, SOX2

exhibited relatively poor diagnostic power as a single marker (AUC

= 0.778), with significantly lower performance compared to the

multi-gene model, suggesting its limited utility as a standalone

biomarker. These findings imply that a composite multi-gene model

is more suitable for capturing disease heterogeneity and enhancing

diagnostic accuracy in IPF. Nonetheless, further clinical studies are

required to validate its applicability in real-world settings.

CDKN2A is a cyclin-dependent kinase inhibitor gene that

encodes p16INK4a, a critical regulator of cell cycle progression (7,

23, 24). By inhibiting cyclin-dependent kinase 4/6 (CDK4/6),

p16INK4a reduces phosphorylation of retinoblastoma protein
Frontiers in Immunology 12
(pRB), thereby suppressing the activation of the downstream

transcription factor E2F and leading to irreversible cell cycle

arrest (5, 25). This regulatory axis acts independently or

synergistically with the p53–p21 pathway, forming two central

branches of the cellular senescence program (11, 25). In our

study, CDKN2A was significantly upregulated in IPF lung tissues,

and KEGG enrichment analysis revealed its strong association with

cellular senescence and p53 signaling pathway. Mechanistically, this

is consistent with the persistent injury and oxidative stress present

in IPF lungs, which induce CDKN2A expression, activate the p16

and p53 pathways, and drive alveolar epithelial cell cycle arrest and

the establishment of a SASP (26). This senescent phenotype, in turn,

promotes fibroblast activation and ECM deposition—key

pathological hallmarks of IPF. Our findings are corroborated by

prior studies. Lee et al. reported increased CDKN2A expression in

epithelial and fibroblast populations of IPF lungs using single-cell

RNA sequencing, while Xu et al. observed that elevated CDKN2A

expression was associated with decreased pulmonary function in

IPF patients (12, 23, 27). In preclinical models, inhibition of

CDKN2A or selective clearance of p16+ fibroblasts—such as with

the senolytic compound XL888—has been shown to alleviate

fibrosis (23, 27). Collectively, these results provide mechanistic
FIGURE 11

Functional enrichment and chromosomal localization of key CS-DEGs. (A) GO analysis results for key CS-DEGs. Node colors represent gene
expression levels, and the color of the rectangles indicates the Z-score. (B) Chord diagram showing the KEGG pathway enrichment analysis for key
CS-DEGs. (C) Chromosomal localizations of four key CS-DEGs.
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evidence linking CDKN2A-driven senescence pathways to the

pathogenesis of IPF, and support the potential of CDKN2A as

both a diagnostic biomarker and a therapeutic target.

VEGFA, a 34–46 kDa glycoprotein, functions as a pro-

inflammatory cytokine and a key regulator of angiogenesis,

playing multifaceted roles in lung injury and fibrosis (28, 29). In

this study, we observed a significant downregulation of total

VEGFA in IPF lung tissues compared to healthy controls.

However, VEGFA levels in the bronchoalveolar lavage fluid

(BALF) of IPF patients remain controversial, with reports of

either decreased or unchanged expression (30–32). This

discrepancy may reflect spatial heterogeneity: senescence of

parenchymal endothelial cells may drive global depletion of

VEGFA within the lung tissue, while transient secretion from

alveolar macrophages or activated fibroblasts in early fibrotic

niches may sustain localized VEGFA pools. The dual role of

VEGFA—pro-fibrotic effects (e.g., promoting fibroblast

proliferation and migration) versus protective functions (e.g.,

enhancing alveolar repair and activating NK cell–mediated

immune responses)—further complicates its therapeutic targeting

(30, 33, 34). Emerging evidence suggests that this dichotomy is

largely driven by isoform-specific effects. Alternative splicing

generates functionally distinct isoforms such as the pro-

angiogenic VEGF-A165a and the anti-angiogenic VEGF-A165b,

which exert differential effects on fibroblast activity and ECM

production. The spatiotemporal balance between these isoforms

may critically influence disease progression (28). In our study,

VEGFA was identified as a high-confidence biomarker. However,
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bulk RNA-seq and immunofluorescence are limited in their ability

to distinguish among isoforms. Future studies should integrate

single-cell transcriptomics (to map isoform-specific cellular

origins) with spatially resolved proteomics (to quantify VEGF-

A165a/b ratios within fibrotic niches) to reconcile these molecular

layers. Clinically, isoform-selective interventions (e.g. ,

neutralization of VEGF-A165a while preserving VEGF-A165b) or

compartment-targeted delivery strategies (e.g., inhalable biologics)

may offer precise therapeutic approaches by balancing the opposing

actions of VEGFA in IPF.

