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MIF tautomerase inhibitor
TE-11 prevents inflammatory
macrophage activation and
glycolytic reprogramming while
reducing leukocyte migration
and improving Crohn’s disease-
like colitis in male mice
Eszter Vámos1, Viola Bagóné Vántus1, Péter Deák1,
Nikoletta Kálmán1, Eva Maria Sturm2, Barsha Baisakhi Nayak2,
Lilla Makszin3, Tamás Loránd1, Ferenc Gallyas Jr1

and Balázs Radnai1*

1Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs,
Pécs, Hungary, 2Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation,
Division of Pharmacology, Medical University of Graz, Graz, Austria, 3Institute of Bioanalysis, Medical
School, Szentágothai Research Center, University of Pécs, Pécs, Hungary
Background & aims: Crohn’s disease (CD) is a chronic inflammatory disorder

primarily affecting the gastrointestinal tract. Leukocyte recruitment, M1

macrophage polarization and associated metabolic reprogramming are hallmarks

of its pathomechanism. Here, we tested TE-11, a potent MIF tautomerase inhibitor

(IC50 = 5.63 mmol/dm3) in experimental Crohn’s disease in male mice, in leukocyte

recruitment and in inflammatory M1 macrophage activation.

Methods: 2,4,6-trinitrobenzenesulfonic acid-(TNBS)-induced colitis was utilized

as a CD-model in male mice. We performed macroscopic scoring and cytokine

measurements. We also analyzed MIF-induced leukocyte migration and

evaluated apoptosis. LPS+IFN-g-induced RAW264.7 cells were applied as a M1

macrophage model. We performed qPCR, ROS and nitrite determinations, ELISA

measurements, mitochondrial oxygen consumption rate and extracellular

acidification rate determinations.

Results: TE-11 improved mucosal damage, reduced inflammation score and

concentration of IL-1b and IL-6 in the colon. It inhibited MIF-induced human

blood eosinophil and neutrophil migration and counteracted the anti-apoptotic

effect of MIF. In macrophages, MIF inhibition prevented M1 polarization by

downregulating HIF-1a gene expression in LPS+IFN-g-activated cells.

Additionally, the molecule reduced mRNA transcription and protein expression

of chemokine CCL-2 and cytokine IL-6 while further increasing SOD2 gene

transcription and decreased ROS and nitrite production in macrophages. During

inflammatory metabolic reprogramming, TE-11 prevented LPS+IFN-g-induced
metabolic shift from OXPHOS to glycolysis. Similarly to anti-inflammatory M2
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cells, TE-11 improved mitochondrial energy production by increasing basal

respiration, ATP production, coupling efficiency, maximal respiration and spare

respiratory capacity.

Conclusion: Comprehensively, TE-11, a MIF tautomerase inhibitor ameliorates

CD-like colitis, reduces MIF-induced eosinophil and neutrophil migration and

prevents M1 polarization and associated metabolic reprogramming; therefore, it

may prove beneficial as a potential drug candidate regarding CD therapy.
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1 Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory

disorder of the gastrointestinal tract primarily affecting the

intestines. Its prevalence is on the increase since more than 3.5

million patients are estimated to experience IBD in their lives just in

the USA and Europe (1). IBD is manifested in two distinct forms:

ulcerative colitis (UC) and Crohn’s disease (CD) (2). UC and CD

both share many unpleasant symptoms, such as pain, diarrhea,

weight loss and/or gastrointestinal bleeding accompanied by tissue

destruction and enhanced intestinal permeability (3). Due to the

compromised integrity of the intestinal epithelium, the commensal

microbiota may penetrate the gut mucosa and directly activate host

immune cells, such as macrophages (4).

Once activated, macrophages become polarized mainly into

inflammatory M1 and anti-inflammatory M2 cells. M2 macrophages

play a crucial role in the homeostasis of gut microorganisms and in

regeneration of intestinal epithelium, while the M1 polarized cells

instigate intestinal inflammation (5–7). M1 polarization is caused by

two well characterized classical macrophage activators. On one hand,

macrophages are capable of recognizing and binding specific molecules

of invading microorganisms, such as lipopolysaccharides (LPS) via

Toll-like receptor 4 (TLR-4) (8). The interaction between LPS and

TLR-4 initiates the classical M1 macrophage activation (9). Moreover,

cytokine interferon-g (IFN-g), which is heavily produced by

lymphocytes (10) and has a pro-inflammatory role in IBD (11), also

induces M1 polarization (12) through IFN-g receptor (13). The said

M1 activation is closely related to IBD (14–16), in which the cells

produce large amounts of pro-inflammatory cytokines such as TNF-a,
IL-6 etc. (17), reactive oxygen and nitrogen species (RONS) such as

superoxide anions (18) and NO (19). Although we use the M1/M2

macrophage classification in the present work, we must emphasize the

fact that this is an oversimplified model and macrophage polarization

encompasses a much broader, context-dependent spectrum (12, 20).

M1 polarization, which can also be mediated by non-coding RNAs

(21), represents a complete reprogramming of cellular metabolism,
02
during which cells adapt to new conditions (22). LPS- or IFN-g-
stimulated macrophages show an altered metabolic phenotype referred

to asWarburgmetabolism (23, 24). TheWarburg effect is characterized

by switching the cellular energy metabolism from oxidative

phosphorylation (OXPHOS) to aerobic glycolysis with lactate

production despite sufficient oxygenation of the tissue (25). The

enzyme lactate dehydrogenase synthesizes lactate from the glycolytic

end product pyruvate by simultaneously oxidizing NADH to NAD+ to

maintain glycolysis (26), a less efficient way of ATP synthesis. On the

contrary, OXPHOS is a more efficient process for ATP generation. It

occurs in the mitochondrial inner membrane, where NADH and

succinate reduce complex I (CI) and CII of the electron transport

chain (ETC), respectively. CI, CIII and CIV pump protons across the

membrane and the resulted proton motive force drives the ATP

synthesis via FOF1-ATP-synthase (27). Additionally, electrons passing

across the ETC reduce O2 via protons to H2O in CIV. This latter

process accounts for the vast majority of mitochondrial oxygen

consumption (27). Thus, in Warburg metabolism, cells are forced to

utilize higher amounts of glucose to produce ATP and lactate since the

energetically more effective mitochondrial OXPHOS is downregulated

(25, 28). Interestingly, despite a decreased flux through TCA cycle,

mitochondrial succinate oxidation by succinate dehydrogenase (TCA

enzyme) increases in macrophages, in which the combination with

higher mitochondrial membrane potential enhances ROS production

and stimulates M1 activation. In conclusion, M1 macrophages re-

utilize their mitochondria from OXPHOS to ROS production, thereby

promoting M1 polarization and induce inflammation (29).

