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Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known

as non-alcoholic fatty liver disease, NAFLD) has become one of the most prevalent

chronic liver diseases worldwide, with its incidence continuously rising alongside

the epidemic of metabolic disorders. AMP-activated protein kinase (AMPK), as a

key regulator of cellular energy metabolism, influences multiple pathological

processes associated with MASLD. This review systematically summarizes the

regulatory roles of AMPK in lipid metabolism, inflammatory response, cell

apoptosis, and fibrosis. Additionally, it discusses the latest developments of

AMPK activators from preclinical to clinical studies, while analyzing the major

challenges currently faced and potential strategies for resolution. A deeper

understanding of AMPK regulatory mechanisms will contribute to the

development of more effective therapeutic approaches for MASLD.
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1 Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as

non-alcoholic fatty liver disease, NAFLD) is a major etiological subtype of steatotic liver

disease (1). According to the latest diagnostic consensus, MASLD is diagnosed in

individuals with liver steatosis (defined histologically as the presence of lipid vacuoles in

5% or more of hepatocytes), at least one cardiometabolic risk factor (CMRF; including

obesity, type 2 diabetes, dyslipidemia, and hypertension), and alcohol consumption less

than 20-30 g per day (1, 2). In the wake of the public health epidemics of obesity and type 2

diabetes, MASLD has become one of the most common chronic liver diseases worldwide,

with its prevalence continuously rising. Recent meta-analyses estimate a prevalence of

approximately 38% in the adult population and around 65% in patients with type 2 diabetes

(3, 4). The natural history of the disease shows that about 7-12% of patients with MASLD

progress to cirrhosis or end-stage liver disease over periods of 7-20 years, and this

progressive condition is closely associated with serious complications such as

cardiovascular disease and extrahepatic malignancies (3, 5). Therefore, the development
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of new therapeutic targets and strategies is crucial for improving the

prognosis of MASLD patients.

AMPK (adenosine monophosphate-activated protein kinase)

serves as a central regulatory molecule in cellular energy

metabolism and plays a crucial role in maintaining metabolic

homeostasis (6). In the context of MASLD, hepatic AMPK activity

is significantly reduced, while AMPK activation can ameliorate

multiple pathological processes including lipid metabolism,

inflammatory response, and fibrosis (7). Although preclinical

studies have generally demonstrated the therapeutic potential of

AMPK activators for MASLD, existing AMPK activators have not

achieved the expected therapeutic efficacy in clinical trials, facing

challenges in clinical translation (8). Moreover, the roles of AMPK at

different pathological stages remain incompletely elucidated (7, 9).

Therefore, developing therapeutic strategies that precisely modulate

the AMPK signaling pathway through a deeper understanding of

AMPK regulatory mechanisms holds significant importance for

expanding treatment options for MASLD.

This review aims to systematically describe the expression and

structural characteristics of AMPK, thoroughly discuss the

regulatory mechanisms of AMPK in lipid metabolism,

inflammatory response, cell apoptosis, and fibrosis in MASLD

based on recent research advances, and summarize the progress

and challenges of AMPK activators in preclinical and clinical

studies, thereby providing theoretical basis for developing

therapeutic strategies for MASLD.
2 Expression and structure of AMPK

Mammalian AMPK is a heterotrimeric complex composed of a

catalytic a subunit and regulatory b and g subunits. These subunits
are encoded by PRKAA, PRKAB, and PRKAG genes, respectively.

Each AMPK subunit has two to three isoforms (a1, a2, b1, b2, g1,
g2, g3), theoretically allowing the formation of 12 distinct trimeric

AMPK complexes. These different AMPK subunit combinations

exhibit variations in their regulatory characteristics and functional

properties (10, 11). Analysis of human and mouse primary

hepatocytes has revealed distinct species-specific expression

patterns of AMPK subunits between these cell types. While the

expression pattern of g subunits is similar between the two cell

types, significant differences exist in the expression of a and b
subunits. Human hepatocytes predominantly express the a1
subunit with lower expression levels of the a2 subunit; both b1
and b2 subunits are expressed, with b2 being the predominant

form. In contrast, mouse hepatocytes co-express a1 and a2
subunits with a2 being predominant; regarding b subunits, b1 is

predominantly expressed while b2 expression is minimal (12).

The a subunit contains an amino-terminal kinase domain (a-KD),
followed by an autoinhibitory domain (a-AID), a linker region, and a

C-terminal domain (a-CTD). The a-KD exhibits the classical structure

of an N-lobe and C-lobe, with the Thr172 phosphorylation site located

within the activation loop of the C-lobe being crucial for full AMPK

activation. Notably, while this regulatory threonine residue is

conventionally referred to as Thr172, the corresponding site in the
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human a1 subunit is actually Thr183 (9). The b subunit C-terminal

regulatory domain (b-CTR) rigidly cross-links the a-CTD and g
subunit, forming the core of the regulatory module (9). The b
subunit also includes a carbohydrate-binding module (b-CBM),

which recognizes and binds carbohydrates such as glycogen and

modulates AMPK activity (13). Additionally, constitutive

myristoylation at the amino terminus of the b subunit is essential for

AMP/ADP-mediated Thr172 phosphorylation (14, 15). The g subunit
contains four cystathionine-b-synthase (CBS) repeat sequences that

form four potential ligand-binding sites, among which the competitive

binding of adenosine monophosphate (AMP)/adenosine diphosphate

(ADP) with adenosine triphosphate (ATP) at the CBS3 site represents

the primary mechanism by which AMPK senses and responds to

cellular energy levels to regulate its activity (16) (Figure 1).
3 AMPK regulation in MASLD

3.1 AMPK regulation of lipid metabolism
in MASLD

MASLD is characterized by hepatic lipid homeostasis

disruption, occurring when lipid input (including circulating free

lipid uptake, dietary lipid absorption, carbohydrate-mediated de

novo lipogenesis (DNL), and de novo cholesterol synthesis) exceeds

lipid output capacity (fatty acid b-oxidation, very low-density

lipoprotein-triglyceride (VLDL-TG) secretion, and cholesterol

conversion to bile acids and secretion), resulting in gradual

accumulation of neutral lipids (triglycerides and cholesterol

esters) in hepatocytes (17). AMPK reduces hepatic lipid

accumulation by inhibiting DNL and cholesterol synthesis while

promoting fatty acid b-oxidation.
Glycolysis-derived pyruvate is converted to acetyl-CoA by the

pyruvate dehydrogenase complex, and acetyl-CoA is further

catalyzed by acetyl-CoA carboxylase (ACC) to form malonyl-

CoA, an important DNL precursor (18). ACC is a classical

downstream kinase of AMPK, which inhibits its activity through

phosphorylation, thereby reducing DNL (19).