SOX2 is a transcription factor essential for maintaining

embryonic stem cells and inducing pluripotency, and plays a

pivotal role in airway epithelial homeostasis and repair (35). In

our study, SOX2 was significantly upregulated in IPF lung tissues

compared to healthy controls, consistent with previous findings

(36). GO enrichment analysis revealed that SOX2-related genes

were enriched in biological processes such as neuronal stem cell

population maintenance, response to oxygen levels, and positive

regulation of cell adhesion. KEGG enrichment further emphasized

its involvement in epithelial and endothelial cell proliferation and

its regulation. These results suggest that SOX2 may participate in

modulating epithelial progenitor cell fate and aberrant repair

responses within the fibrotic lung microenvironment. Under

conditions of hypoxia and injury-induced stress, the upregulation

of SOX2 in IPF lungs may drive compensatory epithelial

proliferation. However, excessive or dysregulated SOX2 activity

may also promote airway-like differentiation of alveolar epithelial

cells, contributing to distal airspace bronchiolization—a
FIGURE 12

Transcription factors (TFs)- key CS-DEGs interaction network. The green circles represent TFs, and the yellow squares represent key CS-DEGs.
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histopathological hallmark of IPF (37, 38). In addition, SOX2 has

been shown to promote the expression of fibroblast growth factor 4

(FGF4) or interacting with Smad3 to influence cell proliferation

(36). These mechanisms may further facilitate fibroblast activation

and ECM remodeling. Recent studies have identified pentraxin 3

(PTX3) as a potential SOX2 inhibitor, capable of counteracting

abnormal epithelial remodeling and alveolar destruction while

preventing fibroblast-associated stemness and collagen synthesis

(39). These findings suggest that targeting SOX2 and its regulatory

pathways could offer novel therapeutic strategies for IPF.

FOXO3, a member of the FOXOs transcription factor family, is

characterized by its conserved forkhead box (FOX) DNA-binding
Frontiers in Immunology 14
domain and plays a critical role in biological processes such as

proliferation, apoptosis, and differentiation (40, 41). In our study,

FOXO3 expression was significantly downregulated in IPF lung

tissues compared to healthy controls, which aligns with previous

reports (40, 41). Accumulating evidence suggests that FOXO3 acts

as a critical suppressor in IPF fibrogenesis (40–42). By inhibiting

FOXO3 activity, IPF lung fibroblasts maintain their pathological

phenotype, characterized by enhanced proliferation, resistance to

apoptosis, and excessive collagen matrix production, thereby

promoting disease progression. Interestingly, our study further

revealed that FOXO3 expression positively correlates with

neutrophil and monocyte infiltration in IPF lung tissues. It has
FIGURE 13

Micro RNAs (miRNAs) and drugs regulation of key CS-DEGs. (A) miRNAs - key CS-DEGs interaction network. The purple diamonds represent
miRNAs, and the yellow squares represent key CS-DEGs. (B) Drugs - key CS-DEGs interaction network. The pink triangles represent drugs, and the
yellow squares represent key CS-DEGs.
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been well-documented that immune responses play a pivotal role in

IPF development, where dysregulated interactions between

epithelial cells and immune cells can trigger EMT and sustain

chronic inflammation, thus accelerating fibrosis (33, 43). FOXO3

has been identified as a key nuclear factor regulating EMT in IPF

(44). Given its multifaceted role, therapeutic reactivation of FOXO3

has emerged as a promising strategy for IPF treatment. Hamza et al.

identified UCN-01, a staurosporine derivative, as a potential agent

capable of reactivating FOXO3, reversing fibroblast phenotypic

changes, and ameliorating pulmonary fibrosis (40).

Our study has several limitations. First, while the integration of

three independent datasets strengthens the reliability of our
Frontiers in Immunology 15
findings through cross-validation, the sample size of each

individual cohort remains modest. This may limit the detection of

genes with subtle expression changes or low abundance. Future

studies with larger cohorts are needed to confirm these results.

Second, the publicly available datasets lack detailed clinical

information such as smoking history, disease severity stages, and

longitudinal pulmonary function data. These missing variables

could act as potential confounders, and their impact should be

addressed in future prospective studies. Third, while our

immunofluorescence analysis confirmed the dysregulation of

CDKN2A, SOX2, FOXO3, and VEGFA at the protein level,

further functional studies are required to establish their
FIGURE 14

Experimental validation of key CS-DEGs in clinical samples. (A) H&E staining of IPF lung tissue and normal control lung tissue, showing images at
200× and 400× magnification. (B) Representative immunofluorescence images of CDKN2A (green), SOX2 (red), FOXO3 (yellow), and VEGFA (pink)
expression in IPF lung tissue and normal control lung tissue (magnification: 400×). DAPI, 4′,6-diamidino-2-phenylindole. (C) Quantitative histogram
of relative fluorescence intensity (n=3), with the y-axis representing fluorescence intensity relative to the healthy control group. *P < 0.05; **P < 0.01.
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mechanistic roles in IPF. As an initial bioinformatics-driven

investigation, this study focused on identifying and validating

robust CS-DEG signatures with diagnostic potential. The

consistent identification of these genes across multiple datasets

highlights their promise as key contributors to senescence and

fibrosis, inviting deeper experimental exploration in future work.
5 Conclusion

In conclusion, this study underscores the pivotal role of cellular

senescence in the pathogenesis of idiopathic pulmonary fibrosis

(IPF) and identifies four key CS-DEGs (CDKN2A, VEGFA, SOX2,

and FOXO3) as potential biomarkers for diagnosis and targets for

therapy. Our findings provide a foundation for future research

focused on developing senescence-based interventions, which could

improve clinical outcomes for IPF patients.
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