Interestingly, macrophages undergoing Warburg-type metabolism

were found trapped in the inflammatory M1 condition. They were

unable to undergo M1 to M2 polarization following IL-4 treatment,

which is a strong activator of M2 polarization in macrophages (30, 31).

Furthermore, sufficient mitochondrial function appears to be essential

for the stimulation of M1 to M2 polarization (32). Thus, both

inhibiting glycolytic reprogramming and improving mitochondrial

function may prevent M1 macrophage activation thereby

reducing inflammation.
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The cytokine macrophage migration inhibitory factor (MIF)

promotes M1 macrophage polarization (33–35) and has long been

implicated in the pathomechanism of IBD (36, 37). For example,

plasma MIF levels are enhanced in both CD and UC patients when

compared to healthy individuals. Neutralizing anti-MIF

antibodies improve the clinical manifestations of CD-like, 2,4,6-

trinitrobenzenesulfonic acid-(TNBS)-induced colitis and UC-like

dextran sulphate sodium-(DSS)-induced experimental colitis in

mice (38). Additionally, MIF deficient mice are resistant against

colitis, while reconstitution of MIF-/- knock out mice with MIF+/+

immune cells increased colitis severity (36). MIF has several
Frontiers in Immunology 03
enzymatic activities such as the enigmatic tautomerase and MIF

tautomerase inhibitors improved DSS-induced murine colitis (39)

and TNBS-colitis in rats (40). Surprisingly, despite the above results,

little is known in reference to the role of MIF tautomerase

activity regarding macrophage metabolic reprogramming and

mitochondrial dysfunction during M1 activation in colitis.

In the present study, we investigated whether TE-11 (Figure 1A), a

new pharmacological MIF tautomerase inhibitor, which has no radical

scavenging effect (Figure 1B), and it is not cytotoxic in the applied

concentration (Supplementary Figure S1), but effectively prevents

both ketonase (IC50 = 5.63 mmol/dm3) and enolase (IC50 = 28.58
FIGURE 1

Structural formula and antioxidant effect of TE-11 in a cell free system, and experimental model of TNBS-induced colitis: (A) Chemical structure of
(2E)-2-(pyridin-2-ylmethylidene)-3,4-dihydronaphthalen-1-one (B) Oxidation of DHR1,2,3 was induced by 100 mM H2O2 in the presence of TE-11,
resveratrol or tempol. Data are presented as means ± SD (n = 10) One-way ANOVA ***P < 0.001 (C) Timescale and treatments in TNBS colitis model.
Resv, resveratrol; Temp, tempol; TNBS, 2,4,6-trinitrobenzene sulfonic acid; ip, intraperitoneal; ir, intrarectal.
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mmol/dm3) sub-activities of MIF tautomerase (41) has a beneficial

effect in a CD-like colitis among mice. Since macrophages are deeply

involved in the pathomechanism of IBD, we investigatedmany aspects

of M1 macrophage activation including RONS and inflammatory

cytokine production, glycolytic activity and mitochondrial energy

metabolism in LPS+IFN-g-induced RAW264.7 cells. We also

assessed the effect of TE-11 upon leukocyte migration using isolated

human blood eosinophils and neutrophils.
2 Results

2.1 TE-11 improves TNBS-induced colitis in
mice

To evaluate the effect of TE-11 in a mouse model of CD (42),

TNBS-colitis was applied (Figure 1C). One bolus of TNBS-induced

severe tissue destruction in the colon characterized by hemorrhagic

ulcerations (Figure 2A) and high macroscopic scores (Figures 2B,

C). TE-11 at a dose of 10 mg/kg reduced tissue damage primarily by

reducing the ulcer size (Figure 2A) and resulted in a decreased

inflammation score in comparison to the TNBS group (Figure 2C).

TNBS also induced proinflammatory cytokine production in the

colon (Figures 2D, E). We measured enhanced levels of IL-6

(Figure 2D) and IL-1b (Figure 2E) in tissue extracts, which were

markedly reduced due to the TE-11 treatment.
2.2 TE-11 attenuates human neutrophil and
eosinophil migration induced by MIF, IL-8
or CCL11

To investigate the effect of TE-11 on leukocytemigration, purified

human peripheral blood eosinophils or isolated polymorphonuclear

leukocytes, mainly comprising neutrophils, were pretreated with TE-

11 (20 µM) or vehicle for 30 min prior to the assay (Figure 3). Since

IL-8 is a specific neutrophil (43) and CCL11 is a specific eosinophil

(44) chemotactic factor, neutrophil migration was induced by MIF

(Figure 3A) or IL-8 (Figure 3B), while eosinophil migration was

stimulated by MIF (Figure 3C) or CCL11 (Figure 3D). Data were

analyzed by flow cytometry (Supplementary Figure S2) and expressed

as percent of MIF, IL-8 or CCL11 responses, respectively. We

observed that TE-11 reduced MIF-stimulated neutrophil migration

by 40% and IL-8-stimulated responses by 34% (Figures 3A, B).

Similarly, TE-11 attenuated eosinophil migration towards MIF by

55% and CCL11-induced migration by 24% (Figures 3C, D).
2.3 TE-11 prevents the anti-apoptotic
effect of MIF in isolated human neutrophils
and eosinophils

MIF has been demonstrated to inhibit neutrophil apoptosis

through diverse mechanisms (45, 46). Thus, we investigated the

effect of TE-11 on neutrophil and eosinophil cell death.
Frontiers in Immunology 04
MIF decreased late apoptosis (Figure 4A) and necrosis

(Figure 4B) in neutrophils and eosinophils (Figures 4C, D). TE-11

pretreatment significantly increased the amount of apoptotic and

necrotic neutrophils (Figures 4A, B) and eosinophils (Figures 4C,

D) when compared to MIF-treated cells.
2.4 MIF inhibition decreases HIF-1a mRNA
transcription and protein expression in
macrophages

LPS+IFN-g treatment induced HIF-1a mRNA transcription

(Figure 5A) and protein expression as was measured in

RAW264.7 cell supernatants (Figure 5B). TE-11 treatment

inhibited both the mRNA transcription (Figure 5A) and protein

translation of HIF-1a (Figure 5B).
2.5 TE-11 modulates inflammatory mRNA
transcription in macrophages