AMPK negatively regulates the activity and maturation of sterol

regulatory element-binding protein (SREBP) family transcription

factors through two pathways: inhibition of mammalian/mechanistic

target of rapamycin complex 1 (mTORC1) and direct phosphorylation

(20, 21). SREBP-1c, the primary hepatic SREBP-1 isoform, participates

in DNL regulation by upregulating acc and fasn transcription (21–23).

SREBP-2 specifically regulates the expression of cholesterol synthesis

genes, including hmgcr, hmgcs, fdps, and sqs (23).

In fatty acid oxidation, cytosolic fatty acids first bind with CoA

under the action of acyl-CoA synthetase to form acyl-CoA, which is

then transferred to mitochondria by carnitine palmitoyltransferase

1 (CPT1) for b-oxidation. Since malonyl-CoA is an allosteric

inhibitor of CPT1, AMPK promotes fatty acid b-oxidation by

inhibiting ACC activity to reduce malonyl-CoA levels, thereby

relieving CPT1 inhibition (24).

AMPK also participates in lipid metabolism through regulation

of autophagy. In hepatic lipid droplet catabolism, autophagy-
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mediated lipid droplet degradation (lipophagy) works in concert

with conventional cytosolic lipolysis: conventional lipolysis breaks

down large lipid droplets into smaller ones, which are then further

degraded through lipophagy (25). During this process,

autophagosomes form and sequester lipid droplets, which then

fuse with lysosomes where acidic lipases degrade triglycerides into

fatty acids and promote b-oxidation (25).

AMPK, as a key regulator of autophagy, initiates autophagy by

phosphorylating Unc-51 like autophagy activating kinase 1

(ULK1) and promotes autophagy by inhibiting mTORC1

through phosphorylation of either Tuberous sclerosis complex 2

(TSC2) or Regulatory-associated protein of mTOR (Raptor) (26).

The mTORC1 complex (comprising mTOR, Raptor, mLST8,

PRAS40, and Deptor) is a central hub in autophagy regulation

that, under the influence of nutrients, energy, and growth factor

signals, inhibits autophagy by suppressing Autophagy-related

genes (ATG) proteins and lysosomal biogenesis (27). mTORC1’s

phosphorylation of ULK1 disrupts the interaction between AMPK

and ULK1 (26).

Overall, the balance between AMPK and mTORC1 in

autophagy regulation plays a crucial role in hepatic metabolism.

In MASH mouse models, elevated hepatic expression of
Frontiers in Immunology 03
Thioredoxin-interacting protein/Vitamin D3 up-regulated protein

1 (TXNIP/VDUP1) interacts with AMPK to promote mTORC1

inactivation and Transcription factor EB (TFEB) nuclear

translocation, thereby enhancing autophagy and fatty acid

oxidation, leading to improvement in hepatic steatosis,

inflammation, and fibrosis (28) (Figure 2).

Therefore, activated AMPK maintains hepatic lipid metabolic

homeostasis through regulation of multiple downstream signaling

pathways. In MASLD, hepatic AMPK activity is significantly

reduced, though the underlying regulatory mechanisms remain

incompletely understood (7). Recent studies have revealed several

important regulatory molecules. In MASLD, decreased levels of

circulating a-ketoglutarate (AKG), reduced expression of

orosomucoid 2 (ORM2), and fibroblast growth factor 4 (FGF4)

are closely associated with impaired AMPK activity (29–31).

Additionally, upregulated hepatic Rho-associated coiled-coil

containing protein kinase 1 (ROCK1) expression also suppresses

AMPK activity (32). Notably, compensatory upregulation of the

KISS1 (Kisspeptin 1)/KISS1R (KISS1 Receptor) system and

cardiotrophin-1 (CT-1) may partially counteract the overall

decrease in AMPK activity in MASLD by promoting AMPK

activation (33).
FIGURE 1

Subunit composition, structure, and domain organization of AMPK. (A) AMPK subunit isoforms and heterotrimeric complex composition. The PRKAA,
PRKAB, and PRKAG genes encode a, b, and g subunits respectively, which can form 12 distinct heterotrimeric combinations. The a1b2g1 complex
(highlighted in red) is considered the predominant AMPK isoform expressed in human liver. (B) Crystal structure of inactive AMPK(a1b2g1) complex
(PDB ID: 7M74). The three subunits are shown in different colors: a1-subunit (light green), b2-subunit (purple), and g1-subunit (beige). (C) Structural
domain organization of AMPK subunits. The a1-subunit (amino acids 1-559) consists of kinase domain (a-KD N-lobe and C-lobe), autoinhibitory
domain (a-AID), linker region (a-Linker), and C-terminal domain (a-CTD). The b2-subunit (amino acids 1-272) contains carbohydrate-binding
module (b-CBM), linker region (b-Linker), and C-terminal region (b-CTR). The g1-subunit (amino acids 1-331) comprises four CBS domains (CBS1-4).
Thr183(a2-Thr172) represents the key phosphorylation site of AMPK.
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A recent significant finding suggests the possible existence of

AMPK-independent compensatory lipid regulatory mechanisms in

the liver (12). Liver-specific AMPK-deficient mice maintained

normal hepatic lipid homeostasis, and high-fat diet did not

exacerbate MASLD development (12). However, this study also

confirmed that reactivation of impaired AMPK could improve

MASLD, consistent with most current research findings.

Therefore, investigating the downstream mechanisms of AMPK

regulation in hepatic lipid metabolism can provide theoretical basis

for MASLD treatment through targeted AMPK activation, but may

not explain the pathogenesis of MASLD.
3.2 AMPK regulation of inflammatory
response in MASH

From a histological perspective, the MASLD disease spectrum

encompasses metabolic dysfunction-associated steatosis of the liver
Frontiers in Immunology 04
(MASL) and metabolic dysfunction-associated steatohepatitis

(MASH), with patients potentially developing progressive liver

fibrosis, ultimately leading to cirrhosis and/or hepatocellular

carcinoma (HCC) (3, 34). The pathogenesis of MASH involves

three interconnected pathological processes: chronic inflammatory

response mediated by pro-inflammatory mediators [such as TNF-a
(Tumor Necrosis Factor-alpha), IL-6 (Interleukin-6), IL-1b
(Interleukin-1 beta), ROS (Reactive Oxygen Species)], programmed

hepatocyte death, and fibrosis progression mediated by hepatic

stellate cell activation (35).