LPS+IFN-g treatment induced the mRNA transcription of

numerous inflammatory genes in macrophages (Figure 6). We

found elevated levels of CCL2 (Figure 6A), IL-6 (Figure 6B),

TNF-a (Figure 6C), iNOS (Figure 6D) and SOD2 (Figure 6E)

gene transcripts compared to the VEH group. In contrast, TE-11

inhibited CCL2 (Figure 6A) and IL-6 (Figure 6B) mRNA

transcription, while it failed to modulate TNF-a (Figure 6C) and

iNOS gene transcription (Figure 6D). Additionally, TE-11 further

increased the transcription of the SOD2 (Figure 6E) gene in

comparison to LPS+IFN-g-activated cells. There were no

alterations detected in Nrf1 mRNA transcription in our model.
2.6 TE-11 inhibited proinflammatory
cytokine and RONS production in M1
activated macrophages without a direct
antioxidative effect

We tested the radical scavenging effect of TE-11 in a cell-free

system (47). EDTA-Fe2+ catalyzed the decomposition reaction of

H2O2, resulting in increased levels of hydroxyl radicals when

compared to CTRL. TE-11 treatment failed to reduce the

concentration of the hydroxyl radicals, while two known radical

scavengers, resveratrol (48) and tempol (49) significantly decreased

it (Figure 1B). We equally tested TE-11 on RONS and cytokine

production of LPS+IFN-g-induced RAW264.7 cells. LPS+IFN-g
induced CCL2 (Figure 7A), IL-6 (Figure 7B), TNF-a (Figure 7C),

ROS (Figure 6D) and nitrite (Figure 6E) production in

macrophages. Our results revealed TE-11 diminishes CCL2, IL-6,

ROS and nitrite levels, however, failed to modulate TNF-a amounts

when compared to VEH cells (Figure 7). For IL-6 and nitrite, we

used two additional concentrations of TE-11 and found that the

inhibitory effect on IL-6 and nitrite production was the most

prominent at a 20 mM concentration (Supplementary Figure S3).
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FIGURE 2

TE-11 treatment improves TNBS-induced colitis in mice. (A) Representative images of the colon (B) Macroscopic scores (5 mg/kg TE-11), data were
combined from 2 separate experiments (n=15-16). (C) Macroscopic scores (10 mg/kg TE-11), data were combined from 3 separate experiments
(n=17-21) (D) IL-6 and (E) IL-1b concentrations were measured with ELISA-kits (optical density, 450 nm). Data are presented as means+SD
(combined data of 3 separate experiments (n=10-20). Kruskal-Wallis H-test (B, C) and Welch ANOVA (D, E) *P < 0.05, **P < 0.01, ***P < 0.001. VEH,
vehicle; TNBS, 2,4,6-trinitrobenzene sulphonic acid.
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2.7 The MIF tautomerase inhibitor TE-11
reduced basal extracellular acidification
rate in RAW264.7 cells

M1 polarized macrophages switch their energy metabolism

from OXPHOS to aerobic glycolysis. Therefore, we analyzed

glycolytic activity by measuring ECAR in activated macrophages.

LPS+IFN-g induced a marked increase, while TE-11 caused a

significant reduction in basal ECAR in comparison with the LPS

+IFN-g-treated cells (Figure 8A [1-3 points of the measurement]

and Figure 8B). Oligomycin enhanced ECAR in VEH and LPS

+IFN-g+TE-11 groups, however, failed to increase its level in the

LPS+IFN-g-treated cells (Figure 8A [4-6 points of the

measurement] and Figure 8C). FCCP (Figure 8A [7-9 points of

the measurement]) and rotenone plus antimycin A (Figure 8A [10-

12 points of the measurement]) did not significantly affect ECAR in

either treatment groups. We used two additional concentrations of

TE-11 (5 mM, 10 mM) for ECAR measurement and found that the

inhibitory effect on ECAR at the lower concentrations was

comparable to that at 20 mM (Supplementary Figure S4).
Frontiers in Immunology 06
2.8 TE-11 improved mitochondrial
respiration, ATP production and coupling
efficiency

M1 polarized macrophages downregulate mitochondrial

OXPHOS. Therefore, we analyzed the effect of TE-11 on

mitochondrial oxygen consumption in LPS+IFN-g-treated
RAW264.7 cells (Figure 9A). By using oligomycin, FCCP and

rotenone plus antimycin A, many further aspects of the

mitochondrial energy status were measured and calculated

(Figure 9B-G). LPS+IFN-g treatment strongly attenuated

mitochondrial OXPHOS by reducing basal respiration (Figure 9A

[1-3 points of the measurement] and Figure 9B). Oligomycin

reduced (Figure 9A [4-6 points of the measurement]) and FCCP

(Figure 9A [7-9 points of the measurement]) enhanced basal

respiration in VEH and LPS+IFN-g+TE-11 treatment groups,

however, they failed to modulate it in the LPS+IFN-g-treated
cells. LPS+IFN-g increased ATP production (Figure 9C), coupling

efficiency (Figure 9D), maximal respiration (Figure 9E), spare

respiratory capacity (Figure 9F) and proton leakage (Figure 9G).
FIGURE 3

TE-11 alleviates the migratory responsiveness of human neutrophils and eosinophils towards MIF and major chemoattractants. (A, B) Polymorphonuclear
leukocytes (PMNL) and (C, D) purified eosinophils were pretreated with TE-11 (20 µM) at 37°C for 30 min and were allowed to migrate towards (A, C)
MIF (3 nM, n = 7-8), (B) IL-8 (10 nM, n = 6) or (D) CCL11 (10 nM, n = 7) in a micro-Boyden chamber at 37°C for 60 min. Migrated cells were enumerated
by flow cytometry on a BD Canto II flow cytometer (acquisition set for 30 sec at medium flow rate) and expressed as % of the respective mean control
response (MIF, IL-8 or CCL11 alone). Data are shown as mean ± SD of indicated independent experiments. Paired t-test or Wilcoxon test, *P < 0.05. All
experiments were performed in technical triplicates. MIF, macrophage migration inhibitory factor.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1558079
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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TE-11 effectively improved all enlisted parameters with the

exception of proton leakage. We used two additional

concentrations of TE-11 (5 mM, 10 mM) for OCR measurement

and found that the improvement in OCR and bioenergetic

parameters was the most prominent at a concentration of 20 mM.

(Supplementary Figure S5).
3 Discussion

A very recent pioneering study strongly supports the fact that

macrophage activation and metabolic reprogramming play a

fundamental role in the development of IBD in a shocking

number of IBD patients (50). In our present report, we

demonstrated how TE-11, a novel and potent MIF tautomerase

inhibitor, attenuated inflammatory macrophage activation and
Frontiers in Immunology 07
associated metabolic shift from OXPHOS to aerobic glycolysis.

Additionally, TE-11 reduced leukocyte migration and ameliorated

Crohn’s diseases such as experimental colitis in mice.

First, we investigated whether the MIF tautomerase inhibitor

TE-11 (Figure 1A) may improve CD-like experimental colitis in

mice. Therefore, we applied TNBS-colitis (Figure 2B) since many

of the symptoms, histological and biochemical characteristics of

this model are similar to human CD (42). Additionally, the

similarity between CD and TNBS-colitis is an increase in MIF

expression, of which, was equally observed among CD patients

(51) and in the colon of TNBS-treated rodents (52, 53). TE-11

alleviated the severity of colitis in mice (Figures 2A, B), which

was primarily characterized by a strong reduction in ulcer size.

The decrease in inflammation scores was accompanied by a

significant decline in the tissue expression of IL-6 and IL-1b
(Figures 2C, D).
FIGURE 4

TE-11 counteracts the anti-apoptotic effect of MIF in human neutrophils and eosinophils. (A, B) Polymorphonuclear leukocytes (PMNL, n=4) and (C,
D) purified eosinophils (n=4) were pretreated with TE-11 (20 µM) at 37°C for 60 min in RPMI 1640 medium supplemented with 1% FBS and 1%
Penicillin/Streptomycin. Afterwards, MIF (500 nM) or vehicle control (PBS+BSA) was added to the cells. After 24 hours, cells were stained with APC-
annexin-V (1/100) and Propidium iodide (1/50). Samples were immediately analyzed on a BD Canto II flow cytometer (acquisition set for 60 sec at
medium flow rate). Data of (A, C) late apoptotic cells (annexin-V positive/PI positive) and (B, D) necrotic cells (annexin-V negative/PI positive) cells
are presented. Data are shown as mean ± SD of indicated independent experiments and expressed as % of the vehicle control (RPMI 1640 only).
One-way ANOVA, *P < 0.05, **P < 0.01. All experiments were performed in technical triplicates. VEH, vehicle; MIF, macrophage migration
inhibitory factor.
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In IBD, the proinflammatory cytokines IL-6 and IL-1b are

mainly primarily produced by leukocytes which are recruited into

the colon. Leukocyte recruitment, however, is largely regulated by

MIF (54). Therefore, we investigated whether TE-11 may inhibit
Frontiers in Immunology 08
leukocyte migration (Figure 3). In addition to MIF, IL-8, a specific

neutrophil (43) and CCL11, a specific eosinophil (44) chemotactic

factor were utilized to induce migratory responses. As a cytokine,

MIF binds to its receptors CD74 (55, 56) and CXCR2 (54) and
FIGURE 5

TE-11 decreased HIF-1a mRNA transcription and protein expression in activated macrophage cells. (A): HIF-1a mRNA transcription and (B) protein
expression, measured from the supernatant of the treated cells. Data (combined from 5 separate experiments with 1 or 2 parallels n=5) are expressed as
mean ± SD, Welch ANOVA (A) and One-way ANOVA (B) *P <0.05, ***P < 0.001. LPS, lipopolysaccharide; IFN-g, interferon-g.
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Vámos et al. 10.3389/fimmu.2025.1558079
FIGURE 6

TE-11 decreased CCL2 and IL-6, while it increased SOD2 mRNA transcription in activated macrophage cells. RAW264.7 cells were pretreated with 20
mM TE-11 for 30 minutes. Then, macrophages were treated with LPS (0.1 mg/ml) + IFN-g (0.01 mg/ml) for 8 hours. VEH and LPS+IFN-g groups
received the same amount of DMSO as TE-11-treated cells. (A) CCL2, (B) IL-6, (C) TNF- a, (D) iNOS, (E) SOD2, (F) Nrf1 relative normalized gene
expressions are shown. Data (combined from 5 separate experiments n=5) are expressed as mean ± SD, Welch ANOVA (D–F) and One-way ANOVA
(A–C) *P <0.05, **P < 0.01, ***P < 0.001. LPS, lipopolysaccharide; IFN-g, interferon-g.
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stimulates chemotaxis. TE-11 reduced MIF-induced neutrophil

(Figure 3A) and eosinophil (Figure 3B) migration, possibly due to

its ability to bind to the tautomerase catalytic domain of MIF (41),

which is responsible for protein/receptor interactions (57). This

implies blocking the tautomerase catalytic domain by TE-11

prevents MIF receptor binding, thereby attenuating chemotaxis.
Frontiers in Immunology 10
Surprisingly, MIF tautomerase inhibition equally blocked IL-8-

induced neutrophil migration (Figure 3B). A possible explanation

for this phenomenon suggests IL-8-induced neutrophils have been

shown to express MIF (58), which can further enhance leukocyte

migration. Accordingly, TE-11 may inhibit this secondary, MIF-

induced migration rather than the direct IL-8-induced neutrophil
FIGURE 7

TE-11 inhibited CCL-2, IL-6, ROS and nitrite production in activated macrophages. (A) CCL2 (B) IL-6 and (C) TNF- a production. Combined data of
n=10 [results of 5 independent experiments with 2 parallel measurements]. (D) ROS, (E) Nitrite production. Combined data of n=18 [results of 3
independent experiments with 6 parallel measurements]. Results are presented as means+SD. Welch ANOVA (A-D) and One-way ANOVA (E)
**P < 0.01, ***P<0.001. VEH, vehicle; LPS, lipopolysaccharide; IFN-g, interferon-gamma.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1558079
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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chemotaxis. TE-11 also slightly reduced CCL11-induced eosinophil

migration (Figure 3D). This likely is the result due to the recognized

cross-talk between MIF and CCL11 in eosinophils (59), i.e.,

blocking MIF receptor binding prevents MIF signaling and

moderates the effect of CCL11. Furthermore, MIF inhibited late

apoptotic and necrotic cell death in neutrophils (Figure 4A, B) and

eosinophils (Figures 4C, D), which was significantly counteracted

by TE-11 treatment (Figure 4) and can be satisfactorily explained by

the prevention of receptor activation by TE-11. Comprehensively,
Frontiers in Immunology 11
TE-11 effectively inhibited MIF-induced leukocyte migration and

survival, which are both parts of inflammatory leukocyte activation

in IBD.