AMPK, as a crucial kinase widely expressed in various hepatic

cells, exerts multiple protective effects when activated. It maintains

hepatocyte energy balance, suppresses pro-inflammatory mediator

production, counteracts hepatocyte injury through regulation of

mitochondrial function and cell death pathways, and alleviates liver

fibrosis by inhibiting hepatic stellate cell activation (36–38). Recent

studies have demonstrated that in a MASH model induced by

choline-deficient high-fat diet (CD-HFD), hepatic AMPK
FIGURE 2

Molecular mechanisms of AMPK-regulated lipid metabolism. Lipid synthesis inhibition is achieved through three key pathways (1): Direct
phosphorylation of ACC inhibits its activity, reducing the conversion of acetyl-CoA to malonyl-CoA, thereby suppressing the key step of de novo
fatty acid synthesis (2); Dual inhibition of SREBP transcription factors through direct phosphorylation and mTORC1-dependent mechanisms, where
SREBP-1c mainly regulates fatty acid synthesis-related genes (acc, fasn), and SREBP-2 specifically regulates cholesterol synthesis-related genes
(hmgcr, hmgcs, fdps, sqs) (3); AMPK-mediated mTORC1 activity inhibition works synergistically with direct SREBP phosphorylation to effectively
block the transcriptional activation of lipid synthesis-related genes. Lipid catabolism is regulated through two major pathways. AMPK inhibits ACC to
reduce malonyl-CoA levels, relieving its inhibition on CPT1 and promoting fatty acid transport into mitochondria for b-oxidation. Additionally, AMPK
promotes lipid breakdown through regulation of lipophagy, specifically by (1): Direct phosphorylation of ULK1 to initiate autophagosome formation
(2); Inhibition of mTORC1 through phosphorylation of TSC2 or Raptor, relieving its phosphorylation-mediated inhibition of ULK1 and enhancing
AMPK-ULK1 interaction (3); Promotion of TFEB nuclear localization through the TXNIP-mTORC1-TFEB axis, enhancing the transcription of
autophagy-related genes and fatty acid oxidation genes, while improving inflammation and promoting lysosomal biogenesis, thereby strengthening
lipophagy-mediated lipid droplet degradation.
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deficiency exacerbates hepatocyte death and liver injury (38).

Therefore, AMPK likely plays a significant role in the progression

from MASLD to MASH.

3.2.1 AMPK regulation of pro-inflammatory
mediators in MASH

In the pathological progression of MASH, excessive lipid

accumulation and lipotoxicity trigger a cascade of events: damaged

hepatocytes release damage-associated molecular patterns (DAMPs),

which subsequently activate Kupffer cells (KCs) and infiltrating

macrophages. These activated immune cells produce large

quantities of pro-inflammatory mediators, further exacerbating

hepatocyte injury, thus creating a vicious cycle (39, 40).

This pathological dialogue between hepatocytes and immune

cells constitutes the core of the inflammatory response in MASH

(41). AMPK exerts significant inhibitory effects on this process by

regulating the production of pro-inflammatory mediators in

these cells.

3.2.1.1 AMPK regulation of pro-inflammatory mediator
production in hepatocytes

Enhanced AMPK signaling in hepatocytes suppresses cytokine

expression. Studies in HFD mouse models have demonstrated that

AMPK inhibits the expression of TNF-a, IL-1b, and IL-6 by

activating its downstream target Sirtuin1 (SIRT1), which reduces

p65 acetylation levels (36).

Mitochondrial dysfunction is a crucial factor in the

inflammatory response of MASH. Rodent model studies indicate

that mitochondrial function may temporarily increase adaptively

during the MASL stage but becomes significantly impaired during

the MASH stage due to sustained lipotoxicity (42). Excessive free

fatty acids lead to electron transport chain (ETC) overload,

increasing ROS generation. These ROS not only directly damage

hepatocytes but also act as pro-inflammatory mediators activating

downstream inflammatory signaling pathways, creating a vicious

cycle of inflammatory response (42, 43).

Mitochondria are highly dynamic organelles whose structure

and number constantly change in response to cellular energy

demands and physiological stimuli, with AMPK being one of the

classical regulators of this process (44). Studies have shown that

AMPK can sense mitochondrial dysfunction through the upstream

ROS-CaMKK2 signaling pathway and participates in regulating

multiple key aspects of mitochondrial quality control (45–47).

Specifically, AMPK can upregulate Peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC1a) either

directly through phosphorylation or indirectly through p38MAPK

(p38 Mitogen-Activated Protein Kinase), SIRT1, and HDAC5

(Histone Deacetylase 5)-mediated pathways, thereby promoting

mitochondrial biogenesis-related gene transcription and

mitochondrial DNA replication, enhancing mitochondrial content

and oxidative phosphorylation capacity (6, 48). Regarding

mitochondrial dynamics regulation, AMPK participates in

mitochondrial fission by phosphorylating Mitochondrial Fission

Factor (at Ser155 and Ser173 sites), promoting DRP1 recruitment (49).
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Recent studies have revealed that under mitochondrial stress

conditions, the AMPK-FNIP1 (Folliculin Interacting Protein 1)

signaling axis demonstrates an integrated regulatory role in

mitochondrial quality control, unveiling a temporal response

mechanism to mitochondrial damage (50). AMPK phosphorylation

of FNIP1 leads to nuclear translocation of TFEB/TFE3 (Transcription

Factor E3), prioritizing the expression of lysosomal and autophagy-

related genes for damaged mitochondria clearance, while

simultaneously inducing transcription of NT-PGC1a (an N-

terminal truncated isoform of PGC1a with enhanced protein

stability). Once NT-PGC1a protein accumulates to sufficient levels,

it activates new mitochondrial generation through the NT-PGC1a-
ERRa (Estrogen-Related Receptor alpha) transcriptional axis,

completing mitochondrial renewal (50). This temporal regulatory

pattern not only ensures efficient mitochondrial renewal but also

reflects cellular energy utilization economy.

AMPK precisely coordinates the selective autophagy of functional

and damaged mitochondria through two independent mechanisms.

AMPK phosphorylates ULK1 at Ser556 and Ser694 sites to promote

14-3-3 protein binding, inhibiting NIX (neighbor of BRCA1 gene 1

protein X)-dependent functional mitochondrial autophagy, while

simultaneously directly phosphorylating Parkin at Ser108 to

activate PINK1 (PTEN-induced kinase 1)/Parkin-dependent

clearance of damaged mitochondria (51–53). Therefore, AMPK

may improve hepatocyte mitochondrial dysfunction through these

quality control mechanisms and suppress NLRP3 (NOD-Like

Receptor Family Pyrin Domain Containing 3) inflammasome

activation and IL-1b release, reducing inflammatory responses in

MASH (46, 54). Additionally, AMPK enhances antioxidant capacity

by activating Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2),

protecting hepatocytes from oxidative damage and subsequent pro-

inflammatory mediator secretion (29).

3.2.1.2 AMPK regulation of pro-inflammatory mediator
production in macrophages

As MASLD/MASH progresses, embryonic-derived resident

Kupffer cells (KCs) in the liver are gradually replaced by

circulating recruited macrophages, including monocyte-derived

macrophages (Mo-Ms) and newly formed KCs differentiated from

circulating monocytes. This replacement process leads to changes in

the hepatic macrophage pool composition, with newly recruited

macrophages exhibiting pro-inflammatory phenotypes, further

secreting inflammatory mediators such as TNF and IL-1b, and
promoting disease progression (41).

AMPK activation in hepatic macrophages significantly

suppresses inflammatory factor production. Li et al. (55)

demonstrated that in RAW264.7 cells and KCs, AMPK reduces

pro-inflammatory mediator secretion by inhibiting the Nuclear

Factor of Kappa Light Polypeptide Gene Enhancer in B-cells

Inhibitor Alpha (IkBa)-NF-kB pathway and the iNOS/NO

system (56). Furthermore, Park et al. (57) discovered in a high-fat

diet mouse model that metformin activated the AMPK-SIRT1-

Tristetraprolin (TTP) signaling axis in KCs, thereby inhibiting

TNF-a production.
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In circulating recruited macrophages, the b1 subunit of AMPK

plays a crucial role in functional regulation. Studies have shown that

b1 deficiency leads to reduced AMPKa1 activity, resulting in

decreased mitochondrial content and impaired fatty acid oxidation,

promoting macrophages to acquire an M1 pro-inflammatory

phenotype and increased sensitivity to fatty acid-induced

inflammatory responses (58, 59). Recent studies have revealed that

circulating monocytes in MASH patients undergo significant

metabolic reprogramming, characterized by a shift in energy

metabolism from oxidative phosphorylation to glycolysis,

accompanied by enhanced glycolysis and mitochondrial respiration,

mitochondrial dysfunction, and oxidative stress (60). Mechanistic

studies have shown that AMPK activity suppression in Mo-Ms can

enhance mitochondrial respiration through activation of the mTOR-

PGC1a signaling pathway, promoting ROS generation and

subsequently exacerbating inflammatory responses (60).
3.2.2 AMPK inhibits MASH-related liver fibrosis
in HSCs

During MASH, hepatic stellate cells (HSCs) respond to various

immune mediators, including pro-inflammatory cytokines and

chemokines, transforming from a quiescent state to a

myofibroblast-like activated state. Activated HSCs synthesize and

secrete large amounts of extracellular matrix (ECM) components,

ultimately leading to liver fibrosis (61). HSCs have been identified as

the primary effectors driving liver fibrosis (62).

In vitro studies of activated primary mouse HSCs have shown

increased AMPKa1 activity (63). Further pharmacological activation

of AMPK effectively inhibits HSC proliferation (63–65). Additionally,

soluble guanylate cyclase (sGC) is expressed in HSCs and their

derived fibroblasts but not in hepatocytes. In MASH mouse

models, the sGC stimulator Praliciguat significantly improved liver

inflammation and fibrosis through activation of the sGC-cyclic

guanosine monophosphate (cGMP)-AMPK signaling pathway (37).

These findings demonstrate that pharmacological activation of

AMPK effectively suppresses the fibrotic phenotype both in

cultured HSCs and in preclinical models of MASH.

Studies have shown that AMPK maintains HSC homeostasis and

inhibits their pathological proliferation by regulating antioxidant

stress responses and cell cycle progression (64, 65). On one hand,

AMPK blocks protein kinase B (AKT/PKB) signaling pathway

activation by inducing antioxidant enzyme expression and

inhibiting nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase-dependent ROS generation. On the other hand, AMPK

suppresses HSC proliferation by upregulating p27 and p21

expression, possibly mediated through p53 phosphorylation (64).

Furthermore, AMPK impedes HSCs proliferation and fibrosis

progression by inhibiting NF-kB and mTOR pathway activities (65).

During HSCs activation, Transforming growth factor-beta

(TGF-b) promotes collagen transcription through its signaling

substrates Mothers against decapentaplegic homolog 2/3

(SMAD2/3) (66). Lim et al. (66) demonstrated that AMPK

inhibits transdifferentiation and fibrogenic gene expression by

interfering with the TGF-b/SMAD pathway. Pharmacological
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activation of AMPK using 5-Aminoimidazole-4-carboxamide-1-b-
D-ribofuranoside (AICAR), metformin, or adiponectin

competitively binds to transcriptional coactivator p300, inhibiting

p300-mediated SMAD3 acetylation and reducing collagen gene

expression (66). Recently, Hall et al. (37) discovered that AMPK

activated by the NO-sGC-cGMP signaling pathway suppresses

TGF-b signaling and fibrosis progression by upregulating SMAD7

expression, and this mechanism operates independently of SMAD2/

3 (37). This indicates that the AMPK pathway in HSCs exhibits

specific downstream molecular responses to different upstream

signals. Further investigation of these molecular mechanisms may

help understand how AMPK mediates adaptive regulation of HSCs

in different physiological or pathological environments.

During HSCs activation, intracellular pH (pHi) significantly

increases due to enhanced proton efflux mediated by Vacuolar-type

H+-ATPase (v-ATPase). v-ATPase is a multi-subunit complex that

regulates pHi through ATP-dependent H+ transmembrane

transport. Studies have shown that pharmacological activation of

AMPKa1 inhibits v-ATPase activity, effectively reducing the pro-

fibrotic phenotype of HSCs (67).