To obtain detailed information regarding leukocyte activation,

we utilized the RAW264.7 macrophage cell line. Cells were treated

with LPS+IFN-g to induce inflammatory M1 activation (60, 61),

which is characterized by increased MIF production (62, 63).

Studies have shown LPS also activates HIF-1a mRNA

transcription in monocytes and macrophages (64, 65) and HIF-
FIGURE 8

TE-11 diminished aerobic glycolysis in activated macrophages. RAW264.7cells were pretreated with 20 mM TE-11 and then induced with LPS (0.1 mg/
ml) + IFN-g (0.01 mg/ml) for 8 hrs. After the treatment Seahorse XFp Mito Stress test was performed. VEH and LPS+IFN-g groups received the same
amount of DMSO as the TE-11-treated cells. During the measurement oligomycin, FCCP, and the mixture of rotenone and antimycin A were added.
The final concentrations of the inhibitors and uncoupling agent were 1 mM. (A) Extracellular acidification rate (ECAR), (B) basal ECAR, and (C) ECAR
changes are shown. ECAR changes were determined by the difference between ECAR values before and after oligomycin injection. Data are
presented as means ± SD (combined data of n=8 [results of 4 independent experiments with 2 parallel measurements]) One-way ANOVA and paired
samples t-test ***P < 0.001. ECAR, extracellular acidification rate; VEH, vehicle LPS; lipopolysaccharide; IFN-g, interferon-g.
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FIGURE 9

TE-11 protected mitochondrial respiration and improved mitochondrial bioenergetic parameters in activated macrophages. RAW264.7 cells were
pretreated with 20 mM TE-11 for 30 minutes. Then macrophages were treated with LPS (0.1 mg/ml) + IFN-g (0.01 mg/ml) for 8 hours. VEH and LPS
+IFN-g groups received the same amount of DMSO as the TE-11-treated cells. Oligomycin, FCCP and the mixture of rotenone and antimycin A were
added sequentially during the measurement in a final concentration of 1 mM. (A) Measurement of oxygen consumption rate. (B) Basal respiration,
(C) ATP production, (D) Coupling efficiency (E) Maximal respiration, (F) Spare respiratory capacity, and (G) Proton leakage were determined. Results
(data combined from 4 separate experiments with 2 parallel measurements, n=8) are expressed as mean+SD. Welch ANOVA (A-C, E-G) and
One-way ANOVA (D) *P < 0.05, **P < 0.01, ***P < 0.001. OCR, oxygen consumption rate; VEH, vehicle; LPS, lipopolysaccharide; IFN-g, interferon-g.
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1a regulates M1 polarization (66). Correspondingly to published

literature, we observed a marked increase in HIF-1a mRNA

(Figure 5A) and protein (Figure 5B) concentration in our model,

which were reduced by MIF inhibition (Figures 5A, B). The

profound role of MIF in the transcriptional activation of HIF-1a
was likewise supported in literature (67, 68). However, in contrary

to our findings, these studies did not identify MIF tautomerase as

the key inducer of the HIF-1a transcription. In immune cells, HIF-

1a can stimulate the gene transcription of numerous inflammatory

cytokines, such as IL-6, TNF-a or CCL-2 (69–71). Since MIF

regulates HIF-1a (Figure 5) and HIF-1a stimulates CCL2 and IL-

6 mRNA transcription (Figures 6A, B) and protein expression

(Figures 7A, B), MIF inhibition effectively counteracted these

processes (Figures 6A, B). The surprising ineffectiveness of TE-11

on TNF-amRNA transcription (Figure 6C) and protein expression

(Figure 7C) suggests involvement of other MIF-independent

transcription mechanisms. Consistent with other reports, our

results demonstrated increased ROS production (72) (Figure 7D)

and a self-protective transcriptional upregulation of the

mitochondrial SOD2 antioxidant enzyme (73) in M1

macrophages (Figure 6E). In our model, TE-11 further increased

SOD2 mRNA transcription (Figure 6E). HIF-1a can regulate SOD2

expression by directly binding and inhibiting the HRE element in

the promoter of the SOD2 gene (74), inferring MIF tautomerase

inhibition can reduce HIF-1a expression and in the absence of HIF-

1a, SOD2 mRNA transcription is no longer impeded. Considering

TE-11 has no direct ROS-scavenging activity (Figure 1B), putative

upregulation of SOD2 may be one of the possible explanations for

the slightly decreased ROS concentration when utilizing the MIF

inhibitor (Figure 7D). Considering that we did not analyze SOD2

protein production in our study, this idea is merely hypothetical. In

addition to oxidative stress, nitrosative stress can also be detected in

active immune cells. In M1 macrophages, HIF-1a induces iNOS

gene expression (75), which can be directly assessed by determining

iNOS mRNA or indirectly, by measuring nitrite, the chemically

more stable degradation product of NO. During the analysis of

iNOS transcription, we found a marked increase in the iNOS

mRNA level in LPS+IFN-g-treated cells, however, we observed

only a tendency in the reduction of iNOS transcription in

response to TE-11 (Figure 6D). Since nitrite production was

clearly declined following TE-11 treatment (Figure 7E) and TE-11

has no radical scavenging potential (Figure 1B), no further

experiments were performed to reach statistical significance

(Figure 6B). AMPK/PGC-1a/nuclear respiratory factor 1 (Nrf1)

signaling pathway was found to protect mice in LPS-induced acute

lung injury by improving mitochondrial function (76). Since we

observed an improvement in mitochondrial bioenergetics in

macrophages, as detailed later, we also analyzed Nrf1 mRNA

transcription. Based on our results, we can assume that Nrf1 may

not be involved in mitochondrial bioenergetic improvement in our

model (Figure 7E).

Another important aspect of M1 polarization is metabolic

reprogramming. LPS and IFN-g treatment was shown to induce

aerobic glycolysis in murine M1 cells (24, 77). To cite an instance,
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this metabolic switch can be induced by HIF-1a. HIF-1a increases the

transcription of key transporters such as glucose transporter 1 and

enzymes such as hexokinase II or pyruvate kinase M2 thereby

activating glycolysis (78). This HIF-1a-induced glycolytic switch is

essential to the inflammatory macrophage activation (79). We could

also observe this metabolic switch in the M1 activated RAW264.7 cells

(Figure 8). LPS+IFN-g caused a significant increase in basal ECAR

(Figures 8A, B), indicating a higher lactate production and enhanced

glycolysis (80). The metabolic switch in the M1 cells was extremely

pronounced. Oligomycin, an FOF1-ATPase inhibitor which reduces

OXPHOS and mitochondrial ETC activation while increasing

glycolysis failed to further increase ECAR in LPS+IFN-g-treated cells

(Figure 8C). However, it did further increase ECAR in the VEH and

LPS+IFN-g+TE-11-treated groups (Figure 8C). This finding suggests

glycolysis proceeds at the highest possible flux among activated cells. In

contrast, TE-11 intensely reduced glycolytic flux (Figure 8B). Overall,

MIF tautomerase can likely control glycolysis via the MIF/HIF-1a axis.