3.2.3 AMPK suppresses hepatocyte apoptosis and
liver injury

Hepatocyte injury and death can be triggered by lipotoxicity-

induced mitochondrial dysfunction and endoplasmic reticulum

stress, as well as inflammatory signaling pathways activated by pro-

inflammatory mediators. Extensive hepatocyte death leads to

persistent liver injury, promoting connective tissue deposition and

inter-regional fibrotic connections, ultimately progressing to

cirrhosis. Apoptosis is one of the primary forms of hepatocyte

death in MASH (68). The apoptotic process is mediated by the

activation of Cysteine-dependent aspartate-specific proteases

(caspases), where initiator caspases such as caspase-8 and caspase-9

initiate the apoptotic cascade, while effector caspases including

caspase-3, caspase-6, and caspase-7 execute cell apoptosis (69).

Studies have shown that during the progression from MASL to

MASH, reduced AMPK activity is closely associated with apoptosis

and tissue damage (38). In metabolically healthy liver, AMPK inhibits

caspase-3 and caspase-7-mediated cleavage and activation of

procaspase-6 through phosphorylation at Ser257. However, under

MASH conditions, as AMPK activity decreases, the inhibition of

procaspase-6 is relieved, leading to its cleavage and release of active

caspase-6. Caspase-6 subsequently cleaves BH3-interacting domain

death agonist (Bid), releasing cytochrome c from mitochondria,

thereby forming a feed-forward loop that continuously induces cell

apoptosis and exacerbates liver injury (38) (Figure 3) (Table 1).
4 AMPK activation and its application
in MASLD treatment

Although the FDA approved Rezdiffra (resmetirom) in 2024 for

treating non-cirrhotic MASH in adults, treatment options remain

limited. As discussed above, AMPK plays a crucial role in MASLD
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development and progression, representing a promising therapeutic

target. AMPK regulates cellular metabolism through diverse

signaling input and output networks, and its activation

mechanisms primarily include typical nucleotide sensing

pathways, upstream kinase regulation, and post-translational

modifications (70). Elucidating the regulatory characteristics of

these activation mechanisms in MASLD will facilitate the

development of more precise AMPK-targeted therapeutic strategies.
4.1 Classical nucleotide sensing
activation mechanism

When cellular energy levels decrease, elevated AMP/ATP ratio

leads to AMP replacing ATP at the CBS3 site of the AMPK g
subunit, inducing an active conformational change in AMPK. In

this conformation, dephosphorylation of Thr172 in the activation
Frontiers in Immunology 07
loop is inhibited, and phosphorylation activation is completed

under the catalysis of upstream kinases (9). As the primary

source of cellular ATP, mitochondrial functional status directly

affects AMPK activity. Under normal conditions, the proton

gradient generated by the mitochondrial respiratory chain

produces ATP through ATP synthase. Mitochondrial uncoupling

allows protons to bypass ATP synthase and flow back directly,

reducing ATP generation and releasing heat. Therefore, both

inhibition of the respiratory chain and promotion of

mitochondrial uncoupling can activate AMPK by increasing the

cellular AMP/ATP ratio (6).

Considering that AMPK is not the sole responder to cellular

energy stress, relying solely on the nucleotide-sensing mechanism

that regulates cellular energy levels may not be the optimal choice

for developing precise AMPK-targeting drugs (71–73).

Nevertheless, several clinical drugs involving energy-sensing

mechanisms for AMPK regulation have been validated in other
FIGURE 3

Regulatory mechanisms of AMPK in MASH-associated inflammatory response. (A) Intercellular pro-inflammatory mediator network in MASH
pathology: Hepatocyte injury releases DAMPs, triggering macrophage activation and production of pro-inflammatory mediators (cytokines, ROS, NO,
and chemokines), which amplify inflammatory responses and induce hepatic stellate cell activation. (B) AMPK regulation of inflammatory response in
hepatocytes: In hepatocytes, AMPK inhibits inflammatory cytokine expression through SIRT1-mediated p65 deacetylation. Meanwhile, AMPK
regulates mitochondrial quality through multiple levels: promoting mitochondrial biogenesis via p38MAPK/SIRT1/HDAC5/FNIP1-PGC1a axis;
regulating mitochondrial dynamics through MFF; coordinating mitophagy via FNIP1-TFEB/TFE3 and Parkin/ULK1-NIX dual pathways. Additionally,
AMPK enhances antioxidant defense by activating Nrf2 and inhibits apoptotic cascade initiation through Procaspase-6 phosphorylation. (C) AMPK
regulation of inflammatory response in macrophages: In Kupffer cells, AMPK reduces pro-inflammatory mediator production by inhibiting NF-kB/
IkBa and iNOS/NO signaling pathways while activating the SIRT1-TTP axis. In monocyte-derived macrophages, decreased AMPK activity leads to
mTOR/PGC1a pathway activation, resulting in metabolic reprogramming and mitochondrial dysfunction, increased ROS production, and
exacerbated inflammatory response. (D) AMPK regulation of fibrosis in hepatic stellate cells: Competitively binding with p300 to inhibit SMAD2/3-
mediated collagen expression; suppressing TGF-b signaling through NO/sGC/cGMP-mediated SMAD7 upregulation; reducing cellular pH by
inhibiting v-ATPase activity; suppressing ROS-AKT signaling pathway through antioxidant enzyme upregulation; inhibiting HSC proliferation via p53-
p21/p27 axis and NF-kB/mTOR pathway.
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diseases, and their repurposing value in MASLD treatment remains

worthy of attention (74).

Metformin, widely used clinically for treating type 2 diabetes,

functions by inhibiting the mitochondrial electron transport

chain, reducing mitochondrial respiration, thereby activating

AMPK (74). Although its efficacy in treating MASLD and

MASH and potential hepatotoxicity remain controversial,

recent evidence supports its therapeutic potential (57, 75–78).

However, Liu et al. (79) found that functional leptin receptor is

essential for metformin’s therapeutic efficacy, suggesting that

long-term metformin treatment might promote MASLD

progression in leptin-insensitive individuals, limiting its clinical

application scope.

Furthermore, ezetimibe, a medication for treating

hypercholesterolemia, has shown significant improvement in

hepatic steatosis and inflammation scores in MASH patients after

24 months of treatment in clinical studies (80). Although ezetimibe

had not previously been reported to improve its original indication

through the AMPK pathway, Kim et al. (81) discovered that it

improves MASH by inducing autophagy through activation of the

AMPK-TFEB pathway. Studies have shown that ezetimibe’s ability

to reduce hepatocyte ATP levels might be one of its key mechanisms

for AMPK activation, though the specific molecular mechanisms

require further investigation (81). Similarly, low-dose sorafenib

(one-tenth of the clinical HCC treatment dose) can safely and

effectively inhibit MASH progression in mice and monkeys. Unlike

its kinase-targeting mechanism in HCC, at this dose, sorafenib

primarily achieves therapeutic effects through inducing

mitochondrial uncoupling and activating AMPK (82).
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4.2 Upstream kinase activation mechanism

4.2.1 LKB1-AMPK activation mechanism
Liver kinase B1 (LKB1) is the primary upstream kinase of

AMPK, which forms an active complex with STRAD and MO25,

triggering nucleocytoplasmic shuttling and conformational

changes, ultimately activating AMPK. Unlike other kinases, LKB1

possesses constitutive activity, a characteristic that may provide a

degree of assurance for AMPK’s rapid response to elevated AMP

concentrations. Although LKB1 has basal enzymatic activity, its

functional strength and regulatory efficiency remain subject to

multiple fine-tuned regulations (83).

Various post-translational modifications regulate the LKB1-

AMPK pathway by affecting LKB1’s kinase activity, subcellular

localization, and expression stability. Protein kinase A (PKA) can

enhance LKB1 signaling efficiency through phosphorylation; studies

have shown that dehydroepiandrosterone (DHEA) and hyperforin

(HP) can improve MASLD animal models by activating the PKA-

LKB1-AMPK pathway (84, 85). Conversely, Fyn tyrosine kinase

(Fyn) restricts LKB1 to the nucleus through phosphorylation at

Tyr261/365 sites (83). In MASLD, increased hepatocyte Cluster of

differentiation 36 (CD36) palmitoylation leads to the formation of

CD36/Fyn/LKB1 complexes, where Fyn phosphorylates LKB1,

promoting its nuclear translocation and subsequently inhibiting

AMPK activity (86). Under MASH conditions, oxidative stress

triggers increased MAPK phosphatase-1 (MKP1) expression,

leading to p38 MAPK dephosphorylation in the nucleus. This

process inhibits the phosphorylation sites required for LKB1

nuclear export, causing LKB1 retention in the nucleus.
TABLE 1 AMPK-mediated regulatory effects in MASLD.

Regulatory Function Mechanism Biological Effects

Metabolic Regulation

Lipid synthesis inhibition DNL inhibition (19, 21–23)
Cholesterol synthesis inhibition (23)

Reduction of lipid accumulation

Lipid degradation promotion Promotion of fatty acid oxidation (24)
Enhanced lipophagy (26–28)

Enhancement of lipid consumption

Inflammation Regulation

Hepatocyte-derived inflammation inhibition Transcriptional suppression of cytokine expression
(36)
Mitochondrial quality control (6, 47–53)
Oxidative stress defense (29)

Reduction of pro-inflammatory mediator production

Macrophage-derived inflammation inhibition KC function regulation (56, 57)
Mo-MF differentiation inhibition (58–60)

Suppression of pro-inflammatory phenotype
transformation
Reduction of pro-inflammatory mediator production

Fibrosis Regulation

HSC activity inhibition Proliferation inhibition (63–65)
Metabolic homeostasis maintenance (64, 65, 67)

Inhibition of HSC activation and proliferation

Fibrogenic factor inhibition TGF-b pathway regulation (37, 66)
Fibrotic gene suppression (66)

Reduction of ECM synthesis and deposition

Cell Death Regulation

Apoptosis inhibition Caspase-6 regulation (38) Reduction of cell apoptosis
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Consequently, cytoplasmic AMPK activation is suppressed,

ultimately leading to hepatocyte death and MASH progression (87).

LKB1 contains multiple acetylation sites on its lysine residues,

and SIRT1 regulates LKB1 stability through Lys48 site

deacetylation, promoting its interaction with E3 ubiquitin ligase

and mediating LKB1 degradation through the proteasome (83).

Numerous preclinical studies indicate that the SIRT1-LKB1-AMPK

pathway is an important therapeutic target for MASLD.

Transcription factor p53 (88), thyrotropin (22), and natural

compounds such as berbamine (BBM) (89) and apple polyphenol

extract (APE) (90) all exert therapeutic effects through this pathway.

LKB1 undergoes farnesylation at the Cys430 cysteine residue

within its conserved CAAX sequence, a post-translational

modification crucial for LKB1’s membrane localization and

function (83). Similarly, myristoylation of the AMPK b subunit

enhances its membrane-binding capacity. These fatty acid

modifications may influence LKB1-AMPK signaling pathway

activity by regulating protein spatial distribution through

membrane localization (91). Studies have shown that under high-

fat diet (HFD) conditions, downregulation of geranylgeranyl

diphosphate synthase (GGPPS) in mouse hepatocytes leads to

enhanced LKB1 farnesylation. This change triggers metabolic

reprogramming through upregulation of the LKB1-AMPK axis,

accelerating glycolysis and ultimately exacerbating hepatic

inflammation and fibrosis (92).

The binding of LKB1 to AMPK involves the scaffolding

function of AXIN, where cytoplasmic AMP drives AXIN (Axis

inhibition protein) to directly tether LKB1 for AMPK

phosphorylation (93). Studies have shown that adenovirus-based

knockdown of AXIN in mouse liver impairs AMPK activation and

exacerbates fasting-induced hepatic steatosis (93). Recently,

researchers discovered another scaffold protein, SCO1 (Synthesis

of cytochrome c oxidase 1) (94). As a copper-sensing molecular

chaperone, SCO1 can activate AMPK through the formation of

SCO1-LKB1-AMPK complexes. Importantly, ceruloplasmin

deficiency can restore hepatic copper balance in obese mice and

improve MASLD progression by enhancing mitochondrial

biogenesis and fatty acid oxidation (94).

Beyond these regulatory mechanisms, studies have found that

certain natural compounds can directly bind to LKB1 to modulate

its activity (95). Furthermore, regulation of STK11 (the gene

encoding LKB1) expression at the genetic level can also influence

LKB1-AMPK pathway activity (96). These diverse regulatory

mechanisms provide rich potential targets for developing MASLD

therapeutic strategies.