Metabolic reprogramming also involves the inhibition of the

mitochondrial ETC and OXPHOS. Elevated NO concentration

reduces the activity of pyruvate dehydrogenase and aconitase 2,

which causes CAC corruption and suppresses mitochondrial ETC

complexes (81). We found oxygen consumption was strongly reduced

in cells with LPS+IFN-g treatment when compared to the vehicle

group. Neither oligomycin nor the mitochondrial uncoupler FCCP

influenced OCR (Figure 9A), suggesting an intense inhibition of the

mitochondrial ETC during M1 polarization. In contrast, in LPS+IFN-

g+TE-11-treated cells oligomycin reduced and FCCP improved OCR

similarly as in VEH cells (Figure 9A), implying TE-11 may prevent the

complete inhibition of ETC (Figure 9A). Changes in the determined

parameters, such as basal respiration (Figure 9B), ATP production

(Figure 9C), coupling efficiency (Figure 9D), maximal respiration

(Figure 9E) and spare respiratory capacity (Figure 9F) reflect

enhanced OXPHOS and improved mitochondrial energy production.

Thus, MIF tautomerase inhibition reduced M1 activation associated

metabolic reprogramming.

In our recent study, we used the mouse macrophage cell line

RAW264.7. So, we must take it into account that human and mice

macrophages may differ in many aspects. MIF and MIF receptors,

however, are widely expressed in many human cells and organs (82),

including monocytes (83) and macrophages (84), and inhibition of the

MIF receptor CD74 prevents human M1 macrophage polarization

(35). Since M1 activation with associated metabolic reprogramming is

deeply involved in the pathomechanism of IBD, and MIF tautomerase

is a pharmaceutical target for its inhibition, TE-11 may be a potential

drug for future IBD treatment.
4 Materials and methods

4.1 Synthesis and purification of the test
compound TE-11

The test compound (2E)-2-(pyridin-2-ylmethylidene)-3,4-

dihydronaphthalen-1-one (TE-11), was synthesized at room
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temperature in ethanol as previously described (85). Purification

was accomplished by recrystallization from methanol and by

column chromatography. The structural characterization was

performed based on Fourier-transform infrared spectroscopy

methods and previously published NMR data. The compound

was corroborated as E-isomer based on NMR measurements (86).
4.2 Isolation of peripheral blood
polymorphonuclear leukocytes and
eosinophil purification

All experiments involving primary cells of human peripheral

blood were approved by the Institutional Review Board of the

Medical University of Graz (EK 17–291 ex 05/06). Briefly, human

peripheral blood polymorphonuclear leukocytes (PMNL) were

isolated from citrated whole blood among healthy volunteers.

Erythrocytes were removed by dextran sedimentation and PMNL

were separated from peripheral blood mononuclear cells (PBMC)

by density gradient centrifugation using PBMC spin medium

(pluriSelect Life Science, Leipzig, DE). Eosinophils were further

separated from neutrophils of the PMNL fraction by negative

magnetic selection using MACS cell separation system

(Eosinophil Isolation Kit, Miltenyi Biotech, Bergisch Gladbach,

DE) with a resulting purity typically at ≥ 98%.
4.3 Chemotaxis assay

Chemotaxis assays were performed in a micro-Boyden chamber

as previously described (47). Unless otherwise stated, all materials

were procured from Merck (Darmstadt, DE). Eosinophil chemotaxis

was performed with purified human eosinophils, whereas human

PMNL preparations were used to assess the migratory responsiveness

of neutrophils. Cells were resuspended in assay buffer (PBS with 0.9

mmol/L Ca2+ and 0.5 mmol/L Mg2+, supplemented with 0.1% BSA,

10 mmol/L HEPES, and 10 mmol/L glucose, pH 7.4), pretreated with

TE-11 (20 µM) for 30 min at 37°C and allowed to migrate towards

MIF (3 nM; Peprotech, London, UK; eosinophils: n = 7, neutrophils:

n = 8), IL-8 (10 nM; Immunotools, Friesoythe, DE; neutrophils: n =

6) or CCL11 (10 nM; Immunotools, Friesoythe, DE; eosinophils: n =

7) for another 60 min at 37°C in a 48-well micro-Boyden chamber

using PVP-free polycarbonate filters with a pore size of 5 µm

(eosinophils) or 3 µm (neutrophils) (Sterlitech, Auburn, US).

Migrating cells were enumerated by flow cytometry on a BD Canto

II flow cytometer (acquisition set for 30 sec at medium flow rate).

Eosinophils and neutrophils were gated by their forward and side

scatter properties and by autofluorescence (Supplementary Figure

S1). For all experiments, technical triplicates have been performed.
4.4 Apoptosis assay

Apoptosis assays were performed as previously described using

an Annexin-V/Propidium iodide-based staining protocol (47).
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Unless otherwise stated, all materials were procured from Merck

(Darmstadt, DE). Isolated PMNL (n=4) and purified eosinophils

(n=4) from healthy volunteers were pretreated with TE-11 (20 µM)

for 60 min in RPMI 1640 supplemented with 3% FBS and 1%

Penicillin/Streptomycin. Afterwards, cells were incubated with MIF

in PBS (500 nM, Peprotech, London, UK) or PBS+BSA (vehicle

control) for 24 hours. Cells were stained with APC-Annexin-V (1/

100) at 4°C in the dark for 20 min prior to adding Propidium iodide

(PI; 1/50). Samples were immediately analyzed on a BD Canto II

flow cytometer (acquisition set for 60 sec at medium flow rate).

Total cell numbers of live cells (annexin-V negative/PI negative),

early apoptotic cells (annexin-V positive/PI negative), late apoptotic

cells (annexin-V positive/PI positive) and necrotic cells (annexin-V

negative/PI positive) were recorded. For all experiments, technical

triplicates were performed.
4.5 Animals

Male CD1 mice were bred and maintained at the animal facility

of the Department of Biochemistry and Medical Chemistry,

Medical School, University of Pécs. All experimental procedures

were performed in full accordance with the European Communities

Council Directive of 2010/63/EU under protocols approved by the

Institutional Animal Use and Care Committee of the University of

Pécs (Permit number: BA02/2000-65/2022). Animals were housed

in temperature-controlled rooms on a 12/12 h light/dark cycle.