4.2.2 CaMKK2-AMPK activation mechanism
CaMKK2 (Calcium/calmodulin-dependent protein kinase

kinase 2) is another important upstream kinase of AMPK, with

its activity primarily regulated by calcium signaling. Cells maintain

extremely low cytoplasmic calcium concentrations through active

transport by plasma membrane and endoplasmic reticulum Ca2+

ATPases (97). One common calcium signaling pathway in

mammalian cells is initiated when ligands bind to G protein-

coupled receptors or receptor tyrosine kinases (RTK), leading to
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phospholipase C-catalyzed generation of inositol 1,4,5-

trisphosphate (IP3). IP3 then binds to IP3 receptors (IP3Rs) on

the endoplasmic reticulum, opening these channels and releasing

stored calcium into the cytoplasm (98). When cytoplasmic calcium

concentration increases, the Ca2+/calmodulin complex interacts

with CaMKK2, inducing conformational changes and activating

AMPK (99).

The IP3Rs-CaMKK2 signaling axis represents an important

pathway for targeting AMPK to improve MASLD. Studies have

shown that hepatokine FGF4 activates the CaMKK2-AMPK-

Caspase 6 signaling axis through the classical PLCg-IP3-IP3Rs
cascade initiated by RTK family receptor FGFR activation,

thereby exerting therapeutic effects on MASH (31). Zhou et al.

(30) discovered that hepatokine ORM2 directly binds to membrane

IP3R2 through autocrine/paracrine mechanisms, subsequently

activating the CaMKK2-AMPK pathway to regulate lipid

metabolism and improve hepatic steatosis and inflammation

in mice.

The interaction between CaMKK2 and AMPK also involves

scaffold proteins. Research has shown that exercise can induce

hepatic expression of cysteine dioxygenase type 1 (Cdo1) (100).

Cdo1 functions as a scaffold protein promoting CaMKK2-AMPK

binding, forming a CaMKK2-Cdo1-AMPK trimolecular complex

that enhances AMPK activation (100). This study provides new

insights into explaining the metabolic benefits of exercise in the

liver. Besides Cdo1, STIM2 has been identified as another scaffold

protein facilitating CaMKK2-AMPK interaction, though its role in

MASLD pathogenesis requires further investigation (101).

Among the 22 identified phosphorylation sites of CaMKK2, 9

sites have regulatory functions. These sites are regulated by various

upstream kinases including PKA, Cyclin-dependent kinase 5

(CDK5), Glycogen synthase kinase 3 (GSK3), and AMPK (99).

Notably, AMPK exerts negative feedback regulation by

phosphorylating CaMKK2 at Thr145, limiting its basal activity

while not affecting the maximal activity mediated by Ca²⁺/
calmodulin (102).
4.3 Post-translational modifications
beyond Thr172

Beyond the phosphorylation of AMPK a subunit at Thr172,

phosphorylation modifications at other sites also play significant

roles in hepatic metabolic regulation. Research by Gao et al. (103)

demonstrated that in SD rat models, high-fat diet inhibits AMPK

activity by promoting AKT-mediated phosphorylation of AMPKa1
at Ser487. Furthermore, Zhao et al. (104) discovered that TANK-

binding kinase 1 (TBK1), a non-canonical IKK family member in

adipocytes, can phosphorylate AMPKa1 at Ser459 and Ser476,

thereby inhibiting AMPK Thr172 phosphorylation and activation.

These sites, located near the b-subunit interaction domain and ST

loop of the a subunit, are conserved between AMPKa1 (PRKAA1)
and AMPKa2 (PRKAA2) isoforms and across species from

Drosophila to humans (104). Recently, Luo et al. (105) showed

that myeloid differentiation factor 2 (MD2) contributes to MASLD
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pathogenesis through the TBK1-AMPK/SREBP1 and lipid

metabolism pathways.

Ser108 on the AMPK b1 subunit is a cis-autophosphorylation site
maintained at low levels under basal conditions. b1 is specifically

phosphorylated by the autophagy-initiating kinase ULK1, a feature

absent in b2. Studies using mice with AMPK b1 Ser108 loss-of-

function mutations have shown that phosphorylation at this site is

crucial for stimulating mitochondrial biogenesis and mitophagy

(106). However, mouse studies have also revealed that although

AMPK b1 Ser108 phosphorylation levels increase under high-fat

diet conditions, this modification is not essential for regulating

whole-body fatty acid oxidation. This finding suggests that simply

upregulating phosphorylation at this site may not be an ideal strategy

for MASLD treatment (106).

O-linked b-N-acetylglucosamine modification (O-GlcNAcylation)

is a unique form of O-glycosylation occurring in the cytoplasm and

nucleus. This dynamic and reversible modification, catalyzed by

O-GlcNAc transferase (OGT), adds a single N-acetylglucosamine to

serine and threonine residues. These sites are often also targets for

phosphorylation (107). Studies have shown that O-GlcNAcylation

inhibits AMPK Thr172 phosphorylation and reduces its activity

(108). Recent research indicates that sodium-glucose cotransporter 2

(SGLT2) inhibitors can improve MASH by reducing SGLT2

O-GlcNAcylation levels, thereby promoting AMPK activity and

autophagy (109).

N-terminal myristoylation (N-myristoylation) is a widespread

post-translational modification in eukaryotic cells, involving the

covalent attachment of myristic acid (C14:0) to the N-terminal

glycine of proteins (110). AMPK was among the first proteins

discovered to have this modification, with Gly2 sites on both b1 and
b2 subunits being myristoylated by N-myristoyltransferase (NMT).

Research has shown that the absence of AMPK b subunit

myristoylation leads to increased Thr172 phosphorylation and

activity levels, potentially due in part to reduced interaction with

phosphatases. In high-fat diet-induced animal models,

myristoylation deficiency improved insulin sensitivity by reducing

hepatic lipid accumulation and adipose tissue proliferation (111).

Ubiquitination is an important post-translational modification

that regulates protein stability, activity, and cellular localization

through a cascade reaction involving E1 activating enzymes, E2

conjugating enzymes, and E3 ligases, which covalently attach

ubiquitin molecules to substrate proteins (112). Studies have found

that the E3 ubiquitin ligase Makorin Ring Finger Protein 1 (MKRN1)

can bind to AMPK and mediate its ubiquitination-dependent

degradation. MKRN1 deficiency leads to enhanced AMPK activity,

promoting glucose utilization and inhibiting lipid accumulation (113).
4.4 ADaM site binding

The Allosteric Drug and Metabolite (ADaM) site is a deep

binding pocket between the b-CBM and kinase domain N-lobe,

whose stability depends on Ser108 phosphorylation on b-CBM (9).

When activators bind to the ADaM site, they induce allosteric

activation of AMPK, stabilizing the activation loop structure and
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protecting pThr172 from dephosphorylation (9). ULK1-specific

phosphorylation of b1 Ser108 enhances the affinity of b1-
containing AMPK complexes for ADaM site activators (11).