Water and standard laboratory rodent chow were available ad

libitum. At the time of TNBS-induction, the mice were 8-10

weeks old and organized randomly into vehicle (VEH), TNBS,

and TNBS+TE-11 treatment groups. Body weight was matched, and

5 or 10 mg/kg body weight TE-11 was applied intraperitoneally as

pretreatment (single injection) the day prior to TNBS treatment

followed by daily administration for 3 days (Figure 1C). The VEH

group received sterile PBS containing 5% DMSO. Following twelve

hours fasting, mice were anesthetized with 5% isoflurane (Baxter

Hungary Ltd, Budapest, Hungary) in 100% oxygen in an anesthetic

chamber. TNBS (4 mg in 100 ml of 30% ethanol; Sigma-Aldrich,

Missouri, USA) was administrated by single intracolonic injection

(Figure 1C) through a catheter, which was carefully inserted into the

colon approximately 3 cm deep. VEH group received equal amount

of 30% ethanol. Animals were weighed daily throughout the

experiment and sacrificed 72 hrs following TNBS administration

(Figure 1C). Blood was collected; colons were extracted, weighted

(g), length was measured (cm) and opened longitudinally to permit

macroscopic evaluation of colon damage. Tissue samples were

processed for further analysis.
4.6 Macroscopic scoring

To evaluate the tissue damage of the colon, we utilized a

semiquantitative macroscopic scoring system formerly described

by others (87). Briefly, individual scores were given in the

presence of the following symptoms: 1. ulcers (0.5 points for
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each 0.5 cm); 2. adhesions (0 points: no adhesion, 1 point:

1 adhesion, 2 points: 2 or more adhesions or adhesions to

other organs than the colon); 3. colon shortening (based on a

mean length of a healthy colon, 1 point: >15%, 2 points: >25%);

4. wall thickness (mm); and 5. stool consistency and the presence

of blood in the stool (haemorrhage, faecal blood, or diarrhea

increase the total points by 1).
4.7 Colonic cytokine determination

In consideration of cytokine measurements, colon samples were

weighed and homogenized in an extraction buffer containing

protease inhibitor (Protease Inhibitor Cocktail (Sigma-Aldrich

Missouri, USA), Tris (50 mmol/l), EDTA (10 mmol/l), and

Triton X (1%) with a manual homogenizer (20 mg colon tissue/

100 ml buffer). Samples were next centrifuged at 10,000 rpm for 10

minutes in which the protein concentration of the supernatants was

determined via Bradford Reagent (Bio-Rad Laboratories).

Following normalization of the protein content, IL-1b and IL-6

cytokines levels were determined by Mouse Uncoated (IL-1b and

IL-6) ELISA kit (Invitrogen Waltham, Massachusetts, USA) in full

accordance with the manufacturer’s guidance.
4.8 Measurement of radical scavenging
effect

The direct free-radical scavenging activity of TE-11 was

analyzed as formerly published (47). Briefly, we applied a cell free

system using the Fenton reaction with 2 mM dihydrorhodamine 123

(DHR123) (Life Technologies, Carlsbad, CA, USA) fluorescent dye.

Oxidation of DHR123 was induced by the reaction of 100 mMH2O2

(Sigma-Aldrich Missouri, USA) and 100 mM EDTA-Fe2+ salt in

PBS. TE-11, resveratrol (Sigma-Aldrich, Missouri, USA) and

tempol (Sigma-Aldrich, Missouri, USA) was diluted in PBS and

applied in 20 mM final concentration. Fluorescent intensity (494 nm

excitation and 517 nm emission) was measured immediately

following the addition of DHR123 using FL6500 fluorescence

spectrometer (Perkin-Elmer, Waltham, MA, USA).
4.9 Cell culture and treatments

In our cell culture experiments, we used RAW264.7 mouse

monocyte/macrophage cell line (ECACC, Salisbury, UK). Cells were

cultured in 5% CO2 at 37°C in endotoxin-tested Dulbecco’s

Modified Eagle’s Medium (high glucose, 4.5 g/L, 2mM L-

Glutamine; Biosera Cholet, France) and 10% FBS (Corning New

York, USA) without addition of antibiotics. The day prior to the

experiment cells were plated onto 24- or 96-well plates and cultured

overnight. Next, the medium was replaced by a fresh one and cells

were induced by 0.01 mg/ml IFN-g (Merck Rahway, New Jersey,

USA) and 0.1 mg/ml LPS (Sigma-Aldrich Missouri, USA). TE-11
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was dissolved in DMSO (10 mM) and applied in 20 mM
concentration as a pretreatment for 30 min prior to LPS and

IFN-g treatment. To exclude the effects of the vehicle, every cell

received the precise amount of DMSO in 1:500 dilution.
4.10 ROS and nitrite production in
macrophages

In the detection of reactive oxygen species and nitrite, we seeded

RAW264.7 cells onto 96-well plates in a density of 105 cells/well. Cells

were treated with TE-11 (20 mM) as pretreatment and with LPS (0.1

mg/ml) and IFN-g (0.01 mg/ml) for 24 hrs. Nitrite concentrations were

measured by using two additional concentrations of TE-11 (5 µM, 10

µM) to show concentration-dependent effect. Following 24 hours of

incubation, we utilized the same protocol for ROS and nitrite

measurements as formerly described (47).
4.11 Cytokine production in macrophages

In consideration of cytokine concentration measurements,

RAW264.7 cells were cultured in 24-well plates at a density of

5*105 cells/well and treated with TE-11 as a pretreatment (20 mM)

and with LPS (0.1 mg/ml) and IFN-g (0.01 mg/ml) for 8 and 24 hours.

TNF-a, IL-6, and CCL-2 levels were determined from the culturing

media via Mouse (TNF-a, IL-6, CCL-2) uncoated ELISA kits

(Invitrogen, Waltham, Massachusetts, USA). The concentration of

IL-6 was measured by using two additional concentrations of TE-11

(5 µM, 10 µM) to demonstrate the concentration-dependent effect.