Several ADaM site activators have been identified and developed,

including A-769662, salicylate, PXL770, and PF-06409577 (8, 114–

116). Recent research has revealed that long-chain fatty acyl-CoAs

(LCFA-CoAs, C12-C24) are natural ligands for the ADaM site.

Although the sequences surrounding Ser108 are relatively

conserved between AMPK b1 and b2, LCFA-CoAs only activate

b1-containing AMPK complexes when Ser108 is phosphorylated,

while b2 complexes are insensitive (106).

Various ADaM site activators have shown MASLD-improving

effects in preclinical studies. Given that human hepatocytes

predominantly express the AMPK b2 subunit, clinical development

of these drugs requires special attention to their isoform selectivity.

Recent cell-free assay studies showed that PXL770 has significant

selectivity for b1 complexes (117). Nevertheless, both PXL770 and

PF-06409577 demonstrated MASLD-improving effects in humans

and non-human primates, suggesting therapeutic efficacy can be

achieved even with highly selective b1 complex activation (8, 116).

PXL770 is the first and currently only direct AMPK activator to

enter clinical trials forMASLD (118). In a phase 2a clinical trial involving

120 patients, PXL770 showed good tolerability (8). Regarding efficacy,

compared to the placebo group (-1.1%), a total daily dose of 500mg

reduced liver fat content by approximately 14% at 12 weeks, and

although not reaching statistical significance, improvements in some

metabolic parameters were observed. This is consistent with AMPK’s

molecular mechanism of inhibiting hepatic lipogenesis and promoting

fatty acid oxidation. Additionally, non-parametric sensitivity analysis

showed statistical significance in the 500mg once-daily group (p=0.039).

Moreover, more pronounced therapeutic effects were observed in the

type 2 diabetes patient subgroup (8). This provides preliminary clinical

evidence for the potential value of AMPK activation strategies in

MASLD treatment, warranting further validation in larger clinical trials.
4.5 Other mechanisms

As AMPK research progresses, related mechanisms continue to

be updated. Emerging evidence suggests that beyond the

aforementioned mechanisms, AMPK’s role in hepatic metabolic

regulation also involves nucleocytoplasmic localization regulation

and interactions with various autophagy-related proteins.

Research by Jang et al. (119) demonstrated that Thyroid

hormone receptor-associated protein 3 (Thrap3) can directly

interact with the AMPK a subunit through its C-terminal region.

This interaction confines AMPK to the nucleus, thereby negatively

regulating the AMPK/autophagy axis in MASLD.

Park et al. (28) showed that in FFA-induced hepatocytes,

TXNIP enhances AMPK activity through direct binding to the

AMPK a subunit, subsequently triggering autophagy and fatty acid

oxidation, thereby inhibiting MASH development. Furthermore,

Lee et al. (120) discovered that SQSTM1 binds to AMPK through its

PB1 domain while also interacting with ULK1, forming an

endogenous SQSTM1-AMPK-ULK1 trimolecular complex. The
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formation of this complex is significantly enhanced under lipotoxic

conditions. Mechanistic studies further revealed that SQSTM1 can

also bind to SESN2 (sestrin 2), a known regulator of AMPK

activation that promotes AMPK activation through multiple

mechanisms. In this way, the formation of the SQSTM1-AMPK-

ULK1 complex not only provides a scaffold platform for AMPK and

ULK1 but also enhances AMPK activity by recruiting SESN2,

ultimately promoting autophagy activation.

Given that AMPK has multiple ligand-binding sites and can be

regulated by activators at different sites, this provides an important

molecular basis for developing therapeutic strategies based on

multi-site synergistic activation. Studies have found that the

combination of low-dose metformin and salicylate significantly

activates AMPK and enhances ACC phosphorylation levels,

effectively reducing hepatic triglyceride content and improving

MASLD phenotype in high-fat diet-induced obese mouse models,

while neither drug alone at the same dosage produced such

therapeutic effects (121). Therefore, synergistic activation of the

nucleotide-binding site and ADaM site may be one of the effective

strategies for maximizing AMPK activation, though its efficacy and

safety need further validation through clinical trials.
5 Summary and perspective

As a highly conserved metabolic stress sensor in evolution,

AMPK has been extensively studied over the past decades, with

continuous revelations of its structural characteristics, regulatory

mechanisms, and downstream effects. This accumulated basic

research has greatly enhanced our understanding of AMPK’s role

in MASLD pathogenesis while establishing a solid foundation for

developing AMPK-targeted therapies. Based on existing evidence,

AMPK activation exhibits protective effects against MASLD through

regulation of multiple pathways, including lipid metabolism,

mitochondrial function, cellular autophagy, and inflammatory

responses, demonstrating its potential as a therapeutic target.

Unfortunately, no AMPK activators have yet been approved for

clinical treatment of MASLD. This field still faces numerous

challenges, such as: current ADaM site activators show insufficient

affinity for the predominantly expressed AMPK complexes in the

liver, potentially limiting therapeutic efficacy; non-selective activation

of systemic AMPK may cause adverse effects, such as promoting

cardiac hypertrophy (122); and considering MASLD’s heterogeneous

characteristics, the suitable patient population for AMPK-targeted

therapy needs further clarification.

Addressing these issues, several research directions and

technological advances in recent years warrant attention, in addition

to conducting larger-scale clinical trials. First, in-depth studies of

physiological AMPK activation modes such as exercise and caloric

restriction (CR), and the subsequent development of exercise

mimetics and CR mimetics, may provide new insights for

developing safer AMPK activation strategies (100, 103, 123). Second,

the application of novel drug delivery technologies may improve the

tissue selectivity of AMPK activators (124). For example, galactose-

modified nanocarriers significantly enhance hepatic accumulation of
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the AMPK activator resveratrol, improving insulin sensitivity in

MASLD mice. This strategy shows promise in overcoming both low

bioavailability and off-target effects. Additionally, Ngoei et al. (125)

reported a small molecule activator SC4 with high affinity for b2
subunit-containing complexes. Crystal structure analysis of a2b2g1
bound to SC4 revealed that the 4′-nitrogen in SC4’s core mediates

binding with b2 residue Asp111. Although SC4 did not significantly

activate the predominantly expressed a1b2g1 complex in hepatocytes

in cell-free assays, the structural analysis of selectivity differences

between SC4 and other ADaM site activators may provide new

clues for developing specific activators targeting the a1b2g1 complex.
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