HIF-1a was measured using a mouse HIF-1a ELISA Kit (FineTest,

Wuhan, China). The supernatants from treated cells were collected,

centrifuged to remove debris, and stored at -80°C until analysis. The

ELISA protocol was achieved in full compliance to the manufacturer’s

recommended protocol. Lastly, optical density was measured at 450

nm with Glomax Multi Detection System (Promega®, Madison, WI).
4.12 Measurement of mitochondrial
bioenergetics

To analyze respiratory and glycolytic energy production, oxygen

consumption rate (OCR) and extracellular acidification rate (ECAR)

were determined by SeahorseXFp Analyzer (Agilent Technologies,

Santa Clara, CA, USA). The day prior to the assay, the Seahorse XFp

Sensor Cartridge was hydrated as suggested by the manufacturer’s

protocol. The cells were plated at a starting density of 2*104 cells/well

onto Seahorse XFp Cell Culture Miniplates. RAW264.7 cells were

induced with LPS (0.1 mg/ml) and IFN-g (0.01 mg/ml) and treated

with 20 µM TE-11 for 8 hours. OCR and ECAR measurements were

performed by using two additional concentrations of TE-11 (5 µM, 10

µM) to demonstrate concentration-dependent effect. Following

various treatments, the medium was replaced by Seahorse XF Base

assay medium (pH 7.4) supplemented with 10 mM glucose, 2 mM L-
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glutamine, and 1 mM pyruvate. XFp Mito Stress Test Kit (Agilent

Technologies, Santa Clara, CA, USA) was used for measuring

mitochondrial function. The following modulators were injected

sequentially: oligomycin, carbonyl cyanide 4-(trifluoromethoxy)

phenylhydrazone (FCCP) and rotenone/antimycin A (Agilent

Technologies, Santa Clara, CA, USA). The final concentration of

the modulators was 1 mM. Bioenergetic parameters: basal respiration,

ATP production, maximal respiration, spare respiratory capacity,

non-mitochondrial respiration, proton leakage and coupling

efficiency all were determined as formerly described (88).
4.13 RNA isolation and qPCR

RAW264.7 cells were plated on 24 well plates at a density of

5*105 cells/well, pretreated with TE-11 (20 µM), and cultured with

LPS (0.1 µg/mL) + IFN-g (0.01 µg/mL) for 24 h. Total RNA was

extracted from RAW 264.7 cells forming a confluent monolayer

using MRX-03 MagCore® triXact RNA Kit 631 (RBC Bioscience,

Taiwan) in full accordance with the manufacturer’s protocol.

Extracted RNA was quantified using Nanodrop 2000c

spectrophotometer and Qubit 2.0 fluorometer (Thermo Fischer

Scientific, Waltham, MA, USA). Two mg of total RNA was

reverse-transcribed with M-MuLV RT (Maxima First Strand

cDNA Synthesis Kit, Thermo Fischer Scientific, Waltham, MA,

USA). Fifty ng cDNA was used in 10 mL final volume for real-time

PCR using the Xceed qPCR SG 2× Mix (Institute of Applied

Biotechnologies, Praha-Strasňice, Czech Republic) and a CFX384

Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA,

USA). Data were analyzed using the DCt method. Primers were

received from Integrated DNA Technologies (Belgium), except for

Tnf (Invitrogen, Thermo Fisher Scientific, USA). The mRNA

expression of the reference gene Ribosomal protein L27 was used

for normalizing gene expression. Primers of gene expression

include the following (Table 1):
TABLE 1 List of genes and primers for relative gene expression analysis.

Name
Accession

NM

Sequence
(5’-3’)

(F-forward,
R-reverse)

Amplicon
size

Ribosomal protein
L27
(Rpl27)

NM_011289

F-
AGGTCAAGTTTGA
GGAGCGATAC

141
R-
CCCACACAAATGC
AATAGGCAG

C-C motif
chemokine ligand
2 (Ccl-2)

NM_011333

F-
CTCAGCCAGATG
CAGTTAACG

157
R-
CAGACCTCTCTCT
TGAGCTTGG

(Continued)
F
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Continued

Name
Accession

NM

Sequence
(5’-3’)

(F-forward,
R-reverse)

Amplicon
size

Hypoxia inducible
factor 1, alpha
subunit (Hif-1a)

NM_001422143

F-GCCACCAAGG
AGGTACACAT

102
R-AAGGAAGCCAT
CACCAGCTTA

Nuclear
respiratory factor
1 (Nrf1)

NM_001164226

F-CGCTCATCCAG
GTTGGTACA

74
R-AGTGACTGTG
GTTGGCAGTT

Tumor necrosis
factor
(Tnf)

NM_001278601

F-ATGAGCACAGA
AAGCATGATC

660
R-TCACAGAGCA
ATGACTCCAA

Interleukin 6
(IL-6)

NM_031168

F-AGCCAGAGTCC
TTCAGAGAGAT

108
R-AGGAGAGCATT
GGAAATTGGGG

Nitric oxide
synthase 2,
inducible (Nos2)

NM_010927

F-GGGCAGCCTG
TGAGACCTT

72
R-CATTGGAAGT
GAAGCGTTTCG

Superoxide
dismutase 2,
mitochondrial
(Sod2)

NM_013671

F-GGAGCAAGGT
CGCTTACAGA

74
R-GCGGAATAAGG
CCTGTTGTT
4.14 Statistical analyses

All statistical analyses were performed using SPSS version 28.0

statistics software (IBM, New York, USA). First, the normality of

data distribution was investigated by Q-Q plot and/or box-plot,

including the Shapiro–Wilk test. One-way ANOVA or Welch’s

ANOVA with the appropriate post hoc tests were used to compare

the means of groups. For establishing statistical significance

between groups, partial eta squared value was calculated to

demonstrate the effect size. Effect sizes ANOVA test was defined

as small, when the h2 was between 0.01 and 0.06; moderate when

h2 was between 0.06 and 0.14 and large when the rank h2 was

greater than 0.14. Kruskal-Wallis non-parametric one-way

ANOVA for independent samples with multiple pairwise

comparisons was utilized to determine differences without the

assumption of normality. The effect size for Kruskal-Wallis H test

was regarded as small when the rank h2 was between 0.01-0.06;

moderate when rank h2 was between 0.06-0.14 and large when the

rank h2 was greater than 0.14. The paired samples t-test was used to

determine differences between two groups. Effect sizes for paired

sample t-test were classed as very small when the Cohen’s d value

was less than 0.2; small when the d value was between 0.2-0.5;
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moderate when d was between 0.5-0.8 and large when the d was

greater than 0.8. The p-values less than 0.05 were considered to

be significant.
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